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A. Background on Markov semigroups and Infinitestimal Generator
In order to be self-contained, in this section we introduce the background and some preliminaries of Markov diffusion
process. We refer the reader to (Raginsky et al., 2017; Bakry et al., 2013; Chen et al., 2015) for more details.

Let {Wt}t≥0 be a continuous-time homogeneous Markov process with values in ℝd , and P = {Pt}t≥0 be the corresponding
Markov semigroup. That is

Psg(Wt) = E[g(Ws+t)|Wt]

for all s, t ≥ 0 and all bounded measurable functions g ∶ ℝd → ℝ. A Borel probability measure � is called stationary or
invariant if ∫ℝd Ptgd� = ∫ℝd gd� for all g and t. Each of Pt can be extended to a bounded linear operator on L2(�), such
that Ptg ≥ 0 whenever g ≥ 0 and Pt1 = 1 for all t. The infinitestimal generator of the semigroup is a linear operator 
defined on a dense subspace () of L2(�) such that for any g ∈ (), we have )tPtg = Ptg. Also,  can be defined as

g(Wt) ∶= lim
ℎ→0

Pℎg(Wt) − g(Wt)
ℎ

.

The inifinitestimal generator  defines the Dirichlet form

(g) ∶= −∫d
ggd�.

Let P be a Markov semigroup with the unique invariant distribution � and the Dirichlet form  . We say that � satisfies a
Poincaré inequality with constant c if for all probability measures � ≪ �, we have

�2(�||�) ≤ c(
√

d�
d�
),

where �2(�||�) ∶= ‖

d�
d� − 1‖

2
L2(�)

is the �2 divergence, and 1
c ≤ � with � being the spectral gap

� ∶= inf{
g

∫ℝd g2d�
∶ g ∈ C2, g ≠ 0,∫ℝd

g = 0}.

We say that � satisfies a Logarithmic Sobolev inequality with constant c if, for all � ≪ �,

D(�||�) ≤ 2c(
√

d�
d�
),

where D(�||�) = ∫ d� log d�d� is the KL-divergence.

Consider a Markov process {Wt}t≥0 with a unique invariant distribution � and the Dirichlet form  such that � satisfies a
Logarithmic Sobolev inequality with constant c. Then, we have the following (Bakry et al., 2013):
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1. Let �t ∶= (Wt), then we have D(�t||�) ≤ D(�0||�)e
− 2tc .

2. If g = � ∫ ‖∇g‖2d� for some � > 0, then, for any � ≪ �, 2(�, �) ≤
√

2c�D(�||�).

Given a data set D ∈ n with Langevin Monte Carlo Dynamic:

dWt = −∇F (Wt, D)dt +
√

2dBt. (1)

If ∇F (⋅, D) is Lipschitz, then the Gibbs measure �D(dw) ∝ e−�F (w;D) is the unique invariant measure of the underlying
Markov semigroup. Its infinitestimal generator is

g(Wt) = (−∇F (Wt;D) ⋅ ∇ + Δ2)g(Wt).

The corresponding Dirichlet from is

g = ∫ℝd
‖∇g‖2d�.

Under some assumptions about the loss function, (Raginsky et al., 2017) shows that the Gibbs measure satisfy logarithmic
Sobolev inequality.

Lemma 1. [Proposition 3.2 and Appendix B in (Raginsky et al., 2017)] For some � ≥ O(1), all of the Gibbs measures �
satisfy a logarithmic Sobolev inequality with constant

cLS ≤ O( 1
�∗
(d + �)),

where �∗ is the uniform spectral gap

�∗ ∶= inf
D∈n

inf{
∫ℝd ‖∇g‖

2d�D
∫ℝd g2d�D

∶ g ∈ C1(ℝd) ∩ L2(�D), g ≠ 0,∫ℝd
gd�D = 0}.

which satisfies:
1
�∗

≤ O(
d + �
�

exp(O(� + d))).

Moreover, exponential dependence of 1� on � is unavoidable in the presence of multiple local minima and saddle points.

The following shows a connection between time average of the diffusion and the corresponding Poisson equation.

The Poisson equation is an elliptic PDE on the basis of the infinitestimal generator associated with the Langevin dynamics.
For the generator  corresponding to the underlying Markov semigroup, we define the Poisson equation as

 = � − �̄,

where � is the test function, and �̄ ∶= ∫ �(x)�(dx).

B. Omitted Proofs
B.1. Proof of Theorem 1

Proof. Firstly, we can see that if in each iteration

wk = wk−1 + �(∇L̂r(wk−1, D) + �1) +

√

�
√

�
�2,

where �1 ∼  (0,
L2c22 log(1∕�)T

n2�2 Id) and �2 ∼  (0, Id), then by moment account (Lemma 1), we can see that it is (�, �)-

differentially private for � < c1T and 0 < � < 1. Furthermore, if �2
L2c22 log(1∕�)T

n2�2 = �
� or � = n2�2

TL2c22� log(1∕�)
, then it is

equivalent to the updating in Algorithm 1. This completes the proof.
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B.2. Proof of Theorem 2

Proof of Theorem 2. The proof follows the framework of the proof in (Raginsky et al., 2017).

Notations For a given dataset D, we denote the corresponding Gibbs measure as �D ∝ e−�L̂r(w,D). Also, let �T ,D =
(wT |D) and �t,D = (Wt|D).

Firstly, we show that our assumptions about the loss function and w0 meet the assumptions in (Raginsky et al., 2017).
Actually, our setting implies that f (w, z) = l(w, z) + �

2‖w‖
2 in (Raginsky et al., 2017). It is easy to see that A = A, B = L,

M = M + � in (Raginsky et al., 2017). Also, when l(⋅, z) is L-Lipschitz, we know that f (w, z) = l(w, z) + �
2‖w‖

2 is

(m = �
2 , b =

L2

2� )-dissipative (that is, ⟨w,∇f (w, z)⟩ ≥ �
2‖w‖

2 − L2

2� ) , which satisfies assumption A.3 in (Raginsky et al.,
2017). For A.4, we can see that Algorithm 1 is just the non-stochastic version. Hence, � = 0. Thus, most of the analysis
in (Raginsky et al., 2017) can also be applied here. For self-completeness, we will rephrase them so that they fit our
differentially private context.

Now, we briefly introduce the proof in (Raginsky et al., 2017). Let ŵ∗ be the output of the Gibbs algorithm under which the
conditional distribution of ŵ∗ is equal to �D. Then, we decompose the population risk into the following

ELr (wT ) − L
r
 (w

∗) = ELr (wT ) − ELr (ŵ
∗) + ELr (ŵ

∗) − EL̂r(ŵ∗, D) + EL̂r(ŵ∗, D) − Lr (w
∗).

For the second term, by Proposition 3.5 in (Raginsky et al., 2017) we have

ELr (ŵ
∗) − EL̂r(ŵ∗, D) ≤ O(

(� + d)cLS
n

) = O(
exp(O(� + d))

n
) = O

(exp(O(�))
n

)

, (2)

where the big O notation hides the parameters of M, b, B (that is L,M, � in our setting) by the assumption of � > d.

For the third term, we have the following theorem:

Lemma 2 ((Raginsky et al., 2017)). For any � ≥ 2
m ,

EL̂r(ŵ∗, D) − Lr (w
∗) ≤ O(d

�
log(�)),

where the big O notation omits the factor of M,m.

In order to estimate the term of ELr (wT ) − ELr (ŵ
∗)), we have to estimate EL̂rD(wT ) − EL̂rD(ŵ

∗)) for each D ∈ n. The
goal is to get an upper bound for 2(�T ,D, �D) ≤ 2(�T , �T �,D) +2(�T �,D, �D) for all dataset D.

