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Abstract

We study the problem of Empirical Risk Mini-
mization (ERM) with (smooth) non-convex loss
functions under the differential-privacy (DP)
model. We first study the expected excess em-
pirical (or population) risk, which was primarily
used as the utility to measure the quality for con-
vex loss functions. Specifically, we show that the
excess empirical (or population) risk can be upper
bounded by O(‘ill%se/f)) in the (e, §)-DP settings,
where n is the data size and d is the dimensional-
ity of the space. The @ term in the empirical

risk bound can be further improved to ﬁ (when
d is a constant) by a highly non-trivial analysis
on the time-average error. To obtain more effi-
cient solutions, we also consider the connection
between achieving differential privacy and find-
ing approximate local minimum. Particularly, we
show that when the size » is large enough, there
are (e, 6)-DP algorithms which can find an ap-
proximate local minimum of the empirical risk
with high probability in both the constrained and
non-constrained settings. These results indicate
that one can escape saddle points privately.

1. Introduction

Learning from sensitive data is a frequently encountered
challenging task in many data analytic applications. It re-
quires the learning algorithm to not only learn effectively
from the data but also provide a certain level of guarantee
on privacy preserving. As a rigorous notion for statistical
data privacy, differential privacy (DP) has received a great
deal of attentions in the past decade (Dwork et al., 2006).
DP works by injecting random noise into the statistical re-
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sults obtained from sensitive data so that the distribution
of the perturbed results is insensitive to any single-record
change in the original dataset. A number of methods with
DP guarantees have been discovered and recently adopted
in industry (Near, 2018; Erlingsson et al., 2014).

As a fundamental supervised-learning model in machine
learning, Empirical Risk Minimization (ERM) has been ex-
tensively studied in recent years. Previous research on DP-
ERM (i.e., DP version of ERM) mainly focuses on convex
loss functions (Chaudhuri & Monteleoni, 2009) (see more
details in the Related Work section). However, empirical
studies have revealed that non-convex loss functions typi-
cally achieve better classification accuracy than the convex
ones (Mei et al., 2018). Furthermore, recent developments
in deep learning (Goodfellow et al., 2016) also suggest that
loss functions are more likely to be non-convex in real world
applications. Thus, there is an urgent need for the research
community to shift our focus from convex to non-convex
loss functions. So far, very few papers (Zhang et al., 2017;
Wang et al., 2017; Wang & Xu, 2019) have considered DP-
ERM with non-convex loss functions. This is probably due
to the fact that finding the global minimum of a non-convex
loss function is NP-hard. Almost all of them (Zhang et al.,
2017; Wang et al., 2017; Wang & Xu, 2019) used the ¢,
gradient-norm of a private estimator, i.e., ||Vﬁ(wpri")||2, to
measure the error bound. Despite some obvious advantages
with such an approach, it also endows a few limitations: 1)
although (Zhang et al., 2017; Wang et al., 2017; Wang & Xu,
2019) showed that the gradient norm tends to O as n goes to
infinity, there is no guarantee that such an estimator will be
close to any non-degenerate local minimum (Agarwal et al.,
2017); 2) the gradient-norm estimator is not always consis-
tent with the excess empirical (population) risk of the loss
function, i.e., L(wP™) — L(w*), where w* is the optimal
solution (Bassily et al., 2014; Chaudhuri et al., 2011). Thus,
it is difficult to compare the obtained solution with either
the global or local minima. This propels us to the following
interesting question.

Can the excess empirical (population) risk be used to
measure the error of non-convex loss functions under
differential privacy?

Due to the intrinsic challenge of finding global minima, re-
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cent research on deep neural network training (Ge et al.,
2018; Kawaguchi, 2016) and many other machine learning
problems (Ge et al., 2015; 2016; 2017; Bhojanapalli et al.,
2016) has shifted their attentions to obtaining local minima.
It has been shown that fast convergence to a local mini-
mum is actually sufficient for such tasks, but convergence to
critical points (i.e., points with vanished gradients) is often
not acceptable. This motivates us to investigate efficient
techniques for finding local minima. However, as shown
in (Anandkumar & Ge, 2016), computing a local minimum
could be quite challenging as it is actually NP-hard for non-
convex functions. Fortunately, many non-convex functions
in machine learning are known to be strict saddle (Ge et al.,
2015), meaning that a second-order stationary point (or ap-
proximate local minimum) is sufficient to obtain a close
enough point to some local minimum.

