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Abstract
Recent work on the representation of functions
on sets has considered the use of summation in
a latent space to enforce permutation invariance.
In particular, it has been conjectured that the di-
mension of this latent space may remain fixed
as the cardinality of the sets under consideration
increases. However, we demonstrate that the ana-
lysis leading to this conjecture requires mappings
which are highly discontinuous and argue that this
is only of limited practical use. Motivated by this
observation, we prove that an implementation of
this model via continuous mappings (as provided
by e.g. neural networks or Gaussian processes)
actually imposes a constraint on the dimensional-
ity of the latent space. Practical universal function
representation for set inputs can only be achieved
with a latent dimension at least the size of the
maximum number of input elements.

1. Introduction
Machine learning models have had great success in taking
advantage of structure in their input spaces: recurrent neural
networks are popular models for sequential data (Sutskever
et al., 2014) and convolutional neural networks are the state-
of-the-art for many image-based problems (He et al., 2016).
Recently, however, models for unstructured inputs in the
form of sets have rapidly gained attention (Ravanbakhsh
et al., 2016; Zaheer et al., 2017; Qi et al., 2017a; Lee et al.,
2018; Murphy et al., 2018; Korshunova et al., 2018).

Importantly, a range of machine learning problems can nat-
urally be formulated in terms of sets; e.g. parsing a scene
composed of a set of objects (Eslami et al., 2016; Kosiorek
et al., 2018), making predictions from a set of points form-
ing a 3D point cloud (Qi et al., 2017a;b), or training a set
of agents in reinforcement learning (Sunehag et al., 2017).

*Equal contribution 1Department of Engineering Science, Uni-
versity of Oxford, Oxford, United Kingdom. Correspondence to:
<{ed, fabian, martin}@robots.ox.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

+ ρϕ

X ∈ ℝM ℝNxM ℝN ℝ

Input Output

x1
xM

Z

f(x1, …, xM)
ϕ(x1)

ϕ(xM)

Figure 1: Illustration of the model structure proposed in
several works (Zaheer et al., 2017; Qi et al., 2017a) for
representing permutation-invariant functions. The sum op-
eration enforces permutation invariance for the model as a
whole. φ and ρ can be implemented by e.g. neural networks.

Furthermore, attention-based models perform a weighted
summation of a set of features (Vaswani et al., 2017; Lee
et al., 2018). Hence, understanding the mathematical prop-
erties of set-based models is valuable both in terms of set-
structured applications as well as better understanding the
capabilities and limitations of attention-based models.

Many popular machine learning models, including neural
networks and Gaussian processes, are fundamentally based
on vector inputs1 rather than set inputs. In order to adapt
these models for use with sets, we must enforce the property
of permutation invariance, i.e. the output of the model must
not change if the inputs are reordered. Multiple authors, in-
cluding Ravanbakhsh et al. (2016), Zaheer et al. (2017) and
Qi et al. (2017a), have considered enforcing this property
using a technique which we term sum-decomposition, illus-
trated in Figure 1. Mathematically speaking, we say that a
function f defined on sets of size M is sum-decomposable
via Z if there are functions φ : R→ Z and ρ : Z → R such
that2

f(X) = ρ
(
Σx∈Xφ(x)

)
(1)

We refer to Z here as the latent space. Since summa-
tion is permutation-invariant, a sum-decomposition is also
permutation-invariant. Ravanbakhsh et al. (2016), Zaheer
et al. (2017) and Qi et al. (2017b) have also considered
the idea of enforcing permutation invariance using other
operations, e.g. max(·). In this paper we concentrate on a
detailed analysis of sum-decomposition, but some of the lim-
itations we discuss also apply when max(·) is used instead
of summation.

1Or inputs of higher rank, i.e. matrices and tensors.
2We use R here for brevity – see Definition 2.2 for the fully

general definition.
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Our main contributions can be summarised as follows.

1. Recent proofs, e.g. in Zaheer et al. (2017), consider
functions on countable domains. We explain why con-
sidering countable domains can lead to results of lim-
ited practical value (i.e. cannot be implemented with
a neural network), and why considering continuity on
uncountable domains such as R is necessary. With ref-
erence to neural networks, we ground this discussion
in the universal approximation theorem, which relies
on continuity on uncountable domains [0, 1]M .