For the term 2(�T �,D, �D), since � is related to the continuous-time Langevin diffusion (1), and T � is a fixed value, which
is independent of �, we have (see Section 3.4 in (Raginsky et al., 2017)):

2(�T �,D, �D) ≤ O
(
√

(d + �)cLSe
− T �
�cLS

)

= O
(

exp(O(�)) exp(−
T �

O(exp(�))
)
)

. (3)

Note that T � = n2�2

L2c22� log(1∕�)
.

Our final goal is to estimate 2(�T ,D, �T �,D). The proof is the same as in (Raginsky et al., 2017). However, we can see
that m

4M2 =
�

8(M+�)2 ≤ 1. This means that in order to use the result in (Raginsky et al., 2017), we have to ensure that

� ≤ O( mM2 ) = O(
�

(M+�)2 ). That is, T ≥ C n2�2(M+�)2
�L2 log(1∕�)� .

We can easily get (see Proposition 3.1 in (Raginsky et al., 2017)):

2
2 (�T ,D, �T �,D) ≤ O(�

√

�(T �)2). (4)

Thus, we have

2(�T ,D, �D) ≤ O
( (n�)

5
2

�
3
4 log(1∕�)T

1
4

+
√

(d + �)cLSe
− T �
�cLS

)

. (5)
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For all D ∈ n, we have

∫ L̂r(w,D)�T ,D(dw) − ∫ L̂r(w,D)�D(dw) ≤ O
( (n�)

5
2

�
3
4 log(1∕�)T

1
4

+ exp(O(�)) exp(− n2�2

log(1∕�)O(exp(�))
)
)

, (6)

where O is independent of �, T , n, �, �.

Combining this with Lemmas 2, (6) and (2), we have the proof.

The result of the limit comes from the fact that exp(−x) ≤ 1
x .

B.3. Proof of Theorem 3

Proof of Theorem 3. For convenience, we let F (w) denote L̂r(w,D). Then, the updating becomes

wt+1 = wt − �∇F (wt) +

√

2�
�
�t. (7)

By scaling �′ = �
� and F ′ = �F , we have

wt+1 = wt − �′∇F ′(wt) +
√

2�′�t. (8)

Note that the technique of rescaling is commonly used in other papers, e.g., (Dalalyan, 2017; Xu et al., 2018).

The continuous Langevin dynamic corresponding to (8) is

dW (t) = −∇F ′(W (t))dt +
√

2dB(t). (9)

g = −∇g ⋅ ∇F ′ + Δ2g (10)

Also the invariant distribution is �(dw) ∝ e−F ′(W ), and the Poisson equation is

 = � − �̄, (11)

where �̄ = ∫ �(w)�(dw) and � is the testing function.

A seemingly straightforward way to prove the result is to use the theorem on finite time sample average error of SGLD, such
as Theorem 2 in (Chen et al., 2015) or (55) in (Vollmer et al., 2016) to our equation (8). However, both papers consider only
the case of � = 1, and their assumptions are quite strong compared to ours. This means that the hidden constants in their
bounds may depend on � and the dimensionality d. However, as can be seen from above. � cannot be assumed as a constant
in our problem. Thus we cannot directly apply their results.

Next, we will use some of the ideas in the proof of Theorem 9 in (Vollmer et al., 2016) to show that the the constants depend
only polynomially on � and the degree of the polynomial is independent of d. We refer the reader to Section 9 in (Vollmer
et al., 2016).

For convenience, we assume that the test function � = F . Now consider the solution  to the Possion equation (11) for �
(note that the existence will be shown later for a class � of functions). Also, for  (wt+1), we use Taylor expansion at wt;
that is (note that since we now only need to estimate the bias, we just expand it to the third order, which is different from the
one in (Vollmer et al., 2016)),

 (wt+1) =  (wt) + ∇ (wt)(wt+1 −wt) +
1
2
(wt+1 −wt)T∇2 (wt)(wt+1 −wt) +t (12)

=  (wt) + ∇ (wt)(−�′∇F ′(wt) +
√

2�′�t)+
1
2
�′2∇F ′(wt)∇′2 (wt)∇F ′(wt) −

√

2�′�′∇F ′(wt)�t + �′�Tt ∇
2 (wt)�t +t, (13)

where t =
1
6 ∫

1
0 s

2 (3)(swt + (1 − s)wt+1)(wt+1 −wt, wt+1 −wt, wt+1 −wt)ds and (13) comes from (8).
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Taking the expectation on  (wt+1), we have

E (wt+1) − E (wt) = −�′∇ (wt)∇F ′(wt) + �′Δ2 (wt) +
1
2
�′2∇F ′(wt)∇′2 (wt)∇F ′(wt) + Et. (14)

By (10), we have

�′E( )(wt) = E (wt+1) − E (wt) −
1
2
�′2∇F ′(wt)∇′2 (wt)∇F ′(wt) − Et. (15)

Summing over all t for t = 1,⋯ , T and dividing �′T on both sides, by Poisson equation (11) we get:

E(
∑T
t=1 �(wt)
T

− �̄) = 1
�′T

E[ (wT+1) −  (w1)] −
1
�′T

E
T
∑

t=1
t −

1
2
�′

T

T
∑

t=1
∇F ′(wt)∇′2 (wt)∇F ′(wt). (16)

What we need to prove are the following inequalities.

sup
t
E (wt) ≤ C1, (17)

sup
t
Et ≤ �′2C2 (18)

sup
t
E∇F ′(wt)∇′2 (wt)∇F ′(wt) ≤ C3, (19)

where C1, C2, C3 are independent of � and at most polynomially depending on � with their degrees independent of d (note
that they may depend on d, but we only care about �). If we can show these, then we have the proof.

To prove these inequalities, we want to show for the testing function � and its corresponding  the following

‖ (i)‖ ≤ C1i f,∀i = {0, 1, 2, 3}, (20)

where {C1i } are constants that are at most polynomially depending on � (with degrees independent of d) and f (x) = 1+‖x‖22
is the quadratic function.

Also, we want to show for every m ∈ ℕ,
sup
t
E‖wt‖m2 ≤ C2m <∞, (21)

where {C2m} are constants that also are at most polynomially depending on � (with degrees independent of d).

It is easy to see that if the above inequalities (i.e., (20)(21)) can be proven, then for (17) we have supt E (wt) ≤ O(C10C
2
2 );

for (18), we have

sup
t
Et ≤ O

(

C13 (1 + ‖wt‖
2)[�′3‖∇F ′(wt)‖3 + �′2‖∇F ′(wt)‖]

)

≤O(�′2C13f [‖�∇F (wt)‖
3 + ‖�∇F (wt)‖]). (22)

Since F is smooth, we have ‖∇F (w)‖ ≤ M0
2 (1 + ‖w‖) for some M0 independent of �. Thus, by (22), we have supt Et ≤

O(�′2C), where C is at most polynomially depending on �. Similarly, we can show for (19).

Thus, our goal is now to prove (20) and (21). For (21), we have the following theorem:

Theorem 1. For every m, if � > d and sufficiently small � in (7)

sup
t
E‖wt‖2m2 ≤ C2m <∞, (23)

where wt is in (7) and C2m is independent of �.

