On the Limitations of Representing Functions on Sets

A. Mathematical Remarks
A.1. Infinite Sums

Throughout this paper we consider expressions of the fol-
lowing form:

(X) = Xzex () )

Where X is an arbitrary set. The meaning of this expression
is clear when X is finite, but when X is infinite, we must
be precise about what we mean.

A.1.1. COUNTABLE SUMS

We usually denote countable sums as e.g. 252, x;. Note
that there is an ordering of the x; here, whereas there is no
ordering in our expression (5). The reason that we consider
sums is for their permutation invariance in the finite case,
but note that in the infinite case, permutation invariance of
sums does not necessarily hold! For instance, the alternating

harmonic series 52 @ can be made to converge to any
real number simply by reordering the terms of the sum.
For expressions like (5) to make sense, we must require
that the sums in question are indeed permutation invariant.
This property is known as absolute convergence, and it is
equivalent to the property that the sum of absolute values
of the series converges. So for (5) to make sense, we will
require everywhere that ¥,.¢ x |¢(x)| is convergent. For any
X where this is not the case, we will set &(X) = oo.

A.1.2. UNCOUNTABLE SUMS

It is well known that a sum over an uncountable set of
elements only converges if all but countably many elements
are 0. Allowing sums over uncountable sets is therefore of
little interest, since it essentially reduces to the countable
case.

A.2. Continuity of Functions on Sets

We are interested in functions on subsets of R, i.e. ele-
ments of 28, and the notion of continuity on 2R is not
straightforward. As a convenient shorthand, we discuss
“continuous” functions f on 2R but what we mean by
this is that the function fj; induced by f on RM by
fn(z, ., znm) = f({x1, ...,z }) is continuous for every
M e N.

A.3. Remark on Theorem 2.8

The proof for Theorem 2.8 from Zaheer et al. (2017) can
be extended to dealing with multi sets, i.e. sets with re-
peated elements. To that end, we replace the mapping
to natural numbers c¢(X) : RM — N with a mapping
to prime numbers p(X) : RM — P. We then choose

¢(x) = —log p(x,,). Therefore,
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which takes a unique value for each distinct X therefore
extending the validity of the proof to multi-sets. However,
unlike the original series, this choice of ¢ diverges with
infinite set size.

In fact, it is straightforward to show that there is no func-
tion ¢ for which ® provides a unique mapping for arbitrary
multi-sets while at same time guaranteeing convergence for
infinitely large sets. Assume a function ¢ and an arbitrary
point x such that ¢(x) = a # 0. Then, the multiset com-
prising infinitely many identical members x would give:

O(X) =D dlam) =D _a=oo (7)

B. Proofs of Theorems
B.1. Theorem 3.1

Theorem 3.1. There exist functions f : 22 — R such that,
whenever (p, §) is a sum-decomposition of f via R, ¢ is
discontinuous at every point q € Q.

Proof. Consider f(X) = sup(X), the least upper bound of
X. Write (X) = X,cxo(x). So we have:

sup(X) = p(®(X))

First note that ¢(q) # 0 for any ¢ € Q. If we had ¢(q) = 0,
then we would have, for every X C Q:

(X)) = (X) + ¢(q) = (X U{q})

But then, for instance, we would have:

qg=sup({g—1,q}) =sup({g—1}) =¢qg—1

This is a contradiction, so ¢(q) # 0.

Next, note that ®(X') must be finite for every upper-bounded
X C Q (since sup is undefined for unbounded X, we do
not consider such sets, and may allow ® to diverge). Even
if we allowed the domain of p to be R U {oc}, suppose
®(X) = oo for some upper-bounded set X . Then:
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sup(X) = p(®(X))

(o0)

= p(oo+ d(supX) + 1))

= p(®(X U {sup(X)+1}))
= sup(X U {sup(X)+1})
= sup(X)+1

I
>

This is a contradiction, so ®(X) < oo for any upper-
bounded set X.

Now from the above it is immediate that, for any upper-
bounded set X, only finitely many 2 € X can have ¢(x) >
%. Otherwise we can find an infinite upper-bounded set
Y C X with ¢(y) > L foreveryy € Y, and ®(Y) = oc.