2. In contrast to previous work (Zaheer et al., 2017; Qi
et al., 2017a), which considers sufficient conditions
for universal function representation, we establish a
necessary condition for a sum-decomposition-based
model to be capable of universal function representa-
tion. Additionally, we provide weaker sufficient con-
ditions which imply a stronger version of universality.
Specifically, we show that the dimension of the latent
space being at least as large as the maximum number
of input elements is both necessary and sufficient for
universal function representation.

While primarily targeted at neural networks, these results
hold for any implementation of sum-decomposition, e.g.
using Gaussian processes, as long as it provides universal
function approximation for continuous functions. Proofs of
all novel results are available in Appendix B.

2. Preliminaries
In this section we recount the theorems and proofs on sum-
decomposition from Zaheer et al. (2017). We begin by
introducing important definitions and the notation used
throughout our work. Note that we focus on permutation-
invariant functions and do not discuss permutation equivari-
ance which is also considered in Zaheer et al. (2017).

2.1. Definitions

Definition 2.1. A function f(x) is permutation-invariant
if f(x1, . . . , xM ) = f

(
xπ(1), . . . , xπ(M)

)
for all π.

Definition 2.2. We say that a function f is sum-
decomposable if there are functions ρ and φ such that

f(X) = ρ
(
Σx∈Xφ(x)

)
.

In this case, we say that (ρ, φ) is a sum-decomposition of f .

Given a latent space Z, we say that f is sum-decomposable
via Z when this expression holds for some φ whose codo-
main is Z, i.e. φ : X→ Z.

We say that f is continuously sum-decomposable when this
expression holds for some continuous functions ρ and φ.

We will also consider sum-decomposability where the inputs
to f are vectors rather than sets - in this context, the sum is
over the elements of the input vector.

Definition 2.3. A set X is countable if its number of ele-
ments, i.e. the cardinality, is smaller or equal to the number
of elements in N. This includes both finite and countably
infinite sets; e.g. N, Q, and subsets thereof.

Definition 2.4. A set X is uncountable if its number of
elements is greater than the number of elements in N, e.g.
R and certain subsets thereof.

Notation 2.5. Denote the power set of a set X by 2X.

Notation 2.6. Denote the set of finite subsets of a set X by
XF .

Notation 2.7. Denote the set of subsets of a set X containing
at most M elements by X≤M .

Remark. Throughout, we discuss expressions of the form
Φ(X) = Σx∈Xφ(x), where X is a set. Note that care must
be taken in interpreting this expression when X is not finite
– we discuss this issue fully in Appendix A.1.

2.2. Background Theorems

Zaheer et al. (2017) consider the two cases where X is a
subset of, or drawn from, a countable and an uncountable
universe X. We now outline the theorems and proofs relating
to these two cases.

Theorem 2.8 (Countable case). Let f : 2X → R where X
is countable. Then f is permutation-invariant if and only if
it is sum-decomposable via R.

Proof. Since X is countable, each x ∈ X can be mapped
to a unique element in N by a function c(x) : X → N.
Let Φ(X) =

∑
x∈X φ(x). If we can choose φ so that Φ is

injective, then we can set ρ = f ◦ Φ−1, giving

f = ρ ◦ Φ

f(X) = ρ
(
Σx∈Xφ(x)

)
i.e. f is sum-decomposable via R.

Now consider φ(x) = 4−c(x). Under this mapping, each
X ⊂ X corresponds to a unique real number expressed
in base 4. Therefore Φ is injective, and the conclusion
follows.

Remark. This construction works for any set size M , and
even for sets of infinite size. However, it assumes that
X is a set with no repeated elements, i.e. multisets are
not supported. Specifically, the construction will fail with
multisets because Φ fails to be injective if its domain in-
cludes multisets. In Appendix A.3, we extend Theorem 2.8
to also support multisets, with the restriction that infinite
sets are no longer supported.
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Theorem 2.9 (Uncountable case). Let M ∈ N, and let
f : [0, 1]M → R be a continuous function. Then f is
permutation-invariant if and only if it is continuously sum-
decomposable via RM+1.

The proof by Zaheer et al. (2017) of Theorem 2.9 is more
involved than for Theorem 2.8. We do not include it here in
full detail, but briefly summarise below.