Proof of Theorem 1. For m=1, it has been shown in Lemma 3.2 in (Raginsky et al., 2017) that C21 = O(
d
� ) = O(1), which

satisfies our requirements. Actually, for any m, we can follow the proof of Lemma 3.2 in (Raginsky et al., 2017), to show
that there is a sufficiently small � which makes the Theorem hold.
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For example, when m = 2, E‖wt‖42 = E‖wt−1 − �∇F (wt−1) +
√

2�∕��t−1‖4 ≤ O(E‖wt−1 − �∇F (wt−1)‖4 + �4), also for
E‖wt−1 − �∇F (wt−1)‖4 ≤ E‖wt−1‖4(1 − Θ(�) + Θ(�2) − Θ(�3) + Θ(�4)) + O(�). The constants in the big-Θ and big-O
notations are independent of �. Thus, if we take a sufficiently small �, which makes (1−Θ(�) +Θ(�2) −Θ(�3) +Θ(�4)) < 1,
then we can get an upper bound that is independent of � for � ≥ max{1, d}. The same argument goes for all m ∈ ℕ. Thus
we have the proof.

Proof of (21) Now by Theorem 1, we have for every m, supt E‖wt‖m < Cm, where Cm is at most polynomially depending
on (actually is independent of ) �, since by Jensen’s Inequality we have supt E‖wt‖m2 ≤

√

E‖wt‖2m. This proves (21).

Proof of (20) For (20), the key point is that our testing function is bounded by a quadratic function, due to the L-
smoothness of our assumption. We have the following theorem due to Theorem 1 and 2 in (Pardoux & Veretennikov, 2001)
(corresponding to the case of � = 1 > 0, b(x) = F ′(x) = �Lr(w,D) and r0 = ∞ in the Has’minski’s assumption) and
Theorem 13 in (Vollmer et al., 2016).

Theorem 2 ( Theorem 1 and 2 in (Pardoux & Veretennikov, 2001)). Consider the Poisson equation in ℝd ,

u(x) = −f (x), (24)

where  is the infinitestimal generator of the diffusion process (9). We further assume that ∫ f (x)�(dx) = 0, where � is
the invariant measure of the diffusion process. If ‖f (x)‖ ≤ C1 + C2‖x‖s for some s > 0 and some constants C1, C2. Then
(24) defines a continuous function u(x) which belongs to the Sobolev class W 2

p,loc for any p > 1, and satisfies the following
properties,

1. There exists a constant C ′ such that
|u(x)| ≤ C ′(1 + ‖x‖s), (25)

where C ′ is determined only by C1, C2 and Cm, and Cm is determined only by the constants in equations (4)-(6) in
(Pardoux & Veretennikov, 2001) for m > s + 2.

2. Moreover, there is a constant C such that

‖∇u(x)‖ ≤ C(1 + ‖x‖s), (26)

where C is determined only by C1, C2 and Cm, and Cm is determined only by the constants in equations (4)-(6) in
(Pardoux & Veretennikov, 2001) for m > s + 2.

Now by the proofs of Theorem 1 and 2 in (Pardoux & Veretennikov, 2001), we have the following theorem:

Theorem 3. For our test function �, if fixing m = 6 in Theorem 2, then C ′ in (25) is polynomially depending on Cm, C1, C2,
and the same for C in (26).

Proof. The proof of C ′ depending polynomial on C1, C2, Cm can be easily found in the proof of Theorem 1 and Theorem
2 in (Pardoux & Veretennikov, 2001). Since for our test function �, s = 2 by the M-smooth property. Thus, we need
m > � +2 and m > 2k+2 for some k > 0 (See Proposition 1 in (Pardoux & Veretennikov, 2001)). This means that choosing
m = 6 can satisfy the condition in Theorem 1 of (Pardoux & Veretennikov, 2001).

For C , we follows the proof of Theorem 1 in (Pardoux & Veretennikov, 2001). In (Pardoux & Veretennikov, 2001), the
proof is by (25), Sobolev embedding theorem and Theorem 9.11 and (9.40) in (Gilbarg & Trudinger, 2015). From the proof
of Theorem 9.11 in (Gilbarg & Trudinger, 2015), we can see that the hidden constant behind is only polynomially depending
on the upper bounds of the coefficients of the second order PDE, which means only polynomially depending on � in our
problem. Also by Sobolev embedding theorem, we can see that the polynomial dependence on � will be unchanged. Thus,
we have the proof for C .

Next, we show that C1, C2, Cm are at most polynomially depending on �.

Theorem 4. For a fixed number m in (4)-(6) in (Pardoux & Veretennikov, 2001) related to the diffusion process (9), C1, C2
and the constants in (4)-(6) in (Pardoux & Veretennikov, 2001) are at most polynomially depending on � (which is r in
assumption Ab in (Pardoux & Veretennikov, 2001)). Thus, Cm is at most polynomially depending on �.
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Proof. For C1, C2, since f = �̄ − �, which corresponds to (24) in Theorem 2, where � = L̂r(⋅, D), hence we have
‖f (x)‖ ≤ ‖L̂r(x,D)‖+ ‖�̄‖. For the term of L̂r(x,D), since it is (M +�)-smooth, thus L̂r(x,D) ≤ M0

2 (1+ ‖x‖2) for some
M0 which is independent of �. For the term �̄ = ∫ L̂r(w,D)�(dw), by Proposition 3.4 of (Raginsky et al., 2017), we know
that if � ≥ 2

m =
4
� , then �̄ ≤ O( d� log(� + d) + min�), which is at most polynomially depending on �. Thus, C1, C2 are at

most polynomially depending on � with their degrees independent of the dimensionality d.

Now, let us consider Cm. Actually, by the proof of Theorem 1 in (Pardoux & Veretennikov, 2001), we can see that Cm only
depends polynomially on the constants of (4)-(6) in proposition 1 in (Pardoux & Veretennikov, 2001). Thus, it suffices to
show that constants of (4)-(6) in proposition 1 in (Pardoux & Veretennikov, 2001) depends only polynomially on �.

To show this, we can see that � �2 corresponds to r and � = 1 in (Pardoux & Veretennikov, 2001). The proof of proposition 1 in
(Pardoux & Veretennikov, 2001) comes from Lemma 1-Lemma 8 in (Veretennikov, 1997). From the proof in (Veretennikov,
1997), we know that all the constants of (4)-(6) in proposition 1 in (Pardoux & Veretennikov, 2001) are polynomially
depending on r, i.e. � and their degrees are independent of d.

Thus C1, C2, Cm are all at most polynomially depending on � with their degrees independent of d.

To summarize, we have the following theorem:

Theorem 5. The constant C and C ′ in (25) , (26) are at most polynomially depending on �, moreover, the degree of the
polynomial is independent on d.

Upto now, we have showed that ‖ i‖ ≤ C1i f for i = {0, 1}, where f is a quadratic function and C1i are polynomially
depending on �.

What is still left is for i = {2, 3}. To prove this, our idea is to use the trick in (Vollmer et al., 2016) (see A.9-A.11 and
Lemma 15 in (Vollmer et al., 2016)). That is, we note that the derivatives of  can be expressed as the solution to different
Poisson equations. Also, by iterating Theorem 2, 3, 4, 5, we can get all the constant C1i depending at most polynomially on
�.

Putting all these together, we have showed that

E(
∑T
t=1 �(wt)
T

− �̄) ≤ C( 1
�′T

+ �′), (27)

where C is at most polynomially depending on � whose degree is independent of d (we omit other terms and consider only

�). Taking �′ = �
� and � in Algorithm 1, also noting that EL̂r(wj , D) = E

∑T
i=1 L̂

r(wi,D)
T and � = L̂r(⋅, D), by Proposition 3.4

in (Raginsky et al., 2017), we can get the proof.

B.4. Proof of Theorem 4

Lemma 3. (Dwork et al., 2014) For the exponential mechanism (D, u,), we have

Pr{u((D, u,)) ≤ OPTu(x) −
2Δu
�
(ln || + t)} ≤ e−t.

where OPTu(x) is the highest score in the range , i.e. maxr∈ u(D, r).