Finally, let ¢ € Q. We have already shown that ¢(q) # 0,
and we will now construct a sequence g,, with:

1. g = q

2. ¢(gn) = 0

If ¢ were continuous at ¢, we would have ¢(q,) — ¢(q),
so the above two points together will give us that ¢ is dis-
continuous at q.

So now, for each n € N, consider the set B,, of points
which lie within % of ¢. Since only finitely many points
p € B, have ¢(p) > %, and B,, is infinite, there must be a
point ¢, € B,, with ¢(g,,) < }L The sequence of such g,
clearly satisfies both points above, and so ¢ is discontinuous
everywhere. O

B.2. Theorem 3.2

Theorem 3.2. Let f : RY — R. Then f is sum-
decomposable via R.

Proof. Define ® : R — Rby ®(X) = S,exo(z). If
we can demonstrate that there exists some ¢ such that ® is
injective, then we can simply choose p = f o ® ! and the
result is proved.

Say that a set X C R is finite-sum-distinct if, for any finite
subsets A, B C X, Y, caa # Ypepb. Now, if we can
show that there is a finite-sum-distinct set D with the same
cardinality as R (we denote |R| by ¢), then we can simply
choose ¢ to be a bijection from R to D. Then, by finite-sum-
distinctness, ® will be injective, and the result is proved.

Now recall the statement of Zorn’s Lemma: suppose P
is a partially ordered set (or poset) in which every totally
ordered subset has an upper bound. Then P has a maximal
element.

The set of f.s.d. subsets of R (which we will denote D)
forms a poset ordered by inclusion. Supposing that D satis-
fies the conditions of Zorn’s Lemma, it must have a maximal
element, i.e. there is a f.s.d. set Dp,x such that any set £/
with Dp,x € E is not f.s.d. We claim that D, has cardin-
ality c.

To see this, let D be a f.s.d. set with infinite cardinality
Kk < ¢ (any maximal D clearly cannot be finite). We will
show that D # Dy,.x. Define the forbidden elements with
respect to D to be those elements z of R such that D U {z}
is not f.s.d. We denote this set of forbidden elements F'p.
Now note that, if D is maximal, then D U Fp = R. In
particular, this implies that |F)p| = ¢. But now consider
the elements of F'p. By definition of Fp, we have that
x € Fp if and only if dcq, ..., ¢, d1, ..., dyy € D such that
ci+..+¢m+x=dy+ ...+ d,. Sowecan write r as a
sum of finitely many elements of D, minus a sum of finitely
many other elements of D. So there is a surjection from
pairs of finite sets of D to elements of Fp. i.e.:

|Fp| < |D7 x D7|

But since D is infinite:

|IDF x DF|=|D| =k <¢

So |Fp| < ¢, and therefore | D| is not maximal. This demon-
strates that Dy,,x must have cardinality c.

To complete the proof, it remains to show that D satisfies the
conditions of Zorn’s Lemma, i.e. that every totally ordered
subset (or chain) C of D has an upper bound. So consider:

cw=Jc=JcC

cec

We claim that Cy, is an upper bound for C. It is clear that
C C Cy, forevery C € C, so it remains to be shown that
Cuw € D, i.e. that Cy, is f.s.d.

We proceed by contradiction. Suppose that Cly, is not f.s.d.
Then:

deq, . emydy, .y dy € Cup 2 3¢ = Ejdj ()

But now by construction of Cy, there must be sets
Ciy....Cpyy Dy, ..., Dy, € C with ¢; € Ci,dj S Dj. Let
B ={C;}*; U{D;}"_,. Bis totally ordered by inclusion
and all sets contained in it are f.s.d., since it is a subset of
C. Since B is finite it has a maximal element By,,x. By
maximality, we have c;,d; € Bpax for all ¢;, d;. But then
by (8), Bmax is not f.s.d., which is a contradiction. So we
have that C, is f.s.d.
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In summary:

1. D satisfies the conditions of Zorn’s Lemma.
2. Therefore there exists a maximal f.s.d. set, Dax.

3. We have shown that any such set must have cardinality
c.

4. Given an f.s.d. set Dy,x with cardinality ¢, we can
choose ¢ to be a bijection between R and Diyx.-

5. Given such a ¢, we have that ®(X) = X, cxo(z) is
injective on R”.

6. Given injective ®, choose p = f o @71,

7. This choice gives us f(X) = p(Eexd(x)) by con-
struction.

This completes the proof. O

B.3. Theorem 3.3

Theorem 3.3. If X is uncountable, then there exist functions
f : 2% = R which are not sum-decomposable. Note that
this holds even if the sum-decomposition (p, ¢) is allowed
to be discontinuous.