To find (approximate) local minima, Ge et al. (2015) have
recently proposed an elegant approach using a noisy version
of gradient descent. Their method adds some scaled Gaus-
sian noise in each iteration to the gradient before updating,
rather than directly using SGD. Such a way of finding local
minima resembles the idea used by the DP community for
achieving differential privacy for SGD (Bassily et al., 2014;
Wang et al., 2017; Wang & Xu, 2019). In DP-SGD, some
Gaussian noise is also added to the gradient in each iteration
to make it (e, 6)-DP. Although these two algorithms focus
on different perspectives (one for escaping saddle points
while the other for making the algorithm DP), they both in-
ject random Gaussian noise to the gradients in each iteration.
This naturally leads us to another question:

Can we find some approximate local minimum which
escapes saddle points, while keeping the algorithm (e, 6)-
differentially private?

In this paper, we study the above two questions and give
positive answer to each of them. Below is a summary of our
contributions.

* We first propose an (e, §)-DP algorithm, named DP-
GLD (Algorithm 1), and prove that its excess empirical

(or population) risk is upper bounded by O( d log(nl L 5))

when log n > O(d), where n is the data size and d is the
dimensionality of the space. Our techinique is based
on some recent developments in Bayesian learning and
(stochastic) Gradient Langevin Dynamics (Raginsky
etal., 2017; Chen et al., 2015; Xu et al., 2018a Tzen
et al., 2018). Interestingly, we show that the - term
in the empirical risk bound can be further 1mproved
to ﬁ by a highly non-trivial analysis on the time-
average error of a dynamic system.

* We also show that when the data size » is large enough,

there exist polynomial-time ! (e, §)-DP algorithms that
can find an a-approximate local minimum of the em-
pirical risk in both constrained and non-constrained
settings. To the best of our knowledge, this is the first
result that reveals a connection between differential
privacy and saddle-point escaping.

Due to space limit, all proofs and some related background
are left to the Supplementary Material.

2. Related Work

DP-ERM is a fundamental problem in machine learning
and differential privacy. There are quite a number of results
on differentially-private ERM with convex loss functions,
which investigate the problem from different perspectives.
For example, (Wang et al., 2018; 2019) considered ERM in
the non-interactive local model. The problem has been well-
studied under the central model both theoretically and prac-
tically (Chaudhuri & Monteleoni, 2009; Chaudhuri et al.,
2011; Bassily et al., 2014; Wang et al., 2017; Zhang et al.,
2017; Kifer et al., 2012), as well as in high dimensions
(Talwar et al., 2015; 2014; Kasiviswanathan & Jin, 2016).

For general non-convex loss functions, existing results have
mainly adopted gradient norm as a measurement to bound
the error of a private estimator (Zhang et al., 2017; Wang
et al., 2017; Wang & Xu, 2019). Since gradient norm does
not guarantee quality of solutions in general, it is thus not
very meaningful to compare these bounds with the ones
in this paper. Excess empirical (or population) risk based
utility has been applied only to some special non-convex loss
functions. For example, Wang et al. (2017) showed a near
optimal bound for some special non-convex loss functions
satisfying the Polyak-Lojasiewicz condition. (Balcan et al.,
2018) studied the problem of optimizing privately piecewise
Lipschitz functions in online settings. However, the loss
functions should satisfy the dispersion condition, which
is quite different from ours; thus their result is also not
comparable with ours.

Previous works on the DP version of SGLD have focused
on Bayesian learning, such as (Wang et al., 2015; Li et al.,
2019), which differ from our work considerably. Firstly, our
work mainly focuses on achieving (¢, 6)-DP for ERM with
non-convex loss functions, and on measuring the error of
a private estimator with respect to the global or local min-
ima. Secondly, existing works assume that the temperature-
parameter § in the gradient Langevin dynamics is one or
some constant, while f in our problem is not even a constant,
making the analysis significantly more challenging in our
work than in previous ones (see Remark 2 for more details).

!For the constrained case, polynomial-time solutions are only
for some specified sets, see Remark 3 for details.
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3. Preliminaries

We say that two datasets, D and D’ are neighbors if they
differ by only one entry, denoted as D ~ D’.

Definition 1 (Differential Privacy (Dwork et al., 2006)). A
randomized algorithm A is (e, 6)-differentially private if for
all neighboring datasets D, D’, and for all events S in the
output space of A, we have Pr(A(D) € S) < e‘PrA(D’) €
S) + 6. When 6 = 0, A is called e-differentially private.

Problem Setting (Bassily et al., 2014) Given a dataset
D = {z; = (x1,¥1), 2 = (X3, ¥2) =, 2, = (X, y,,)} from
a data universe Z and a closed convex set C C R?, where
{x;}_, are feature vertors and {y;}’_, are labels or re-
sponses. DP-ERM is to find wP™ € C by minimizing
the empirical risk defined as L"(w, D) 2 L(w, D)+ r(w) £
% Y, £(w, z;) + r(w), with the guarantee of being differ-
entially private (defined below). Here ¢ is the loss function;
and r(-) is some simple (non)-smooth convex regularizer.
The utility of an algorithm is measured by the expected
excess empirical risk (which we call empirical risk), i.e.,

Ert’) (wP™) = E[L"(wP™, D)] — min L' (w, D),
weC

where the expectation is taking over the randomness of the
algorithm. When the data are drawn i.i.d. from an unknown
underlying distribution 7 on Z, we also seek to minimize
the population risk, defined as L;)(w) =E,cplf(w, 2)] +
r(w). The expected excess population risk (which we call
population risk) becomes >
Errl, (wP™) = E[L},(wP™)] - min L, (w).