We first show that the optimal value w∗ = argminw∈ℝd L̂r(w,D) contained in the ball Bd(L� ). This is because under

our assumption, L̂r(w,D) is (�2 ,
L2

2� )-dissipative. That is, ∀w ∈ ℝd , ⟨w,∇L̂r(w,D)⟩ ≥ �
2‖w‖

2 − L2

2� . Thus, w∗ =
argminw∈Bd (L� )

L̂r(w,D).

For any � > 0, by a simple volume argument (Lemma 5.2 in (Vershynin, 2010)) we can see that there exits an �-net �
whose size is at most (1 + 2L

�� )
d . Then, by the property that L̂r(w,D) is O(L)-Lipschitz, we have the following:

min
w∈�

L̂r(w,D) − L̂r(w∗, D) ≤ O(L�).



Non-convex DP-ERM

Now consider the following �-DP algorithm. We set the score function u(D,w) = −(L̂r(w,D) − L̂r(w0, D)), where
w0 ∈ Bd(L� ) is an arbitrary point; the range space  =� . Since L̂r(w,D) is O(L)-Lipschitz in Bd(L� ), the sensitivity is

at most O(Ln ). Thus by Lemma 3 after running exponential mechanism, we have with probability at least 1 − �,

L̂r(wpriv, D) − min
w∈�

L̂r(w,D) ≤ O(
d ln 1

��

n�
).

Thus, form the above and taking � = d
n� , we have

L̂r(wpriv, D) − L̂r(w∗, D) ≤ Õ( d
n�
).

Actually, this is the lower bound for ERM under general convex functions with the constrained set  = d(r) under �
differential privacy, see Theorem 5.2 in (Bassily et al., 2014). By this, we can easily get a lower bound for non-convex loss
functions under our assumptions. We thus have the following theorem:

Theorem 6. Consider DP-ERM problem with L̂r(w,D) = 1
n
∑n
i=1 l(w, zi) + r(w), where r(w) = �

2‖w‖
2, l(w, z) =

−⟨w, z⟩ − �
2‖w‖

2,  = Bd(r) for some constant r. Then for every �-differentially private algorithm, there is a dataset

D = {z1,⋯ , zn} ⊆ {−
1
√

d
, 1
√

d
}d such that, with probability at least 1/2, we must have:

L̂r(wpriv, D) − min
w∈

L̂r(w,D) ≥ Ω(min{1, d
n�
}).

On the other hand, under our assumptions about  = Bd(r), there is an �-differentially private algorithm, whose output
wpriv satisfies with probability at least 1 − �,

L̂r(wpriv, D) − L̂r(w∗, D) ≤ Õ( d
n�
).

The time complexity is O((1 + 2Ln�
d� )

dn).

Thus we can get an near optimal bound for general non-convex loss functions under �-differential privacy.

B.5. Proof of Theorem 5

Before showing the proof, we first give an upper bound on the Frank-Wolfe gap of the output in Algorithm 2 for general
smooth and Lipschitz loss functions with general convex set . We start with the definition of Gaussian Width:

Definition 1 (Minkowski Norm). The Minkowski norm (denoted by || ⋅ ||) with respect to a centrally symmetric convex set
 ⊆ ℝd is defined as follows. For any vector v ∈ ℝd , || ⋅ || = min{r ∈ ℝ+ ∶ v ∈ r}. The dual norm of || ⋅ || is denoted
as || ⋅ ||∗ ; for any vector v ∈ ℝd , ||v||∗ = maxw∈ |⟨w, v⟩|.

Definition 2 (Gaussian Width). Let b ∼ (0, Id) be a Gaussian random vector in ℝd . The Gaussian width for a set  is
defined as G = Eb[supw∈⟨b,w⟩].

Algorithm 1 DP-FW-L2
Input: T is the maximum of iterations, w1 is the initial point, and {
t}Tt=1 is the step size. � and � are privacy parame-
ters.

for t = 1,⋯ , T do
Compute vt = argmaxv∈⟨v,−(∇L(wt, D) + �t)⟩, where �t ∼ N(0, �2Id).
wt+1 = wt + 
t(vt −wt).

end for
Return wR ∈ {w1,⋯ , wT } such that R is uniformly sampled from {1,⋯ , T }.
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Theorem 7. Let  be a bounded, closed, centrally symmetric convex set. Assume that L̂(w,D) is differentiable and
M-smooth over w with respect to l2 norm, and the loss function l(⋅, z) is L-Lipschitz over x with respect to l2-norm for
all z ∈ . Then, there are constants c1, c2 > 0 such that for any 0 < � < c1T , 0 < � < 1, DP-FW-L2 (Algorithm 2) is

(�, �)-differentially private if �2 = c2
L2T ln( 1� )
n2�2 . Moreover, if take {
t}Tt=1 = O(

4
√

(‖‖22+G
2
 ) ln

1
�

‖‖2
√

n�
) and T = O( n�

√

(‖‖22+G
2
 ) ln

1
�

),

the following holds,

E[R] ≤ O
(

‖‖2
4
√

(‖‖22 + G
2
) ln

1
�

√

n�

)

, (28)

where t = maxv∈⟨−∇L̂(wt, D), v −wt⟩.

Proof. To prove Theorem 7, we need the following lemmas.

Lemma 4. For any vector v, we have ||v||2 ≤ ||||2||v|| , where ||||2 is the l2-diameter and ||||2 = supx,y∈ ||x− y||2.

Lemma 4 implies that any smooth convex function F (�), which is M-smooth with respect to l2 norm, is M||||22-smooth
with respect to || ⋅ || norm, which is the motivation of our algorithm.

Proof. If v = 0, this is trivially true. Otherwise, we will show that ||v||2
||||2

≤ ||v|| . This is equivalent to show that v ∉ ||v||2
||||2

.

Taking any y ∈ , since ||

||v||2
||||2

y||2 =
||v||2
||||2

||y||2, we know that ||y||2 < ||||2. Thus, || ||v||2
||||2

y||2 < ||v||2. We have

v ∉ ||v||2
||||2

.

Proof of Theorem 7. For convenience, we let the norm ‖ ⋅ ‖ = ‖ ⋅ ‖ , and F (w) = L̂(w,D). Let M̃ denote M‖‖22, and D
denote the diameter of  w.r.t. ‖ ⋅ ‖ norm. By the M-smoothness property and Lemma 4, we have

F (wt+1) ≤ F (wt) + 
t⟨∇F (wt), vt −wt⟩ +
M̃
2t
2

‖vt −wt‖2. (29)

Let v̂t = argmaxv∈⟨v,−∇F (wt)⟩. By the optimality of vt, we have

⟨vt,−∇F (wt) − �t⟩ ≥ ⟨v̂t,−∇F (wt) − �t⟩.

This implies that
⟨vt − v̂t,∇F (wt)⟩ ≤ ⟨vt − v̂t,−�t⟩. (30)

From (29), we get

F (wt+1) ≤ F (wt) + 
t⟨∇F (wt), vt − v̂t⟩ + 
t⟨∇F (wt), v̂t −wt⟩ +

2t M̃
2

‖vt −wt‖2.