Proof. Consider f(X) = sup(X).

As discussed above, a sum over uncountably many elements
can converge only if countably many elements are non-zero.
But as in the proof of Theorem 3.1, ¢(z) # 0 for any z. So
it is immediate that sum-decomposition is not possible for
functions operating on uncountable subsets of X.

Even restricting to countable subsets is not enough. As
in the proof of Theorem 3.1, we must have that for each
n €N, ¢(z) > L for only finitely many x. But then if this
is the case, let X,, be the set of all € X with ¢(z) > %
Since ¢(z) # 0, we know that X = |JX,,. But thisis a
countable union of finite sets, which is impossible because

X is uncountable.

O

B.4. Theorem 4.3

Theorem 4.3 (Fixed set size). Let f : RM — R be con-
tinuous. Then f is permutation-invariant if and only if it is
continuously sum-decomposable via RM

Proof. The reverse implication is clear. The proof relies
on demonstrating that the function ® — RM*1 defined as
follows is a homeomorphism onto its image:

Note that ®¢(X) = M for all X, so Im(®) = {M} x
Im(®). Since {M} is a singleton, these two images are

homeomorphic, with a homeomorphism given by:

v : Im(®) — Im(P)

V@1, .. ) = (M,x1,.. ., x0)
Now by definition, ® :N’y’l o®. Since this is a composition
of homeomorphisms, ® is also a homeomorphism. There-

fore (f o &)*1, 5) is a continuous sum-decomposition of f
via RM, O
B.5. Theorem 4.4

Theorem 4.4 (Variable set size). Let f : RSM — R be
continuous. Then f is permutation-invariant if and only if it
is continuously sum-decomposable via RM.

Proof. We use the adapted sum-of-power mapping ® from
above, denoted in this section by .

M
(bq(X):ZQSq(xm)v q:177M
m=1

(bq(xm) = (xm)qa

which is shown above to be injective. Without loss of gener-
ality, let X = [0, 1] as in Theorem 2.9.

q=1,....,.M

We separate ®,(X) into two terms:

M’ M
Py (X) = Z Pq(Tm) + Z Pq(Tm) )
m=1 m=M’'+1

For an input set X with M’ = M — P elements and
0 < M',P < M, we say that the set contains M’ “ac-
tual elements” as well as P “empty” elements which are not
in fact part of the input set. Those P “empty elements” can
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be regarded as place fillers when the size of the input set is
smaller than M, ie. M’ < M.

We map those P elements to a constant value k ¢ X, pre-
serving the injectiveness of ®,(X) for input sets X of arbit-
rary size M':

M’ M
(I)q(X) = Z bq Z (bq(k) (10)
m=1 m=M'+1

Equation (10) is no longer strictly speaking a sum-
decomposition. This can be overcome by re-arranging it:

M’ M
X):Zﬁbq(xm)'i' Z bq(k)

m=M’+1
M’ M M’
= Z bq(Tm) + Z bq(k) — Z ¢q(k) (1D
m=1 m=1 m=1

M’

M
=" [bg(@m) — dg(k)] + > dq(k)

m=1 m=1

The last term in Equation (11) is a constant value which only
depends on the choice of k and is independent of X and M.

= By(@) — Byh).

This leads to a new sum-of-power mapping ®,(X) with:

Hence, we can replace ¢,(x) by gﬁ;(m)
q(X) =D Gq(wm) 1)

D is injective since P is injective, k ¢ X, and the last term
in the above sum is constant. ® is also in the form of a
sum-decomposition.