Definition 2 (Lipschitz function over w ). A loss function
¢ 1 Cx Z ~ Riscalled L-Lipschitz (under £,-norm) over
w, if for any z € Z and w,, w, € C, we have |£(wy, z) —
£(wy, 2)| < L|lwy — wslls.

Definition 3 (Continuous smooth function over w). A loss
function 7 : C X Z — R is called M-smooth over w with
respect to the £,-norm if for any z € Z and w,w, € C,
we have ||VZ(w, z) = VO (w,, 2)||, £ M||w; — wyl|, for
some positive M. If £ is differentiable, this yields

M
C(wy, z) < C(w,, 2)+H(VE(w,, z), wl—w2)+7| |w—w,| |§.

Definition 4. A twice-differentiable loss function £ : CX2Z
is called p-Hessian Lipschitz if for any z € Z and w, w, €
C we have

V¢ (w), 2) = V€ (wy, 2)ll; < pllw) — w;l,.

Definition 5. For two Borel measures u,v on R? with fi-
nite second moments, the 2-Wasserstein distance, W, (u, v),

21f there is no regularizer, we will simply denote as Err,.

is defined as: Wy(u,v) 1= inf{E|V - WID)? : p =
LV),v=L(W)}, where the infinitum is taken over all the
random couples (V', W) whose values are taken in R? x R?
with marginals V' ~ y and W ~ v. L(V') means the proba-
bility law of the random vector V.

Definition 6 (Gaussian Mechanism). Given any function
g . Z" — R4, the Gaussian Mechanism is defined as:
Ms(D, q,€) = q(D)+Y, where Y is drawn from a Gaussian
Distribution N (0,6%1,) with ¢ > Y2ZRIZ/08:@ 4
A,(q) is the ¢5-sensitivity of the function q,6 i.e., Ar(q) =
supp.p |1g(D)—q(D")||,. Gaussian Mechanism preservers
(e, 6)-differential privacy.

The moments accountant proposed in (Abadi et al., 2016) is
a method to accumulate the privacy cost, producing tighter
bounds for € and 6. For example, when the Gaussian Mecha-
nism is used on (stochastic) gradient descent, one can save a
factor of 4/In(T"/6) in the asymptotic bound of standard de-
viation of noise, compared with the advanced composition
theorem in (Dwork et al., 2010).

Lemma 1 ((Abadi et al., 2016)). For an L-Lipschitz loss
function, there exist constants c; and ¢, so that given the
sampling probability ¢ = I /n, the number of steps T and any
€ < ¢,;¢°T, a DP stochastic gradient algorithm with batch
size [, which injects zero-mean Gaussian noise with standard
deviation Lo to the gradients (Algorithm 1 in (Abadi et al.,
2016)), is (e, 6)-differentially private for any 6 > Oif o >
¢ q\/T'In(1/6) .

€
Definition 7 (Exponential Mechanism (McSherry & Talwar,
2007)). The Exponential Mechanism allows differentially
private computation over arbitrary domains and range R,
parametrized by a score function u(D, r) which maps a pair
of input data set D and candidate result » € R to a real
valued score. With the score function u and privacy budget
€, the mechanism yields an output with exponential bias
in favor of high scoring outputs. Let M(D, x, R) denote
the exponential mechanism, and A be the sensitivity of u
in the range R, A = max, e maxp_p |u(D,r) —u(D’,r)|.
The exponential mechanism M(D, x, R) is defined as se-
lecting and outputting an element r € R with probability

proportional to exp(%), which preserves e-differential
privacy.

4. Excess Risk of DP-ERM with Non-convex
Loss Functions

‘We make the following assumptions in this section unless
specified otherwise.

Assumption 1. 1. The hypothesis space C = R¢, regu-
larizer is £, norm, e.g., r(-) = %H - ||? for some A > 0.

2. Forany z € Z, (-, z) is L-Lipschitz, and £(0, z) < A.
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3. For each z € Z, 7(-, z) is twice differentiable and is
M -smooth.

These assumptions are quite standard in the DP-ERM lit-
erature with convex loss functions (Chaudhuri et al., 2011;
Chaudhuri & Monteleoni, 2009). For some non-convex loss
functions such as the sigmoid function, it is easy to see that
these assumptions are satisfied. For convenience, we assume
that A, A, L, M are all constants, which will be omitted in
the big O notation. Also the big O terms omit the log terms.