1. Show that the mapping Φ : [0, 1]M → RM+1 defined
by Φq(x) =

∑M
m=1(xm)q for q = 0, . . . ,M is inject-

ive and continuous.3

2. Show that Φ has a continuous inverse.

3. Define ρ : RM+1 → R by ρ = f ◦ Φ−1.

4. Define φ(x) : R→ RM+1 by φq(x) = xq .

5. Note that, by definition of ρ and φ, (ρ, φ) is a continu-
ous sum-decomposition of f via RM+1.

Remark. Zaheer et al. (2017) conjecture that any continuous
permutation-invariant function f on 2[0,1], the power set of
[0, 1], is continuously sum-decomposable. In Section 3, we
show that this is not possible, and in Section 4 we show that
even if the domain of f is restricted to [0, 1]≤F , the finite
subsets of [0, 1], then N ≥M is a necessary condition for
arbitrary functions f to be continuously sum-decomposable.
Additionally, we prove that N = M is a sufficient condition
– implying together with the above that it is not possible to
do better than this.

3. The Importance of Continuity
In this section, we argue that continuity is essential to discus-
sions of function representation, that it has been neglected
in prior work on permutation-invariant functions, and that
this neglect has implications for the strength and generality
of existing results.

Intuitively speaking a function is continuous if, at every
point in the domain, the variation of the output can be made
arbitrarily small by limiting the variation in the input. Con-
tinuity is the reason that, for instance, working to machine
precision usually produces sensible results. Truncating to
machine precision alters the input to a function slightly, but
continuity ensures that the change in output is also slight.

In Zaheer et al. (2017), the authors demonstrate that when
X is a countable set, e.g. the rational numbers, any function
f : 2X → R is sum-decomposable via R. This is taken
as a hopeful indication that sum-decomposability may ex-
tend to uncountable domains, e.g. X = R. Extending to
the uncountable case may appear, at first glance, to be a

3In the original proof, Φ is denoted E.
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Figure 2: The function Ψ shown here is continuous at every
rational point in [0, ln 4]. Intuitively, this is because all
jumps occur at irrational values, namely at certain fractions
of ln 4. It defies our intuitions for what continuity should
mean, and illustrates the fact that continuity on Q is a much
weaker property than continuity on R. The latter property is
required to satisfy the universal approximation theorem for
neural networks. Ψ is defined and discussed in Appendix C.

mere formality – we are, after all, ultimately interested in
implementing algorithms on finite hardware. Nevertheless,
it is not true that a theoretical result for a countably infinite
domain must be strong enough for practical purposes. In
fact, considering functions on uncountably infinite domains
such as RN is of real importance.

Turning specifically to neural networks, the universal ap-
proximation theorem says that any continuous function can
be approximated by a neural network, but not that any func-
tion can be approximated by a neural network (Cybenko,
1989). A similar statement is true for other approximators,
such as some Gaussian processes (Rasmussen & Williams,
2006). The notion of continuity required here is specifically
that of continuity on compact subsets of RN .

Crucially, if we wish to work mathematically with continuity
in a way that closely matches our intuitions, we must con-
sider uncountable domains. To illustrate this point, consider
the rational numbers Q. Q is dense in R, and it is tempt-
ing to think that Q is therefore “all we need”. However, a
theoretical guarantee of continuity on Q is weak, and does
not imply continuity on R. The universal approximation
theorem for neural networks relies on continuity on R, and
we cannot usefully take continuity on Q as a proxy for this
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property. Figure 2 shows a function which is continuous on
Q, and illustrates that a continuous function on Q may not
extend continuously to R. This figure also illustrates that
continuity on Q defies our intuitions about what continuity
should mean, and is too weak for the universal approxima-
tion theorem for neural networks. We require the stronger
notion of continuity on R.

In light of the above, it is clear that continuity is a key
property for function representation, and also that there
is a crucially important difference between countable and
uncountable domains. This raises two problems for The-
orem 2.8. First, the theorem does not consider the continuity
of the sum-decomposition when the domain X has some
non-trivial topological structure (e.g. X = Q). Second, we
still care about continuity on R, and there is no guarantee
that this is possible given continuity on Q.

In fact, the continuity issue cannot be overcome – we can
demonstrate that in general the sum-decomposition of The-
orem 2.8, which goes via R, cannot be made continuous for
X = Q:
Theorem 3.1. There exist functions f : 2Q → R such that,
whenever (ρ, φ) is a sum-decomposition of f via R, φ is
discontinuous at every point q ∈ Q.

We can actually say something more general than the above.
Our proof can easily be adapted to demonstrate that if f
is injective, or if we want a fixed φ to suffice for any f ,
then φ can only be continuous at isolated points of the
underlying set X, regardless of whether X = Q. I.e., it is
not specifically due to the structure of Q that continuous
sum-decomposability fails. In fact, it fails whenever we
have a non-trivial topological structure. For functions which
we want to model using a neural network, this is worrying.