For each m < M, we can follow the reasoning uied in
the rest of the proof of Theorem 2.9 to note that ® is a
homeomorphism when restricted to_sets of size m — we
denote these restricted functions by <I> . Now each <I>

a continuous function into R™. We can associate with each
a continuous function ®, !, - which maps into R, with the
M — m tailing dimensions filled with the value k.

Now the domains of the <I> 4 are compact and disjoint

since k ¢ X. We can therefore find a function <I>C which

is continuous on R™ and agrees with each @;1M on its
domain.

To complete the proof, let ) be a connected compact set
with k € Y, X C ). Let f be a function on subsets of ) of
size exactly M satisfying:

~

f(X) = f(X);
F(X) = f(X N X);

Xcx
X C XU{k}

We can choose f to be continuous under the notion of con-
tinuity in Appendix A.2. Then ( f o <I>C , gb) is a continuous
sum-decomposition of f.

O

B.6. Max-Decomposition

Analogously to sum-decomposition, we define the notion of
max-decomposition. A function f is max-decomposable if
there are functions p and ¢ such that:

f(X) = P(maxi(¢($i)>)-

where the max is taken over each dimension independently
in the latent space. Our definitions of decomposability via
Z and continuous decomposability also extend to the notion
of max-decomposition.

We now state and prove a theorem which is closely related
to Theorem 4.1, but which establishes limitations on max-
decomposition, rather than sum-decomposition.

Theorem B.1. Let M > N € N. Then there exist permuta-
tion invariant continuous functions f : RM — R which are
not max-decomposable via R .

Note that this theorem rules out any max-decomposition,
whether continuous or discontinuous. We specifically
demonstrate that summation is not max-decomposable —
as with Theorem 4.1, this theorem applies to ordinary well-
behaved functions.

Proof. Consider f(x) = M 2,,. Let ¢ : R — RY, and
let x € RM such that z; # z; when i # j.
Forn=1,...,N,let u(n) € {1,..., M} such that:

max; (¢(xi)n) = ¢(Tpu(n) )n

That is, ¢(z,,(4)) attains the maximal value in the g-th di-
mension of the latent space among all ¢(z;). Now since
N < M, there is some m € {1,...,M} such that
u(n) # mforany n € {1,...,N}. So now consider X
defined by:

Ti=x0#m (13)
.%'m = Tu(1) (14)
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Then:

max; ((b(l‘l)) = maxz(¢(:fl))

But since we chose x such that all x; were distinct, we have
Zi]\il x; # Z?; Z; by the definition of X. This shows that
¢ cannot form part of a max-decomposition for f. But ¢
was arbitrary, so no max-decomposition exists.

O

C. A Continuous Function on Q

This section defines and analyses the function ¥ shown in
Figure 2, which is continuous on Q but not on R. W is
defined as the pointwise limit of a sequence of functions
U, illustrated in Figure 4. We proceed as follows:

1. Define a sequence of functions ¥,, on [0, 1].

2. Show that the pointwise limit U is continuous except
at points of the form % - 27" for some integers k and
m, i.e. except at the dyadic rationals.

3. Define the function ¥ on [0, A] by ¥ (z) = \Tl(%)

4. Note that ¥ is continuous except at points of the form
A - k- 27™ for some integers k and m.

5. Choose A to be irrational, so that all points of discon-
tinuity are also irrational, to obtain a function which
is continuous on Q. (In all figures, we have chosen

A =log(4)).

Informally, we set \/I/\(J)(I’) = z, and at iteration n, we split
the unit interval into 2" even subintervals. In every even-
numbered subinterval, we reflect the function horizontally
around the midpoint of the subinterval. We may write this
formally as follows.

Letz € [0,1],n € N. Let:

1
[z-2"]+3

an(z) = on

That is, a,, () is the midpoint of the unique half-open inter-
val containing x:

(k-z—n,(kﬂ).z—"} keN

Write b, (x) for the n-th digit in the binary expansion of
x, and write ¢, (x) for the number of b,,,(z), m < n with
b (x) = 1.