We first review Gradient Langevin Dynamics (GLD), a pop-
ular generalization of the gradient descent algorithm. For
ERM, the GLD algorithm executes the following recursion
for w at iteration k:

P
B

where &,_; is a standard d-dimensional Gaussian random
vector, #;,_; is the step size and § > 0 is the inverse tem-
perature parameter. Actually, GLD can be viewed as a
discrete-time approximation of a continuous-time Langevin
diffusion, described by the following stochastic differential
equation (SDE):

wy = wy_; — M VL (wy_y, D) + & (D

dW, = =V I'(W, D)dt + \/2p-1dB,, )

where (B,), is a standard Brownian motion. It has been
shown that the distribution of diffusion process in (2) con-
verges to its stationary distribution, i.e. the Gibbs measure
r(dw) exp(—ﬂI:’(w, D)) (Chiang et al., 1987). More-
over, when f — oo, the distribution concentrates around the
minimizer of L"(w, D). By choosing the step size 1 prop-
erly, GLD can maintain differential privacy, as described in
Algorithm 1.

Algorithm 1 DP-GLD
Input: T is the iteration number. ¢, § are privacy parameters.

1: Choose an arbitrary point w from distribution density
po(w) or fix the initial point wy.

cn2€2

2: Denote n= m,
1

3: fork=1,2,---,T do

4wy = wy_, — nVL(w_;, D) + ‘/%fk_l, where
Shk—1 ™ N(O, 1)

5: end for

6: Return wy or randomly sample j € [T] and return w);.

1.
where ¢ = = is from Lemma
C
2

It can be shown that Algorithm 1 ensures DP under certain
conditions, as stated in Theorem 1.

Theorem 1. There exist constant numbers ¢, and ¢,, such
that for any 0 < € < ¢;T and 0 < 6 < 1, Algorithm 1 is
(e, 6)-differentially private.

Our idea for proving an upper bound of the excess risk
of ERM is based on the analysis of the convergence rate
of GLD as in (Dalalyan, 2017; Dalalyan & Karagulyan,
2019; Raginsky et al., 2017). Let y; be the probability
law of wy, in (1), and Vi the law of Wiy in (2). Our main
step is to analyze the 2-Wasserstein distance W, (y;, 7),
which can be decomposed into W, (py, vi,,) and Wy (v, 7).
The key observation of our analysis is that in DP-GLD
with £k = T, #T is a fixed number according to Algo-
rithm 1, ie., 4T = ®($€;)L2). This means that the
term WQ(an, rr) is always fixed, no matter how large T is.
For the W, (ur, vr,,) term, since wy is a discretized ver-
sion of Wr,, when 5 approaches 0, W, (ur, vp,,) will also
approach 0. Thus, it appears that the best of what we can
do for bounding W, (s, x) in DP-GLD is to bound it by
Wy (ur, VTn)’ ie.,

711—{20 Wa(ug, m) < Wy(vry, 7).

The above distance can be bounded as shown in a recent
work by using Logarithmic Sobolev inequality (Raginsky
etal., 2017). For our problem, Theorem 2 extends the results
by adapting recent non-asymptotic GLD theory (Raginsky
et al., 2017; Xu et al., 2018a) and giving an upper bound of
the excess risk for some initial points.

Theorem 2. Under the conditions of Theorem 1, if take

T > @(%) and p > max{.d} in Algorithm
1, and assume that the probability law, p, of the initial
hypothesis w, has a bounded and strictly positive den-
sity function w.r.t. Lebesgue measure on R?, and k, =
log f[Rd e||w||2p0(w)dw < oo, then the population risk at wy
is bounded by

ST

5
nz

B3T3 log(1/6)
B e L SXOP) | dlog(h),
Flog(1/8)exp(0(p)) n 5

The above bound implies that limp_, Err,(wp) <
O(exp(O(ﬂ))IOg(l/rS) + &p@B) leg(ﬁ))
s

n2€2 n

€

Err),(wr) < o( + exp(O(f))x 3)

expl

by the constraint
onT.

For the empirical risk, we have

. n2€2
Err’ (wr) < O( exp(O(p)) eXP[_ﬁ log(1/5) exp(O(ﬂ))]
L dlog®))

FiTilog(1/s) P

Remark 1. We can see from Theorem 2 that the excess risk
is only meaningful when f > O(d). If set § = O(logn),
or equivalently logn > O(d), both the excess population
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log(1/e) 4 _d_y _

and empirical risks are bounded by O( s ozt

~(kl)ogg((l%) when T' — oo. These bounds are larger than the

ones for convex loss functions, which are O(—dezi(l/‘s)) and
O(‘“Zgz—(elz/‘s)) for population and empirical risks, respectively
(Bassily et al., 2014).