It is not possible to represent an everywhere-discontinuous
φ with a neural network. We therefore view Theorem 2.8 as
being of limited practical relevance and as not providing a
reliable intuition for what should be possible in the uncount-
able case. We do however see this result as mathematically
interesting, and have obtained the following result extend-
ing it to the case where the domain X is uncountable. This
result is slightly weaker than the countable case, in that the
domain of f can contain arbitrarily large finite sets, but not
infinite sets.
Theorem 3.2. Let f : RF → R. Then f is sum-
decomposable via R.

Once again, the sum-decomposition is highly discontinuous.
The limitation that f is not defined on infinite sets cannot
be overcome:
Theorem 3.3. If X is uncountable, then there exist functions
f : 2X → R which are not sum-decomposable. Note that
this holds even if the sum-decomposition (ρ, φ) is allowed
to be discontinuous.

To summarise, we show why considering countable domains
can lead to results of limited practical value and why con-
sidering continuity on uncountable domains is necessary.
We point out that some of the previous work is therefore
of limited practical relevance, but regard it as mathemat-
ically interesting. In this vein, we extend the analysis of
sum-decomposability when continuity is not required.

4. Practical Function Representation
Having established the necessity of considering continu-
ity on R, we now explore the implications for sum-
decomposability of permutation-invariant functions. These
considerations lead to concrete recommendations for model
design and provide theoretical support for elements of cur-
rent practice in the area. Specifically, we present three
theorems whose implications can be summarised as follows.

1. A latent dimensionality of M is sufficient for repres-
enting all continuous permutation-invariant functions
on sets of size ≤M .

2. To guarantee that all continuous permutation-invariant
functions can be represented for sets of size ≤ M , a
latent dimensionality of at least M is necessary.

The key result which is the basis of the second statement
and which underpins this discussion is as follows.

Theorem 4.1. Let M > N ∈ N. Then there exist permuta-
tion invariant continuous functions f : RM → R which are
not continuously sum-decomposable via RN .

Restated in more practical terms, this implies that for a sum-
decomposition-based model to be capable of representing
arbitrary continuous functions on sets of size M , the latent
space in which the summation happens must be chosen to
have dimension at least M . A similar statement is true for
the analogous concept of max-decomposition – details are
available in Appendix B.6.

To prove this theorem, we first need to state and prove the
following lemma.

Lemma 4.2. Let M,N ∈ N, and suppose φ : R → RN ,
ρ : RN → R are functions such that:

max(X) = ρ (Σx∈Xφ(x)) (2)

Now let Φ(X) = Σx∈Xφ(x), and write ΦM for the restric-
tion of Φ to sets of size M .

Then ΦM is injective for all M .

Proof. We proceed by induction. The base case M = 1 is
clear.
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Now let M ∈ N, and suppose that ΦM−1 is injective. Now
suppose there are sets X,Y such that ΦM (X) = ΦM (Y ).
First note that, by (2), we must have:

max(X) = max(Y ) (3)

So now write:

X = {xmax} ∪Xrem ; Y = {ymax} ∪ Yrem (4)

where xmax = max(X), and similarly for ymax.

But now:

ΦM (X) = ΦM−1(Xrem) + φ(xmax)

= ΦM−1(Yrem) + φ(ymax)

= ΦM (Y )

From the central equality, and (3), we have:

ΦM−1(Xrem) = ΦM−1(Yrem)

Now by injectivity of ΦM−1, we have Xrem = Yrem. Com-
bining this with (3) and (4), we must have X = Y , and so
ΦM is injective.

Equipped with this lemma, we can now prove Theorem 4.1.

Proof. We proceed by contradiction. Suppose that functions
φ and ρ exist satisfying (2). Define ΦM : RM → RN by:

ΦM (x) = ΣMi=1φ(xi)

Denote the set of all x ∈ RM with x1 < x2 < ... < xM
by RMord, and let Φord

M be the restriction of ΦM to RMord. Since
Φord
M is a sum of continuous functions, it is also continuous,

and by Lemma 4.2, it is injective.

Now note that RMord is a convex open subset of RM , and is
therefore homeomorphic to RM . Therefore, our continuous
injective Φord

M can be used to construct a continuous injec-
tion from RM to RN . But it is well known that no such
continuous injection exists when M > N . Therefore our
decomposition (2) cannot exist.