Plugging (30) into (29) and by the fact that ⟨∇F (wt), v̂t −wt⟩ = −t (from the definition of v̂t), we obtain


tt ≤ F (wt) − F (wt+1) + 
t⟨vt − v̂t,−�t⟩ +
M̃
2t
2

D2

≤ F (wt) − F (wt+1) +

2t M̃‖vt − v̂t‖2

2
+
‖�t‖2∗
2M̃

+
M̃
2t
2

D2

≤ F (wt) − F (wt+1) +
‖�t‖2∗
2M̃

+ M̃
2t D
2,

where the second inequality is due to Cauchy Inequality. By the definition of R, we have E[R] =
1
T
∑T
t=1 E[t]. Since

{
t}Tt=1 = 
 , summing the above over t = 1⋯ , T and taking the expectation, we have

ER ≤
F (w1) − F (w∗)


T
+ M̃
D2 + 1



O((‖‖22 + G

2
)
L2T ln( 1� )

n2�2
).
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Taking 
 = O(
4
√

G2(‖‖22+G
2
 ) ln

1
�

√

M̃D
√

n�
) and T = O( n�

√

(‖‖22+G
2
 )L

2 ln 1�
), and by definition of ‖ ⋅ ‖ and the fact that D ≤ O(1), we

have the proof.

We first consider the Generalized Linear Model. The following inequality has been proved in (Foster et al., 2018). We
rephrase it here to make the proof self-complete. Denote by L (w) = E(x,y)∼l(w; x, y) and L̂(w,D) = 1

n
∑n
i=1 l(w; x, y).

Generalized Linear Model

Lemma 5. For a fixed w, L (w) − L (w∗) ≤
C�
2c�

⟨∇L (w), w −w∗⟩.

Proof. Let w ∈  be fixed. Then, we have

⟨∇L (w), w −w∗⟩ = 2E(x,y)[�(⟨w, x⟩ − y)�′(⟨w, x⟩)⟨w −w∗, x⟩]
= 2Ex[(�(⟨w, x⟩) − �(⟨w∗, x⟩))�′(⟨w, x⟩)⟨w −w∗, x⟩].

By assumption 2, we have

L (w) − L (w∗) = E(�(⟨w, x⟩) − �(⟨w∗, x⟩))2

≤
C�
2c�

⟨∇L (w), w −w∗⟩.

By Lemma 5 and Theorem 7, we only need to bound ⟨∇L (w), w−w∗⟩. Before doing that, we show that the empirical risk
is Lipschitz and smooth, which satisfies the assumption in Theorem 7. It is due to:

‖∇L̂(w,D)‖2 = ‖

1
n

n
∑

i=1
(�(⟨w, xi⟩) − yi)�′(⟨w, x⟩)xT ‖2 ≤ C�(B + 1), (31)

and

‖∇2L̂(w,D)‖2 = ‖

1
n

n
∑

i=1
[(�′(⟨w, xi⟩))2 + �′′(⟨w, xi⟩)(�(⟨w, xi⟩) − yi)]xixTi ‖ ≤ C2� + C�(B + 1).

Thus, L̂(w,D) is (C�(B+1))-Lipschitz and C2�+C�(B+1)-smooth. Also, since  is the unit l2 norm, we haveG = O(
√

d)

and ‖‖2 = 1. Thus, we get E[R] ≤ O
(

4
√

d ln 1�
√

n�

)

by Theorem 7.

By the definition of R, we know that E[R] ≥ E⟨∇L̂(wR, D), wR−w∗⟩. Taking the expectation w.r.t {(x1, y1),⋯ , (xn, yn)},
we then have E[R] ≥ E⟨∇L (wR), wR −w∗⟩. Combing it with Lemma 5, we get

EL (xR) − L (w∗) ≤ O
( C�
2c�

4
√

d ln 1�
√

n�

)

.

Robust Regression We now consider robust regression. We begin with showing a similar result as in Lemma 5. First, the
smoothness of  implies that for any s, s∗ ∈  , we have

 (s) −  (s∗) ≤  ′(s∗)(s − s∗) +
C 
2
(s − s∗)2.

Taking s = ⟨w, x⟩ and s∗ = ⟨w∗, x⟩, and then taking expectation w.r.t. {(x1, y1),⋯ , (xn, yn)}, we get

L (w) − L (w∗) ≤ Ex,y[ ′(⟨w∗, x⟩ − y)⟨w −w∗, x⟩] +
C 
2

E⟨w −w∗, x⟩2

= ⟨∇L (w∗), w −w∗⟩ +
C 
2

E⟨w −w∗, x⟩2. (32)
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By Assumption 3, we have
∇L (w∗) = Ex,�[ ′(−�)x] = 0.

Thus, we get L (w) − L (w∗) ≤
C 
2 E⟨w −w∗, x⟩2. On the other hand, using gradient we have

⟨∇L (w), w −w∗⟩ = Ex[E� ′(⟨w −w∗, x⟩ − �)⟨w −w∗, x⟩]
= Ex[ℎ(⟨w −w∗, x⟩)⟨w −w∗, x⟩].

By the assumption on function ℎ(⋅), we get

ℎ(⟨w −w∗, x⟩)⟨w −w∗, x⟩ =
ℎ(⟨w −w∗, x⟩)
⟨w −w∗, x⟩

⟨w −w∗, x⟩2 ≥ c ⟨w −w∗, x⟩2,

where the inequality is due to the fact that ℎ(0) = 0 and ℎ′(0) ≥ c .

Taking the expectation, we have
⟨∇L (w), w −w∗⟩ ≥ c Ex⟨w −w∗, x⟩2.

Thus, we have the following lemma.

Lemma 6.

L (w) − L (w∗) ≤
C 
2c 

⟨∇L (w), w −w∗⟩.

It is easily to get that the loss function l(w, (x, y)) =  (⟨w, x⟩ − y) is C -Lipschitz and C -smooth. Using the same
argument as in the proof for the case of Generalized Linear model, we get the proof.

B.6. Proof of Theorem 6

We first give an upper bound on the Frank-Wolfe gap of general l1-norm Lipschitz and smooth loss functions.

Definition 3. The loss function l is L-Lipschitz under l1-norm over w, if for any z ∈  and w1, w2 ∈ , |l(w1, z) −
l(w2, z)| ≤ L||x1 − x2||1 holds.

Definition 4. A loss function l ∶  ×  → ℝ is M-smooth over w with respect to the || ⋅ ||1 norm if for any z ∈  and
w1, w2 ∈ , the following holds

||∇l(w1, z) − ∇l(x2, z)||∞ ≤M||w1 −w2||1.

If f is differentiable, this yields l(w1, z) ≤ l(w2, z) + ⟨∇l(w2, z), w1 −w2⟩ +
M
2 ||w1 −w2||

2
1.

Assumption 1. L̂(w,D) is assumed to be differentiable and M-smooth over x w.r.t l1-norm, and l(⋅, z) is assumed to be
L-Lipschitz over x with respect to l1-norm for all z ∈  .  ⊆ ℝd is assumed to be a closed convex set. Furthermore,  is
assumed to be the convex hull of some finite set A, i.e.,  = Conv(A) and bounded. (For example,  could be a polytope.)

Algorithm 2 DP-FW-L1
Input: T is the iteration number and x1 is the initial point. {
t}Tt=1 is the step size.  ⊆ ℝp is the convex hull of a compact
set A ⊆ ℝd . � and � are privacy parameters.

1: for t = 1,⋯ , T do
2: Use exponential mechanism (D, u,), where  = A, u(D, s) = −⟨s,∇L̂(wt, D)⟩, to ensure ( �

√

8T ln( 1� )
, 0)-

differential privacy. Denote the output as w̃t.
3: Compute wt+1 = (1 − 
t)wt + 
tw̃t.
4: end for
5: Return wR ∈ {w1,⋯ , wT }, where R is uniformly sampled from {1, 2⋯ , T }.
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Theorem 8. Under Assumption 1 and assuming thatA is a finite set, then for any �, � > 0, DP-FW-L1 (Algorithm 2) ensures

(�, �)-differentially private. Furthermore, if set T = O( n�
√

ln( 1� ) ln(|A|n∕�)
) and {
t}Tt=1 =

√

2
MT ‖‖21

, then with probability at

least 1 − �, the following holds

E[R] ≤ O(
‖‖1

4
√

ln( 1� )
√

ln n|A|�
√

n�
), (33)

where t = maxv∈⟨−∇L̂(wt, D), v −wt⟩.