Next, we improve the bounds in Theorem 2 by using a finer
analysis of the time-average error for the SDE (2). We show
that Algorithm 1 achieves a lower error bound in term of n,
ie., O(ﬁ) instead of O(@) for the empirical risk when
fixing the initial point for w.

Theorem 3. With the same assumption as in Theorem 2 and
a fixed initial point for w, if we return w; in Algorithm 1 in-
stead of wy, where j is uniformly sampled from {1, ---, T},
then the empirical risk is bounded, for sufficiently large T,

by:

B log(1/5) n?e? d
+T/32 10g(1/5)]+ﬂ log(B)),
(5)

where C = C(d, p) is a function of d, f. Moreover, the

bound is polynomially depending on f (assuming that d is

a constant) with degree independent of d. In other words, if
2

B satisfies G)(C%S/a)) = @(% log(p)) in (5), then there

exists a constant 0 < 7 < 1, such that

T]EEOE”;)(WT) < O(Co(d)log(l/é)

Eer(wj) < O(C[ e

), (6)

nte?
where Cj(d) is a function of d.

Remark 2. Theorem 3 is a significant improvement over
Theorem 2, which is derived based on a novel and non-
trivial analysis on the time-average error of SDEs. Specifi-
cally, three points are worth emphasizing: 1) Although the
time-average-error analysis of an SDE has been studied, for
example in (Vollmer et al., 2016; Chen et al., 2015), the
non-asymptotic bounds in those results cannot be applied
directly to our problem. This is because f in those results
is assumed to be a constant. However, in our problem f
is not even a constant, as it can be seen from (3) and (4).
Furthermore, those results are based on the boundedness
assumption on the solution of a Poisson equation (e.g., As-
sumption 1 in (Chen et al., 2015) and Theorem 9 in (Vollmer
et al., 2016)), which is too strong for our problem. Note that
if f were a parameter, the hidden constant C in the bounds
of (Vollmer et al., 2016; Chen et al., 2015) would depend
on f. Fortunately, through a rather non-trivial analysis, we
are able to show that the constant is at most polynomially
depending on f. Even though the exact degree of the poly-
nomial is unknown, it is independent of d. 2) Our result
is significant in the sense that it provides new bounds for
diffusion-based Bayesian sampling such as (Vollmer et al.,
2016; Chen et al., 2015), where the dependency on d in

their error bounds can be quantified, a key missing piece in
previous results. 3) We reveal in Theorem 3 that if a random
w;j, instead of the final wr, is returned, one can improve the
term related to n in the empirical risk bound from 1/ log n to
n~*. It can be seen from (5) that the relationships between
p, d, and the constant C play an important role in proving
the bound of the empirical risk. Since we are mainly target-
ing at the rate in terms of #, it suffices to consider only the
relationship between f and C. We leave as an open problem
to determine whether it is possible to obtain an even tighter
or explicit bound for the empirical risk. The ideal scenario
is that C is independent of f. In this case, a better and more

~ 2
accurate bound of O(C;(d)/(ne)3) can be obtained, where
C,(d) is a function of d.

From Theorem 2 and 3, we can see that the error bound for

the excess population risk in terms of n is @ (see Remark

1), while for the empirical risk it is lr where ideally 7 < %
(see Remark 2). A natural question is thus to determine
whether these bounds are tight. In the following, we first
show that for loss functions satisfying Assumption 1, there
is an e-DP algorithm whose error bound of the empirical
risk is O(%) (and whose time complexity is exponential).

Theorem 4. For any § < 1, there is an e-differentially pri-
vate algorithm, whose output wP™" satisfies, with probability
atleast 1 — f, L"(wP™, D) — Lr(w*, D) < O(nie). The time

complexity is O((1 + %)dn).

Note that since G)(n%) is the optimal bound for general con-
vex functions (Bassily et al., 2014), our empirical-risk bound
of é(%) is thus near optimal.

In general, we can use an a-net and the exponential mech-
anism to obtain a aprivate estimator, which has an upper
bound of O(max{ o a}) for the empirical risk with a time

complexity of O((1 + i—i)d n). Now consider the case that
d is a constant. We can see that for the exponential mecha-
nism, the bound in (6) can be obtained if we take i = O0(n").
However, in this case, the running time of exponential mech-
anism is O(n"¥*1) compared to O(Poly(n, d)) with Algo-
rithm 1. Alternatively, the running time for achieving error
y in Algorithm 1 is polynomial in %, while it is O((%))d
with an exponential mechanism (for sufficient large n). This
means that Algorithm 1 is much more efficient when d is
large.