It is crucial to note that functions f for which a lower-
dimensional sum-decomposition does not exist need not
be “badly-behaved” or difficult to specify. The limitation
extends to functions of genuine interest. For our proof, we
have specifically demonstrated that even max(X) is not
continuously sum-decomposable when N < M .

From Theorem 2.9, we also know that for a fixed input set
size M , any continuous permutation-invariant function is
continuously sum-decomposable via RM+1. It is, however,
possible to adapt the construction of Zaheer et al. (2017) to
strengthen the result in two ways. Firstly, we can perform
the sum-decomposition via RM :

Theorem 4.3 (Fixed set size). Let f : RM → R be con-
tinuous. Then f is permutation-invariant if and only if it is
continuously sum-decomposable via RM .

Secondly, we can deal with variable set sizes ≤M :

Theorem 4.4 (Variable set size). Let f : R≤M → R be
continuous. Then f is permutation-invariant if and only if it
is continuously sum-decomposable via RM .

Note that we must take some care over the notion of con-
tinuity in this theorem – see Appendix A.2.

4.1. Discussion

Theorem 4.1 does not imply all functions require N = M .
Some functions, such as the mean, can be represented in a
lower dimensional space. The statement rather says that if
we do not want to impose any limitations on the complexity
of the function, the latent space needs to have dimensionality
at least M .

Theorem 4.4 suggests that sum-decomposition via a latent
space with dimension N = M should suffice to model any
function. Neural network models in the recent literature,
however, deviate from these guidelines in several ways,
indicating a disconnect between theory and practice. For
example, the models in Zaheer et al. (2017) and Qi et al.
(2017a) are considerably more complex than Equation (1),
e.g. they apply several permutation-equivariant layers to the
input before a permutation-invariant layer.

In light of Theorem 4.1, this disconnect becomes less sur-
prising. We have shown that, for a target function of suffi-
cient complexity, N = M is the bare minimum required for
the model to be capable of representing the target function.
Achieving this would rely on the parameterisation of φ and
ρ being flexible enough and on the availability of a suitable
optimisation method. In practice, we should not be surprised
that more than the bare minimum capacity in our model is
required for good performance. Even with N > M , the
model might not converge to the desired solution. At the
same time, when we are dealing with real datasets, the train-
ing data may contain noise and redundant information, e.g.
in the form of correlations between elements in the input,
inducing functions of limited complexity that may in fact be
representable with N < M .
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4.2. Illustrative Example

We now use a toy example to illustrate some practical im-
plications of our results. Based on Theorem 4.1, we expect
the number of input elements M to have an influence on
the required latent dimension N , and in particular, we ex-
pect that the required latent dimension may increase without
bound.

We train a neural network with the architecture presented
in Figure 1 to predict the median of a set of values. We
choose the median as a function because it is relatively
simple but cannot be trivially represented via a sum in a
fixed-dimensional latent space, in contrast to e.g. the mean,
which is sum-decomposable via R.4 φ and ρ are paramet-
erised by multi-layer perceptrons (MLPs). The input sets
are randomly drawn from either a uniform, a Gaussian, or a
Gamma distribution.

We vary the latent dimension N and the input set size M
to investigate the link between these two variables and the
predictive performance. The MLPs parameterising φ and
ρ are given comparatively many layers and hidden units,
relative to the simplicity of the task, to ensure that the latent
dimension is the bottleneck. Further details are described in
Appendix D.

Figure 3(a) shows the RMSE depending on the latent dimen-
sion for different input sizes. We make three observations.

1. For each set size, the error decreases monotonically
with the dimension of the latent space.

2. Beyond a certain point, increasing the dimension of
the latent space does not further reduce the error. We
denote this the “critical point”.

3. As the set size increases, so does the latent dimension
at the critical point.

Figure 3(b) shows the critical points as a function of the
input size, indicating a roughly linear relationship between
the two. Note that the critical points occur at N < M . This
can be explained by the fact that the models do not learn an
algorithmic solution for computing the median, but rather
to estimate it given samples drawn from the specific input
distribution seen during training. Furthermore, estimating
the median of a distribution, like other functions, renders
some information in the input redundant. Therefore, the
mapping from input to latent space does not need to be
injective, allowing a model to solve the task with a smaller
value of N .

4The construction for Z = R is not entirely trivial for variable
set size, but going via Z = R2 is straightforward.
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(a) Test performance on median estimation depending
on latent dimension. Different colours depict different
set sizes. Each data point is averaged over 500 runs
with different seeds. Shaded areas indicate confidence
intervals. Coloured dashed lines indicate N = M .
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for optimal performance (RMSE less than 10% above
minimum value for this set size) for different set sizes.