Proof of Theorem 8. For convenience, we let F (w) = L̂(w,D). By exponential mechanism and advanced composition
theorem, we can see that it is (�, �)-differentially private. By the L-Lipschitz (w.r.t l1-norm) property of the loss function,

we know that Δu ≤ O( ‖‖1Ln ). Let � = O(
L‖‖1

√

8T ln( 1� ) ln(
|A|T
� )

n� ). By the utility bound of exponential mechanism (Lemma
3), we know that in each iteration, with probability 1 − �

T , the following holds

⟨w̃t,∇F (wt)⟩ ≤ minv∈A
⟨v,∇F (wt)⟩ + �. (34)

Let st = argminu∈⟨u,∇F (wt)⟩. By the M-smooth property and (34), we have

M
2
‖wt+1 −wt‖21 ≥ F (wt+1) − F (wt) − ⟨F (wt), wt+1 −wt⟩

= F (wt+1) − F (wt) − 
t⟨∇F (wt), w̃t −wt⟩
≥ F (wt+1) − F (wt) − 
t(⟨∇F (wt), st −wt⟩ + �).

Note that minu∈⟨u −wt,∇F (wt)⟩ = minu∈⟨u −wt,∇F (wt)⟩ = ⟨st −wt,∇F (wt)⟩ = −t. Thus, we have

F (wt+1) − F (wt) + 
tt ≤ 
t� +
M
2t
2

‖‖21. (35)

Summing over t = 1,⋯ , T , we get with probability 1 − �,

(
T
∑

t=1

t)R ≤ F (w1) − F (w∗) + (

T
∑

t=1

t)� +

M
2
(
T
∑

t=1

2t )‖‖

2
1.

Taking {
t}Tt=1 = 
 , we have

R ≤
F (w1) − F (w∗)


T
+

‖‖21M

2
+ O(

L‖‖1
√

T ln( 1� ) ln(
|A|T
� )

n�
).

Taking T = O( n�

L
√

ln( 1� ) ln(|A|n)
) and 
 =

√

2
T ‖‖21M

, we get the result.

Generalized Linear Model We first show the Lipschitz and Smooth properties w.r.t l1-norm. Since ∇l(w, x, y) =
�(⟨w, x⟩ − y)�′(⟨w, x⟩)xT , by the Lipschitzness and the assumption, we have

‖(�(⟨w, x⟩) − y)�′(⟨w, x⟩)xT ‖∞ ≤ C�(B + 1).

Let w1, w2 ∈ , we have

‖(�(⟨w1, x⟩) − y)�′(⟨w1, x⟩)xT − (�(⟨w2, x⟩) − y)�′(⟨w2, x⟩)xT ‖∞
≤ |(�(⟨w1, x⟩) − y)�′(⟨w1, x⟩) − (�(⟨w2, x⟩) − y)�′(⟨w2, x⟩)|
≤ |�(⟨w1, x⟩)�′(⟨w1, x⟩) − �(⟨w2, x⟩)�′(⟨w2, x⟩)| + |�′(⟨w1, x⟩) − �′(⟨w2, x⟩)|

≤ (C2� + (B + 1)C�)|⟨w1 −w2, x⟩|
≤ (C2� + (B + 1)C�)‖w1 −w2‖1.
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Thus, by Theorem 8, we know E[R] ≤ O(
4
√

ln( 1� )
√

ln np�
√

n�
). The remaining part of the proof is by Lemma 5 and is the same

as in the proof of Theorem 5.

Robust Regression For the case of linear regression, it is almost the same as in the case of generalized linear model, we
omit it here.

B.7. Proof of Theorem 7

The guarantee of (�, �)- DP comes from Lemma 1. Below we show that one of {w1, w2,⋯ , wT } is �-SOSP with high
probability.

For convenience, we use the following notations F (w) = L̂(w,D), {�t} = � = 1
M , Φ =

√

�3
� �

−3c−5, r = ��−3c−6,

Γ = �c
�
√

��
and � = max{1, C1 log

dMB
��� } for some constant C1 and enough large constant c.

By the concentration inequality of Gaussian distribution, we have the following lemma.

Lemma 7. With probability at least 1 − �
2 , for all i ∈ [T ],

‖�i‖2 ≤

√

2c2 log
1
�TdL log

4T
�

n�
≤ r = ��−3c−6.

Below we assume that the event in Lemma 7 happens. Next, we show the following.

Lemma 8. If ‖F (wt)‖2 ≥ �, then we have

F (wt+1) − F (wt) ≤ −�
�2

4
.

Proof of Lemma 8. By the M-smoothness and taking � = 1
M , we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 −wt⟩ +
M
2
‖wt+1 −wt‖22

≤ F (wt) − �‖∇F (wt)‖22 + �‖∇F (wt)‖2‖�t‖2 +
�2M
2
[‖∇F (wt)‖22 + 2‖∇F (wt)‖2‖�t‖2 + ‖�t‖

2
2]

= F (wt) − �‖∇F (wt)‖2[
1
2
‖∇F (wt)‖2 − 2‖�t‖2] +

�
2
‖�t‖

2
2

≤ F (wt) −
��2

4
,

where the last inequality is due to the following: by the assumption on n, we have ‖�t‖ ≤ ��−3c−6 ≤ �
20 for sufficiently

large c and ‖∇F (wt)‖2 ≥ �.

Next, we prove the following key lemma:

Lemma 9. If ‖∇F (wt)‖ ≤ � and �min(∇2F (wt)) ≤ −
√

��, then in Algorithm 4, with probability 1 − �, we have
F (wt+Γ) − F (wt) ≤ −Φ.

Proof of Lemma 9. To prove this lemma, we need the following lemmas.

Lemma 10.
F (wt+1) − F (wt) ≤ −

�
4
‖∇F (wt)‖22 + 5�‖�t‖

2
2.
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Proof of Lemma 10. By the M-smoothness, we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 −wt⟩ +
M
2
‖wt+1 −wt‖22

≤ F (wt) − �⟨F (wt), F (wt) + �t⟩ +
�2M
2
(‖∇F (wt)‖22 + 2‖∇F (wt)‖2‖�t‖2 + ‖�t‖

2
2)

≤ F (wt) −
�
2
‖∇F (wt)‖22 + 2�‖∇F (wt)‖2‖�t‖2 +

�
2
‖�t‖

2
2

≤ F (wt) −
�
4
‖∇F (wt)‖22 + 5�‖�t‖

2
2.

Lemma 11. For all t + 1 ≤ T , we have

‖wt+1 −w1‖22 ≤ 8�T (F (w1) − F (xT+1)) + 50�
2T

T
∑

t=1
‖�t‖

2
2.

Proof of Lemma 11. For any t ≤ T − 1, by Lemma 10, we have

‖wt+1 −wt‖22 ≤ �2‖∇F (wt) + �‖22 ≤ 2�
2
‖∇F (wt)‖22 + 2�

2
‖�t‖

2
2

≤ 8�(F (wt) − F (wt+1)) + 50�2‖�t‖22.

Thus we have
T
∑

t=1
‖wt+1 −wt‖22 ≤ 8�(F (w1) − F (wT+1)) + 50�

2
T
∑

t=1
‖�t‖

2
2.

In total, we get

‖wt+1 −w1‖22 ≤ (
t

∑

i=1
‖wi+1 −wi‖2)2 ≤ t

t
∑

i=1
‖wi+1 −wi‖22 ≤ T

T
∑

t=1
‖wt+1 −wt‖22.

