Supplementary Material

A. Algorithm of Kron-OBD and Kron-OBS

We present the algorithm of Kron-OBD and Kron-OBS in this section, and the derivation can be referred in the next section B.

Algorithm 2 Structured pruning algorithms Kron-OBD and Kron-OBS. For simplicity, we focus on a single layer. 8; below
denotes the parameters of filter F;, which is a vector.

Require: pruning ratio p and training data D
Require: model parameters (pretrained) 8 = vec (W)
Compute Kronecker factors A = E[aa’] and S = E[{VL}{VL} ]
for all filter ¢ do .
end for
Compute py), percentile of AL as 7
for all filter 7 do

if AL; < 7 then 1

0 0or « 6 — 5520

end if
end for
Finetune the network on D until converge

— =
s AN O A A > e

B. Derivation of Kron-OBD and Kron-OBS

Derivation of Kron-OBD. Assuming that the weight of a conv layer is 8 = vec (W), where W € R"*™, n = ¢;,k? and
m = Cout, and the two Kronecker factors are S € R™*™ and A € R™*". Then the Fisher information matrix of 8 can be
approximated by F = S ® A. Substituting the Hessian with K-FAC Fisher in eqn. (8), we get:

1, . 1 1 T
AL=A0T(S©A)AO = Tk (AWTAAWS) = 3 ZSszoi AAb; (19)
,J

where A6, represents the change in 6, and 87 € R™ is the weight of i-th filter F;, i.e., i-th column of W. Under the
assumption that each filter is independent to each other, and thus S is diagonal. So, we can get the importance of each filter
and the corresponding change in weights are:

AL; = %sﬁe;fTAey and A, = —0* (20)

?

Derivation of Kron-OBS. Under the assumption of Kron-OBS that different filters are correlated to each other, S is no
longer diagonal. Then, similar to eqn. (20), the corresponding structured version of eqn.(9) becomes:

1
min {min —Tr (AWTAAWS)} st. AWe; +07 =0 2D
i | AW 2
We can solve the above constrained optimization problem with Lagrange multiplier:

min {min 1Tr (AWTAAWS) ~ AT (AWe; + 0;‘)} (22)
i AW 2
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Taking the derivatives w.r.t to AW and set it to 0, we get:

AW = A~1)e/S7! (23)
Substitute it back to the constrain to solve the equation, we get:
—AQG*
A= ——" (24)
(S~
Then substitute eqn. (24) back to eqn. (23), we can finally get the optimal change in weights if we remove filter F;:
0; S~le; ® 0}
AW = ——'e/S™" and A =-"—"—"7" (25)
(S~ [S~1]i
In order to evaluating the importance of each filter, we can substitute eqn. (25) back to eqn. (21):
o;" . o 1, (6:"A6;
AL;=-Tr|S'e; A e/ST'S| =-Tr [ —L—=tS ee]
2r< R 2\ SR
(26)
1 H*TAB* G*TAH*
= §TI‘ [

C. Algorithm for Solving eqn. (18)
In this section, we will introduce the algorithm for solving the optimization problem in eqn. (18).

Khatri-Rao product. The Khatri-Rao product ® of two matrices A € R™*" and B € R™*" is the column-wise Kronecker
product, that is:

a11b11 aigbia - a,rb1y
a11b21 ai2bag - -- a1,bay «

AOB= . . . . c R™mxr 27
Am1 bnl am2bn2 tee am,rbnr

Kruskal tensor notation. Suppose T € R"™1 %2 X4 hag Jow-rank Canonical Polyadic (CP) structure. Following (Bader
& Kolda, 2007), we refer to it as a Kruskal tensor. Normally, it can be defined by a collection of factor matrices, A € R™»*"
for k = 1,...,d, such that:

T(i17i27"' ald):ZAl(Zlaj)AQ(ZQa])Ad(ldvj) for all (i17i27"' 7id) €l (28)
=1

whereZ = {1,--- ,n1}®{1,--- na}®---@{1,--- ,ng}. Denote Ty € Rk X (s —1mk4111) g the mode-k unfolding
of a Kruskal tensor, which has the following form that depends on the Khatri-Rao products of the factor matrices:

Ty = AvZ]  where Zy = AgO- O App ©Ap O 0 Ay (29)
Alternating Least Squares (ALS). We can use ALS to solve problems similar to eqn. (18). Suppose we are approximating

T using Aq,---, Ay Specifically, for fixed Ay, -+, Ax_1,Agt1, -+, Ay, there is a closed form solution for Ay.
Specifically, we can update update Ay, - - - , A4 by the following update rule:

Al =Z[T), fork=1,.d (30)

alternatively until converge or reach the maximum number of iterations. For the Mahalanobis norm case (with F' as the
metric tensor), if we take the derivative with respect to A to be 0,

unvec(Fvec(ALZ, — Tu)))Z =0 31
we can get the corresponding update rule for Ay:
Al =Z] (T + unvec(Fflvec(P)))—r (32)

where unvec and vec are inverse operators to each other, and in our case, unvec operation is to convert the vectorized
matrix back to the original matrix form. Z' = (Z7Z)™'Z" and P has the same shape with T}, and for each column
P; € Null(Z)]).
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D. Loss after Pruning and Fine-tuning Curves

We present the loss after pruning in Figure 6, and the finetuning curve of the pruned network in Figure 7. We observe the
network pruned by EigenDamage can achieve much lower training loss than other methods without finetuning, and thus will
need less epochs in the finetuning stage.
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Figure 6. The above four figures show the training loss after one-pass pruning (without finetuning) vs. reduction in weights. The network
pruned by EigenDamage achieves significant lower loss on the training set, which shows pruning in KFE is very accurate in reflecting the
sensitivity of weight to loss.
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Figure 7. Loss when finetune the network after pruning (with a ratio of 0.5) with ResNet32 on CIFAR10 and CIFAR100 datasets.
E. Additional Results on Iterative Pruning

The following figure (Figure 8) shows the results of iterative pruning obtained by different methods. Almost all the methods
can achieve close results on VGGNet, but EigenDamage outperforms others by a significant margin on ResNet32, which is a
more complicated and compact network.
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Figure 8. The results of iterative pruning. The first row are the curves of reduction in weights vs. test accuracy, and second row are the
curves of pruned FLOPs vs. test accuracy of VGGNet and ResNet trained on CIFAR10 and CIFAR100 dataset. The shaded areas represent
the variance over five runs.

F. Additional Results on One-pass Pruning

We present the additional results on one-pass pruning in the following tables. We also present the data in tables as trade-off
curves in terms of acc vs. reduction in weight and acc vs. reduction in FLOPs for making it easy to tell the difference in
performances of each method.
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Table 3. One pass pruning on CIFAR-10 with VGG19