Next, we consider upper bounding the excess population
risk. Instead of determining the optimal bound, we show
how to improve the bounds for some specific problems. Par-
ticularly, we focus on the generalized linear model with
non-convex loss functions and the robust regressions prob-
lem with additional assumptions, and present an (e, 6)-DP
algorithm for them with population risk O(ﬂ). Note that

e
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these problems have been extensively studied in literature
related to non-convex learning theory, such as (Mei et al.,
2018; Foster et al., 2018; Loh & Wainwright, 2013; Lozano
et al., 2016). Here, we adopt the same assumptions as in
(Foster et al., 2018).

Generalized Linear Model We consider the problem of
learning a generalized linear model (GLM) with squared
loss. We assume that X = {x € RY|||x|, < 1},C = {w €
R|lw|l, < 1} and ¥ = {0,1}, Z = X x Y. With a link
function o, GLM endows a loss function: Z(w, (x,y)) =
(6({w, x))—)?. We further make the following assumptions
on the link function, which includes the sigmoid and probit

functions 3.

Assumption 2. Let S = [—1, 1], we assume that

max{c’(s).6”(s)}

IA

1. 3constant C, > 1 s.t.
C,, forVs € S.
2. Jconstant ¢, > 0s.t. '(s) > ¢,, forVs € S.

3. There exists some ||w*||, < 1 such that E[y|x]
o({w*, x)).

4. |o(s)] £ B for some constant B > 0, for Vs € S.

Robust Regression Let Z and C be the same as in GLM,
and Y = [-Y, Y] for some constant Y. For a non-convex
positive loss function y, the loss of robust regression is
defined as £ (w, (x,y)) = w({x, w) — y). We make the fol-
lowing assumptions on y, which includes the biweight loss
function 4 (Loh & Wainwright, 2013).

Assumption 3. Let S =[-(1+7Y),(1 +Y)].

1. 3C, > 1, s.t. max{y'(s),y"(s)} < C,,, forVs € S.

2. y'(+) is odd with y’(s) > 0, for Vs > 0; and A(s) :=
Eelw'(s + &)] satisfies h’(0) > c,,, where ¢,, > 0.

3. There is w* € C such that y = (w*, x) + &, where & is
symmetric noise with a zero-mean given Xx.

Algorithm 2 solves both problems and is motivated by the
fact that the population risk satisfies the inequality, Lp(w)—
Lp(w*) < u({VLp(w), w — w*), for some constant y > 0
and Vw € C. Thus, it suffices to get an upper bound of
(VLp(w), w — w*). It turns out that this can be obtained
via a DP version of the Frank-wolfe method.

3The probit function is ¢(s) = ®(s), where ® is the Gaussian
cumulative distribution function.
“For a fixed parameter ¢ > 0, the biweight loss is defined as

o2 J1ma=CM s
V=5 1|Z|>c

Algorithm 2 DP-FW-L.2
Input: T is the number of iterations, w is the initial point,

and {y,}tT:1 is the step size. € and § are privacy parame-
ters.
1: fort=1,---,T do

2:  Compute v, = argmax,cc(v, —(VL(w,, D) + ¢,)),
where €, ~ N(0, 621 ,) for some o.
3wy =w+y (v, — wy).
4: end for
5: Return wy € {wy, -+, wr} such that R is uniformly
sampled from {1, .-, T}.

Theorem S. For the general linear model with Assumption
2, there exist constants ¢; and ¢, > 0 such that for any
0<e<cTand 0 < 6 < 1, Algorithm 2 is (e, 6)-DP
C2(B+1)*T log é

2

when 6° = ¢, . Moreover, if taking y, =

nZe?
/a1l
5 .
O( Ve Yforallt € [1,---,T] with T = O(\/le) we

{dmnl
have Errp(wg) < O \/_n 2 ), where the big-O notations
ne

omit other terms.

For the case of robust regression with Assumption 3, if we
2T log |
s 2g 2 the algorithm is (e, 5)-DP. Moreover,

take 6% = ¢,

with the same conditions on T, {yf}rT=1 as above, it can

{/dm i
be derived that Errp(wg) < O( \/_z 8 )’ where the big-O

notations omit other terms.

Motivated by Algorithm 2, under the conditions of X =
{x € RYlIxlly < 1} and € = {w € RY[[|w]; < 1}, we
can actually derive an upper bound of the population risk
that depends only logarithmically on d (i.e., logd), indi-
cating that it is suitable for high dimensional applications.
Note that the conditions on & and C have been considered
in linear regression (Talwar et al., 2015). We adopt them to
our problem and extend their DP-Frank-Wolfe algorithm to
Algorithm 3.