Let DPGD(t)
� (x) be our algorithm that updates t-times with perturbations {�1,⋯ , } fixed and begins with x. Define the stuck

region as:
�(w̃) = {w|w ∈ Bw̃(�r), and Pr(F (DPGD(Γ)� (w)) − F (w̃) ≥ −Φ) ≥

√

�}. (36)

Intuitively, the later perturbations of the coupling sequence are the same while the very first perturbation is used to escape
the saddle points.

Lemma 12. There exists a large enough constant c such that if ‖∇F (w̃)‖2 ≤ � and �min(∇2F (w̃)) ≤ −
√

��, then the width

of �(w̃) along the minimum eigenvector of w̃ is at most ��r
√

2�
d .

Proof of Lemma 12. To prove this lemma, we let emin be the minimum eigenvector of ∇2F (w̃). It suffice to show that for

any w1, w′1 ∈ Bw̃(�r) satisfying the condition of w1 −w′1 = �emin, where |�| ≥ ��r
√

2�
d , w1 ∉ �(w̃) or w′1 ∉ �(w̃).

Let wΓ+1 = DPGD(Γ)� (w1) and w′Γ+1 = DPGD(Γ)� (w′1), where the two sequences are independent. To show that w1 ∉
�(w̃) or w′1 ∉ �(w̃), it is sufficient to demonstrate that with probability at least 1 − �

min{F (wΓ+1) − F (w̃), F (w′Γ+1) − F (w̃)} ≤ −Φ. (37)

That is due to the fact that if w1, w′1 ∈ �(w̃), we have, with probability at least �, that F (wΓ+1) − F (w̃) ≥ −Φ and
F (w′Γ+1) − F (w̃) ≥ −Φ. This will mean that with probability at most 1 − �,

min{F (wΓ+1) − F (w̃), F (w′Γ+1) − F (w̃)} ≤ −Φ, (38)
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which contradicts (37).

To prove that (37) holds with probability at least 1 − �, we need to show that

1. max{F (w1) − F (w̃), F (w′1) − F (w̃)} ≤ Φ,

2. with probability at least 1 − �, min{F (wΓ+1) − F (w1), F (w′Γ+1) − F (w
′
1)} ≤ −2Φ.

For (1), we have, by the definition of w1 ∈ Bw̃(�t) and the M-smoothness, that

F (w1) − F (w̃) ≤ ��r + M
2
(�r)2 = O( �

2

M
�−3c−6) ≤ Φ

for sufficiently large c. Similarly, we have the same for F (w′1) − F (w̃).

To prove (2), we first assume that it is not true, i.e.,

min{F (wΓ+1) − F (w1), F (w′Γ+1) − F (w
′
1)} ≥ −2Φ.

Then, by Lemmas 7 and 11, we have ∀t ∈ [Γ + 1] that for sufficiently large c > 0,

max{‖wt − w̃‖2, ‖w′t − w̃‖2} ≤ max{‖wt −w1‖2 + ‖w1 − w̃‖2,max{‖w′t −w
′
1‖2 + ‖w′1 − w̃‖2}}

≤
√

16�ΓΦ + 50�2Γ2r2 + �r

≤
√

16�ΓΦ + 50�2Γ2�2�−4c−12 + ���−3c−6

≤ 4(
√

�
�
�−1c−2) = R,

where the last inequality is due to the fact that M ≥
√

��. This means that both sequences {wt}Γ+1t=1 and {w′t}
Γ+1
t=1 do not

leave the ball with radius R around w̃. Let H = ∇2F (w̃) and xt ∶= wt −w′t. We have

xt+1 = xt − �[∇F (wt) − ∇F (w′t)] = (I − �H)xt − �Δtxt

≤ (I − �H)tx1 − �
t

∑

�=1
(I − �H)t−� (Δ�x� )),

where Δt = ∫ 10 [∇F (w
′
t + �(wt −w

′
t)) −H]d�. By Hessian Lipshitz, we have Δt ≤ �max{‖wt − w̃‖2, ‖w′t − w̃‖2} ≤ �R.

We now show the following by induction:

‖�
t

∑

�=1
(I − �H)t−� (Δ�x� )‖ ≤ 1

2
‖(I − �H)tx1‖2. (39)

For the base case of t = 1, we can easily verify it using the fact that ��R ≤ 1
2 for sufficiently large c. Suppose that it holds

for all t′ ≤ t. This gives us ‖xt′‖2 ≤ 2‖(I − �H)t
′x1‖2. Let 
 = �min(∇2F (w̃)). For the case of t + 1 ≤ Γ + 1, we have

‖�
t

∑

�=1
(I − �H)t−� (Δ�x� )‖ ≤ ��R‖

t
∑

�=1
(I − �H)t−�‖2‖x�‖2 ≤ ��RΓ(1 + �
)t‖x1‖2 ≤

1
4
‖(I − �H)tx1‖2,

where the third inequality uses the fact that x0 is along the direction of the minimum eigenvector of H , and the last one is
due to the fact that ��RΓ = 4c−1 ≤ 1

4 for large enough constant c.
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Thus, in total we have

‖xΓ+1‖ ≥ ‖(I − �H)Γx1‖2 − ‖�
Γ
∑

�=1
(I − �H)t−� (Δ�x� )‖2

≥ 1
2
‖(I − �H)Γx1‖2 =

1
2
(1 − �
)Γ‖x1‖2

≥ 1
2
(1 + �

√

��)Γ‖x1‖2

≥ 1
2
(1 + �

√

��)Γ��r
√

2�
d

≥ (1 + �
√

��)Γ
���−3c−6

2M

≥ 2�
√

��Γ ���−3c−6

2M

≥ 8
√

�
�
�−1c−2 = 2R,

where the last inequality is due to the fact that Γ = �c
�
√

��
and � = max{1, log

√

dM
�
√

��
}. From the above, we can see that

when c is sufficiently large, the above inequalities hold. Thus, we have ‖xΓ+1‖2 ≥ 2R. This contradicts the fact that
max{‖wt − w̃‖2, ‖w′t − w̃‖2} ≤ R. This completes the proof.

We now return to the proof of Lemma 9. Let r0 = �r
√

2�
d . By Lemma 12, we know that �(wt) has width at most �r0 in

the direction of the minimum eigenvector of ∇2F (wt). Thus, we have

Vol(�(wt)) ≤ Vol(B(d−1)0 (�r)) ⋅ �r0, (40)

which gives us

Vol(�(wt))
Vol(Bdwt (�t)

) ≤
Vol(B(d−1)0 (�r)) ⋅ �r0

Vol(Bdwt (�t)
) =

r0
r
√

�

Γ( d2 + 1)

Γ( d2 +
1
2 )

≤
r0
r
√

�

√

d + 1
2

≤ 2�.

Hence, with probability at least 1 − 2�, the perturbation lands in Bdwt (�t)∖
�(wt). That is, with probability at least 1 −

√

�,
the following holds

F (DPGD(Γ)� (wt)) − F (wt) ≤ −Φ.

Thus, we have the above inequality with probability at least (1− �)(1− 2�)(1−
√

�) ≥ 1−3
√

�. Reparametrizing �′ = 3
√

�
only affects the factors in � .

Now, we prove Theorem 7.

Proof of Theorem 7. By Lemmas 8 and 9, we have, with probability at least 1− 2B
Φ �, that the algorithm will find an �-SOSP

in the following number of iterations

O( B
��2

+ BΓ
Φ
) = O(

B�4

��2
).

What we need is that

√

2c2 log
1
� T pL log

4T
�

n� ≤ r = ��−3c−6, which means n ≥ Ω̃(
√

MB�5c6
√

2c2 log
1
� pL

��2 ). Taking � = 2B
Φ � only

affects the log term.