Figure 3: Illustrative toy example: a neural network is
trained to predict the median of an unordered set.

5. Related Work
Much of the recent work on deep learning with unordered
sets follows the paradigm discussed in (Ravanbakhsh et al.,
2016), Zaheer et al. (2017), and Qi et al. (2017a) which
leverage the structure illustrated in Figure 1. Zaheer et al.
(2017) provide an in-depth theoretical analysis which is
discussed in detail in Section 2. Qi et al. (2017a) also derive
a sufficiency condition for universal function approximation.
In their proof, however, they set the latent dimension N
to d1/δεe where δε depends on the error tolerance for how
closely the target function has to be approximated. As a
result, the latent dimension N goes to infinity for exact
representation. In similar vain, Herzig et al. (2018) consider
permutation-invariant functions on graphs.

A key application domain of set-based methods is the pro-
cessing of point clouds, as the constituent points do not
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have an intrinsic ordering. The work by Qi et al. (2017a)
on 3D point clouds, one of the first to use a permutation-
invariant neural networks, is extended in Qi et al. (2017b)
by sampling and grouping points in a hierarchical fashion
to model the interaction between nearby points in the input
space more explicitly. Qi et al. (2018) combine RGB and
lidar data for object detection by using image detectors to
generate bounding box proposals which are then further
processed by a set-based model. Achlioptas et al. (2018)
and Yi et al. (2018) show that set-based models can also be
used to learn generative models of point clouds.

Vinyals et al. (2015) suggest that even though recurrent
networks are universal approximators, the ordering of the
input is crucial for good performance. Hence, they propose
model that relies on attention to achieve permutation invari-
ance in order to solve a sorting task. In general, it is worth
noting that there exists a connection between the model
in Zaheer et al. (2017) and recent attention-based models
such as the one proposed in Vaswani et al. (2017). In this
case, the aggregation layer includes a weighting parameter
which is computed based on a key-query system which is
also permutation invariant. Since the value of the weight-
ing parameters could be learned to be 1.0, it is trivial to
show that such an attention algorithm is also in principle
able to approximate any permutation-invariant function, of
course depending on the remaining parts of the architec-
ture. Inspired by inducing point methods, Set Transformer
(Lee et al., 2018) propose a computationally more efficient
attention-module and demonstrate better performance on a
range of set-based tasks. While stacking several of attention-
modules can capture higher order dependencies, a more
general treatment of this is offered by permutation-invariant,
learnable Janossy Pooling (Murphy et al., 2018).

Similar to the methods considered here, Neural Processes
(Garnelo et al., 2018b) and Conditional Neural Processes
(Garnelo et al., 2018a) also rely on aggregation via summa-
tion in order to infer a distribution from a set of data points.
Kim et al. (2019) add an attention mechanism to neural
processes to improve empirical performance. Generative
Query Networks (Eslami et al., 2018; Kumar et al., 2018)
can be regarded as an instantiation of neural processes to
learn useful representations of 3D scenes from multiple 2D
views. Yang et al. (2018) also aggregate information from
multiple views to compute representations of 3D objects.

Bloem-Reddy & Teh (2019) and Korshunova et al. (2018)
consider exchangeable sequences – sequences consisting
of random variables with a joint likelihood which is in-
variant under permutations. Bloem-Reddy & Teh (2019)
provide a theorem that describes distribution-invariant mod-
els. Korshunova et al. (2018) use RealNVP (Dinh et al.,
2016) as a bijective function which sequentially computes
the parameters of a Student-t process.

6. Conclusions
This work derives theoretical limitations on the representa-
tion of arbitrary functions on sets via a finite latent space.
We demonstrate why continuity requires statements on un-
countable domains, as opposed to countable domains, to
ensure the practical usefulness of those statements. Under
this constraint, we prove that a latent space whose dimen-
sion is at least as large as the maximum input set size is both
sufficient and necessary to achieve universal function rep-
resentation. The models covered in this analysis are popular
for a range of practical applications and can be implemented
e.g. by neural networks or Gaussian processes. In future
work, we would like to investigate the effect of constructing
models with both permutation-equivariant and permutation-
invariant modules on the required dimension of the latent
space. Examining the implications of using self-attention,
e.g. as in Lee et al. (2018), would be of similar interest.
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