Importantly, b, (x) is ambiguous if x is a dyadic rational,
since in this case z has both a terminating and a non-
terminating expansion. For consistency with our choice

Progression of U,,

Yo (Z)

0.0 T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50
xX

w1 ()
=]
o
1

0.0 T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50
xX

\/\
i

1.0 1

0.8 1

0.6 1

Y3(T)

AN
\/

0.0 T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50
xX

04 1

0.2 1

Figure 4: Several iterations of ¥,

of the upward-closed interval for the definition of a,, (), we
choose the non-terminating expansion in this case.

Then:
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Cz () . b )

(x) - 2(x — ai())

2(z — ai(x))

First, it is clear that the series for ¥(z) converges absolutely
at every z, since |2(z — a;(x))|] < 27% So this function is
well defined. Also note that:

W, (z) — W(z)] <27 (15)

Note further that {Iv/n is continuous except at points of the
form k - 27", since a,,,, b,, and ¢,,, are continuous at these
points for all m < n.

Now consider a point x, which is not a dyadic rational.
We wish to show that ¥ is continuous at x,. So let € > 0.
Choose n so that 27" < £. Since z, is not a dyadic rational,
\IJ is continuous at Ts, ie. there is some § > 0 such that
2, — 2| <0 = |U,(x,) — U n(z)| < §. But now, by

Equation (15):
1T(2,) — Un(a)] <27 < %
U (z) — U, (z)] < 27" < §
And so, whenever |z, — x| < J, we have:

(U(2s) —V(z)| < [¥(zs) — Vn(zs)]
HWn(zs) — Un(z)]
+|Un(2) — V()|

L ofLfL €
3 3 3

W) - V(@) < e

Thus, V¥ is continuous at ...

As noted above, we may now set ¥ (z) = \TJ(%) to obtain a
function which is continuous at all rational points.

D. Implementation Details for Illustrative
Example

The network setup follows Equation (1) with 3 fully con-
nected layers before the summation (acting on each input
independently) and 2 fully connected layers after. Each
fully connected layer has 1000 hidden units and is followed
by a ReLLU non-linearity. However, the third hidden layer,

which creates the latent space in which the summation is
executed, has a variable dimension N. N is varied for each
experiment in order to examine the influence of the latent
dimension on the performance.

Training was conducted using the ADAM optimizer
(Kingma & Ba, 2015) with an initial learning rate of 0.001
and an exponential decay after each batch of 0.99. Training
was ended after convergence at 500 batches with a batch size
of 32. Samples were continuously drawn from the respect-
ive distributions. Therefore, there is no notion of training vs.
test data or epoch sizes. The results rt, measured as RMSE,
were smoothed using exponential smoothing with o = 0.95:

T:mooth = (1—04) 'Tt+a'Tt_1 (16)

The last, smoothed RMSE is extracted from each experi-
ment, averaged over 500 different runs with different seeds
and plotted in Figure 3(a). The confidence intervals are
calculated assuming a Gaussian distribution. The critical
points are extracted by taking the smallest latent dimension
which produces an RMSE of less than 10% above the global
minimum for this set size.

Out of distribution samples: We tested the performance
of a trained model (500 inputs, 100 latent dimensions) on
out-of-distribution samples to see to what extent the model
exploits the statistical properties of the training examples.
Below is a list with examples:

e Input: [1.0,1.0,...,1.0], output: 0.933, true label: 1.0

e Input: 200 times 1.0 and 300 times 0.0, output: 0.413,
true label: 0.0

e Input: [0.002,0.004,0.006, ...,
true label: 0.5000

1.0], output: 0.5006,

The distributions the samples were drawn from during test
time were the uniform distribution, a Gaussian and a Gamma
distribution. Each sample consisting of 500 values was
randomly drawn from one of these distributions. Hence,
the first two are very unlikely samples from the provided
distributions. The poor performance of the model on these
two examples can therefore be taken as an indication that
the model does utilize information about the underlying
distributions when estimating the median. The third sample
is much closer to a realistic sample from, e.g., the uniform
distribution (in our case between 0.0 and 1.0), which makes
it unsurprising that the model performs much better on this
task. It is worth noting that the notion of ’likely’ examples
of uniform distributions is of course an intuitive one. Given
that no value is repeated, every specific set of numbers is of
course equally likely as long as all numbers lie within the
interval of the uniform distribution.