This completes the proof.
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B.8. Proof of Theorem 8

Proof. By a similar argument given in the proof of Theorem 8, we known that there exist c1, c2 that make step 2 to step 6
( �2 ,

�
2 )-DP. Thus, the whole algorithm is (�, �)-DP.

By Lemma 13, we know that with probability at least 1 − � − T
pC

‖�t‖2 ≤

√

c2 log
1
�TdL log

8T
�

n�
= Err1

‖Ht‖2 ≤
C
√

c3 log
1
�TMd

n�
= Err2.

Now, we assume that the above event happens. By Theorem 7, we know that with probability at least 1 − �
2 , there exists

‖∇F (wt)‖2 ≤
�
2 and �min(∇2F (wt)) ≥ −

√

��
2 . Thus, for this t, we have

‖gt‖2 ≤ Err1 +
�
2
≤ �

�min(H̃t) ≥ �min(∇2F (wt)) − Err2 ≥ −
√

��.

These inequalities hold when Err1 ≤
�
2 and Err2 ≤ (1 −

√

1
2 )
√

��. Thus, the size n should satisfy

n ≥ Ω̃
(

max{

√

BM log 1�dL log
1
�

��2
,

√

log 1�BMMd log 1�
���2

}
)

.

Combining this with Theorem 7, we get the theorem.

B.9. Proof of Theorem 9

Proof. First, we show the guarantee of (�, �)-DP. By Lemma 1, we know that �21 =
16c2 log

2
�L

2T
n2�2 , where c2 is the constant

in Lemma 1. Hence, it is ( �2 ,
�
� )-DP. Due to the L-smoothness, we have that for any pair of neighboring datasets D,D′,

‖∇2L̂(w,D)−∇2L̂(w,D′)‖2 ≤ 2L, which means that ‖∇2L̂(w,D)−∇2L̂(w,D′)‖F ≤ 2
√

dL. This implies that if we view
the Hessian matrix as a vector, the l2-sensitivity is 2

√

dL. Also, due to symmetric structure, adding symmetric Gaussian

matrix with each entry sampled from  (0, �22 ), where �22 =
c3T log

1
�M

2d
n2�2 , will ensure ( �2 ,

�
2 )-DP. Thus, the algorithm is

(�, �)-DP.

Then, we show the ability of escaping saddle points. For simplicity, we let F (⋅) = L̂(⋅, D),
√

�� = 
 , 
 ′ = 

2 , �′ = �

2 , and

r = Φ2
′2
18�D3 .

We first show the following lemma by using the concentration of Gaussian distribution and the spectrum of symmetric
Gaussian noise (Tao, 2012).

Lemma 13. For any 0 < � < 1, there exists a constant C, c3, c2 > 0 such that with probability at least 1 − � − T
pC , for any

t ∈ [T ],

‖�t‖2 ≤

√

c2 log
1
�TdL log

8T
�

n�
= Err1 (41)

‖Ht‖2 ≤
C
√

c3 log
1
�TMd

n�
= Err2. (42)
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In the remaining analysis, we assume that the events in Lemma 13 happen, and the data size n is large enough such that

Err1 ≤ min{
Φ2
 ′2

18�D4
, �

′

4D
} (43)

Err2 ≤
Φ
 ′

9D2
. (44)

Thus, n should be

n ≥ max{
18
√

c2 log
1
�TdL log

8T
� �D

4

�Φ2
 ′2
,
4
√

c2 log
1
�TdL log

8T
� D

��′
,
9
√

c3 log
1
�TD

2Md

Φ
 ′�
}. (45)

We now show the iteration complexity of Algorithm 5. First, we consider the case of gTt (vt −wt) ≤ −�
′.

Lemma 14. For wt, if gTt (vt −wt) ≤ −�
′, then we have

F (wt+1) ≤ F (wt) −
�′2

4D2M
. (46)

Proof of Lemma 14. By the M-smoothness of F (⋅), we have

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 −wt⟩ +
M
2
‖wt+1 −wt‖22

≤ F (wt) + �⟨gt, vt −wt⟩ + �⟨�t, wt − vt⟩ +
�2MD2

2

≤ F (wt) − ��′ + �DErr1 +
�2MD2

2
.

Taking � = �′

D2M , since Err1 ≤
�′

4D , we have

F (wt+1) ≤ F (wt) −
�′2

4D2M
.

Lemma 15. For a given wt, if gt(vt −wt) ≥ −�′ and q(ut) ≤ −Φ
 ′, then we have

F (wt+1) ≤ F (wt) −
Φ3
 ′3

6�2D6
. (47)

Proof of Lemma 15.

F (wt+1) ≤ F (wt) + ⟨∇F (wt), wt+1 −wt⟩ +
1
2
(wt+1 −wt)T∇2F (wt)(wt+1 −wt) +

�
6
‖wt+1 −wt‖2

≤ F (wt) + �⟨∇F (wt), ut −wt⟩ +
�2

2
(ut −wt)T∇2F (wt)(ut −wt) +

�3�D3

6

≤ F (wt) + �⟨gt, ut −wt⟩ + �⟨�,wt − ut⟩ +
�2

2
(ut −wt)T H̃t(ut −wt) −

�2

2
(ut −wt)THt(ut −wt) +

�3�D3

6

≤ F (wt) + �r + �DErr1 −
�2Φ
 ′

2
+
�2D2Err2

2
+
�3�D3

6
.

Taking � = Φ
′
�D3 and by the inequalities Err1 ≤

Φ2
′2
18D4� , Err2 ≤

Φ
′
9D2 , and r = Φ2
′2

18�D3 , we get the lemma.
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By Lemmas 14 and 15, we know that under the events of Lemma 13, the algorithm terminates in T = O(max{D
2MB
�′2 , B�

2D6

Φ3
′3 })
iterations.

Next, we will show that under the events of Lemma 13, the output wt is an (�, 
)-SOSP. From the theorem, we know that wt
satisfies the following conditions:

gTt (v −wt) ≥ −�
′,∀v ∈ ,

(u −wt)T H̃t(u −wt) ≥ −Φ
 ′,∀u ∈ , gTt (u −wt) ≤ r.

We will first show that wt satisfies the first order condition, that is

max
u∈

⟨∇F (wt), u −wt⟩ ≥ minu∈
(⟨gt, u −wt⟩ −DErr1) ≥ −�′ −DErr1 ≥ −�.

We then show that wt satisfies the second-order property.

Let  = {w|⟨∇F (wt), w −wt⟩ = 0} and  = {w|gtt(w −wt) ≤ r}. We can show that A ⊆ B. This is due to the following.
For any w ∈ A, ⟨∇F (wt), w −wt⟩ = 0. Thus,

gtt(w −wt) = ∇F (wt)
T (w −wt) + �Tt (w −wt) ≤ D ⋅ Err1 ≤ r.

Finally, for any w ∈ , we have

(w −wt)T∇2F (wt)(w −wt) = (w −wt)THt(w −wt) − (w −wt)T H̃t(w −wt)

≥ −Φ
 ′ −D2Err2

≥ −10
9
Φ


2
≥ −5

9
Φ
 ≥ −
.

Thus, for all w ∈  satisfying the condition of ⟨∇F (wt), w −wt⟩ = 0, we have (w −wt)T∇2F (wt)(w −wt) ≥ −
 .

Thus, n should satisfy

n ≥ Ω̃
(

max{
LD7

√

dMB log 1� log
1
� �
1∕4

�Φ7∕2�2
,

√

log 1�dBMLD4 log 1� �
1∕4

��2Φ3∕2
,
d
√

BM3 log 1�D
5 log 1�

�1∕4Φ5∕2�3∕2�
}
)

.
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