Theorem 6. Let X = {x € RY|||x||, < 1} and C =

{w e IR"|||w||1 < 1}. For the GLM and robust regres-
sion problems, Algorithm 3 is (e, 6)-DP with sensitivi-

ties A = O(C (BH)) nd A = O(C—“’) respectively. Fur-
thermore, if we set T = O(—) and {y,}t | =
\/In(G5 LY In(dn/n)

O(\/g), then with probability at least 1 — #, we have

{/In(1),/In 22
Ertpwg) < Ot

). Here the big-O notations

omit other terms.
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Algorithm 3 DP-FW-L1
Input: T is the iteration number and w; is the initial point.
{v; }thl is the step size. A is the set of vertices of C. € and &
are privacy parameters.
1: fort=1,---,T do
2:  Use exponential mechanism M(D,u,R), where
R = A, u(D,s) = —(s,VLi(w,, D)), to ensure
< 0)-differential privacy. Denote the output

( 1
\/8T1n(3)

as w;.
3:  Compute w, | = (1 = y)w, + y,10;,.
4: end for
5: Return wy € {wy, -+, wy}, where R is uniformly sam-

pled from {1,2---,T'}.

5. Finding Approximate Local Minimum
Privately

In this section, instead of measuring the error w.r.t the global
minimum, we show that when the size of the dataset n is
large enough, there exist (e, 6)-DP algorithms that can find
some approximate local minimum (in terms of second-order
stationary points). We first impose the following assumption
on the loss function considered in this section.

Assumption 4. The loss function is L-Lipschitz, M-
smooth and p-Hessian Lispchtiz. We further assume that
the empirical risk L(w, D) is bounded by a constant B
5. If C is closed, we denote the diameter of C as D =
max, e [1x = x'|l;.

5.1. Unconstrained Case

Definition 8. w is called a second-order stationary point
(SOSP) of a twice differentiable function F if

IVFw)|l, = 0 and A, (V2F(w)) >0,

where 4., denotes its smallest eigenvalue.

min
Since it is extremely challenging to find an exact SOSP
(Ge et al., 2015), we turn to its approximation. The follow-
ing defintion of a-approximate SOSP relaxes the first- and
second-order optimality conditions.

Definition 9 ((Agarwal et al., 2017)). w is an a-second-
order stationary point (a-SOSP) or a-approximate local
minimum of a twice differentiable function F, if ©

IVF@)ll, < a and Ay (V2F(w)) 2 —v/pa. (1)

Note that if the empirical risk is not bounded, we can still use
the same proof after replacing the constant by the term i(wl, D)—
L(w*, D). We make such an assumption for convenience.

®This is a special version of (e, y)-SOSP (Ge et al., 2015). Our
results can be easily extended to the general definition. The same
applies to the constrained case.

To find an a-SOSP privately, we present Algorithm 4. Com-
paring with the first-order noisy gradient descent methods,
such as those in (Ge et al., 2015; Jin et al., 2017; Xu et al.,
2018b; Jin et al., 2018), the main difference is that the noises

added should be in the scale of O(\:—?), which depends on
the iteration number T'. This dependency makes Algorithm
4 more complex than previous related algorithms.

Algorithm 4 DP-GD
Input: T is the iteration number and w; is the initial
point. {y, }thl is the step size. € and o are privacy parame-
ters.

1: fort=1,---,T do

2:  Compute w, | = w; — n,(V L(w,, D) + ¢,), where

€, ~ N(0,6°1,) for some o.
3: end for
4: Return {wy, -+, w4 }.

To prove that Algorithm 4 has the ability of escaping sad-
dle points, we first show that the iteration number satisfies
T = O(M—zB) when the magnitude of the noise is small
enough (i.g., when #n is large enough). Based on this fact, we
then prove that Algorithm 4 can find an «-SOSP with high
probability. Our results are summarized in the following
theorem.

Theorem 7. Under Assumption 4, there exist constants
¢y, ¢y, such that for any 0 < € < ¢; T, Algorithm 4 is (e, 6)-

o 5 LZlogiT . o
DP if 0% = ¢ —5—"—. Moreover, if the data size n is large

enough such that

_ VMB,/log %dlog éL
n > G — ) (8)

and choose T' = O(%), {77,}IT=1 = ﬁ, then with probabil-
ity 1 — ¢, one of the outputs is an a-SOSP of the empirical
risk L(-, D). Here the O and Q terms omit other log factors
(see Supplemental Material for a complete version).

Recently, Wang & Xu (2019); Wang et al. (2017)
show that there are (e,6)-DP algorithms satisfying

" ) {/dlog 1
IV L@wP™, Dl < O ¢f5

ne
order stationary point, the size n should satisfy the condition

\/dlog L
of n > Q( i

~+———). Comparing to the sample complexity in
ca? .
(8) for e-SOSP, we can see that they are actually asymptoti-
cally almost the same (up to some log factors).

). Thus, to achieve an e-first-

Theorem 7 ensures the existence of an approximate SOSP
among {wy, -+, wy,1}. To find such a SOSP with high
probability, we propose Algorithm 5, which incurs an addi-

tional O(\/E ) factor in the sample size 7 in (8).
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Theorem 8. There exist constants c;,c, such that when
log 1112 log L M2ar

2 _ s 2 _ s
61 = ClW and 62 = CZT
(e, 6)-DP. Furthermore, with probability at least 1 — & — plc
for some sufficiently large C > 0, the output is an a-SOSP

) ) . Md\/MBy/log Llog 1L
when the sample size satisfies n > Q( 5 E ).

, Algorithm 5 is

pea?

Algorithm 5 Selecting SOSP

1: Run Algorithm 4 to ensure (%, %)—differential privacy

on finding an £-SOSP with probability at least 1 — £.
Let the output be {wy, -+, wy,;}.
2: fort=1,---,T+1do
3. Letg = VIi(w,, D)+ ¢, where ¢, ~ N(0, olly).
H, = V?L(w,, D) + H,, where H, a symmetric ma-
trix with its upper triangle (including the diagonal)
being i.i.d samples from N (0, 0'5) and each lower
triangle entry is copied from its upper triangle coun-

terpart.
4 if||g|l, £ @and A,,;,(H,) > —y/pa then
5: Return w;,.
6 end if
7: end for

5.2. Constrained Case

In this section we consider a constrained-version of SOSP
studied in last section (see Definition 10).

Definition 10 ((Mokhtari et al., 2018)). For a twice dif-
ferentiable function F and a closed convex set C, w™* is
an a-second-order stationary point in the constraint set
cif: 1) VFw)"(w — w*) > —a, forVw € C, and
2) (w — wH'VEF(w*)(w — w*) > —/pa, forVw €
C, st. VFw*)T (w—-w*)=0.

Recently, Mokhtari et al. (2018) proposed an algorithm for
escaping the saddle points in the above constrained case.
Motivated by their algorithm and the ideas in the proof
of Theorem 7, we propose Algorithm 6 as a DP-version
of the problem with a theoretical guarantee presented in
Theorem 9.

Theorem 9. There exist constants ¢y, ¢,, ¢ and sufficiently
large C such that forany 0 < e < ¢;T,0 <6 < 1, ifal2 =

log § L2T log $d M2T . .
CZW e Algorlthm 6 is (6‘, 5)-
. _ D*MB Bp'?DS ., _
DP. Moreover, taking T = O(max{ T eI D =

BM p!/2pb _ ®a 9 T _ o«
Oz 10 =500 0 <@ =<5y = 55w

2
%, we have that for any 0 < & < 1, with proba-

bility at least 1 — & —

and 63 =3

and r =
plc, Algorithm 6 outputs w,, which is

an a-SOSP of the empirical risk L(-, D), if the sample size

Algorithm 6 DP-GD-SO
Input: T is the iteration number and x; is the ini-
tial point. {y,}tT:1 is the step size. € and 6 are pri-
vacy parameters. 6,0,0, are parameters to be specified
later.

1: fort=1,---,T do

2:  Compute g = VL(w,D) + ¢,where ¢, ~

N0, 61 1,) for some o.

3:  Compute v, = arg maxuec{—gtTU}.
4 ifg/ (v, —w,) < —73 then
5: Compute w,,; = (1 —n)w; + n,v,.
6: else
7: Let H, = V?L(w,, D) + H,, where H, is a sym-
metric matrix with its upper triangle (including the
diagonal) being i.i.d samples from N (0, o-%) and
each lower triangle entry is copied from its upper
triangle counterpart.
8: Find u,, a ®-approximate solution of
min g(u) = (u = w,)" H,(u - w,)
st.ue C,g,T(u —w;) <r
o ifqu) < '“’;/"_“ then
10: Compute w,,; = (1 = O)w, + Ou,.
11: else
12: Return w;,.
13: end if
14:  end if
15: end for
n satisfies:
LD71/dMBlog L log 1,/
~ o) 6
n > Q( max({ ,
ea?
\/log 3d BM LD* log épl/4 d+/BM3 log 5D’ log é
ca? ’ pl/4a3/2¢ })

Here the Q-notation omits ® and other log terms.

Remark 3. Firstly, we note that when omitting other terms
in the bound in Theorem 9 such as L, B, ®, D, G, p, the sam-
ple complexity for escaping saddle points in the constrained
case is fZ(E%). Compared with the unconstrained case in
Theorem 8§, they are asymptotically the same. Secondly, a
quadratic programming problem needs to be solved in step
8 of Algorithm 6. For a general constraint set C, solving the
quadratic problem is NP-hard. However, for some specified
sets such as intersection of ellipsoids or balls, an approx-
imate solution can be obtained in polynomial time. See
(Mokhtari et al., 2018) for more details.
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