Prune Ratio (%) 50% 70% 80%
Method Test Requction in  Reduction in Test Re@uction in  Reduction in Test Reduction in  Reduction in
acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)
VGG19(Baseline) 94.17 - - - - - - - -
NN Slimming (Liu et al., 2017) 92.84 + - 73.84 + - 38.88 + - 92.89 + - 84.30 + - 54.83 + - 91.92 + - 91.77 £ - 7643 + -
C-OBD 94.01 £0.15 76.84 £0.30 35.07 +0.38 | 94.04 +£0.09 85.88+0.10 41.174+0.23 | 93.70 £0.07 92.17 £0.07 56.87 £0.33
C-OBS 94.19 + 0.10 6691 £0.08 26.12+0.13 | 93.97 £0.16 8497 £0.02 43.16 £0.20 | 93.77 £0.12 91.52+0.09 63.64 +0.13
Kron-OBD 9391 +£0.16 7393+042 33.71+0.69 | 93.95+0.12 85.80+0.09 43.78+0.24 | 93.78 £0.17 92.04 £0.04 60.81 £0.26
Kron-OBS 94.03 £0.13 69.17 +£0.20 28.02+0.26 | 94.10+0.15 85.83+0.09 42.56+0.14 | 93.87 £ 0.14 92.00 £0.04 60.19 £0.38
EigenDamage 9415+ 0.05 68.64+0.19 28.09+021 | 9415+ 0.14 8578 +0.06 45.68 +0.31 | 93.68 £0.22 92.51 £0.05 66.98 & 0.36
VGGI19+L, (Baseline) 93.71 - - - - - - - -
NN Slimming (Liu et al., 2017) 93.79 + - 77.44 £ - 45.19 £ - 93.74 + - 88.81 £ - 52.15 + - 93.48 + - 92.60 =+ - 62.23 + -
C-OBD 93.85+0.03 76.83+0.01 41.14+0.05 | 93.88+0.03 89.04+0.03 52.734+0.14 | 93.38 £0.04 9329+0.05 63.74£0.12
C-OBS 93.88 +£0.04 7495+0.03 37.56+0.06 | 93.84 +0.04 88.53+020 51.884+0.00 | 93.27 £0.04 92.01 £0.02 63.96 £0.10
Kron-OBD 93.88 +0.01 83.43+0.00 49.58+0.00 | 93.89 +£0.03 89.02£0.01 53.40+£0.09 | 93.33 £0.05 93.55+0.06 67.01+0.30
Kron-OBS 93.85+0.03 76.95+0.01 42.04+0.10 | 93.88+0.04 88.69+0.02 52.384+0.08 | 93.44+0.07 92.66 £0.05 63.77 £0.27
EigenDamage 93.84 £0.04 78.14+0.11 39.02+0.30 | 93.85+0.04 8571 £0.01 46.56+0.03 | 93.40 £0.07 9148 £0.06 62.18 £0.29

Table 4. One pass pruning on CIFAR-100 with VGG19

Prune Ratio (%) 50% 70% 80%
Method Test Reduction in  Reduction in Test Re@uction in  Reduction in Test Re('iuction in  Reduction in
acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)
VGG19(Baseline) 73.34 - - - - - - - -
NN Slimming (Liu et al., 2017) 72.77 + - 66.50 + - 30.61 + - 69.98 + - 85.56 & - 54.51 +- 66.09 + - 9233 + - 76.76 + -
C-OBD 72.82+£0.15 6547 +0.13 2424+0.10 | 71.10+ 022 86.06 £0.04 41.18 £0.04 | 67.46 £0.26 93.31 £0.06 60.39 £0.25
C-OBS 7273 £0.17  62314+0.05 2550+ 0.06 | 71.25 +£0.21 84.49 £0.04 49.25+0.52 | 6747 £0.13 91.04 £0.06 68.38 £ 0.26
Kron-OBD 7288 +£0.12 67.11 +£021 2857+0.19 | 71.16 +0.11 8583 +0.10 47.194+0.35 | 67.70 £ 0.32  92.86 £ 0.05 65.26 £ 0.26
Kron-OBS 72890 £0.12 6726 £0.08 25.80+0.16 | 71.36 £ 0.17 84.75+0.02 45.744+0.17 | 68.17+£0.34 92.16 £0.03 63.95+£0.19
EigenDamage 73.39+0.12 66.05+0.11 2855+0.11 | 71.62 + 0.14 85.69 £0.05 54.83 £0.79 | 69.50 +0.22 9292 +0.03 74.55+0.33
VGG19+L; (Baseline) 73.08 - - - - - - - -
NN Slimming (Liu et al., 2017) 73.24 + - 72.68 + - 3537 + - 71.55 £ - 84.38 + - 51.59 + - 66.55 + - 92.48 + - 76.54 + -
C-OBD 7339+£0.05 7416+0.01 3513+0.01 | 7140+ 0.09 86.13+0.01 4547 4+0.10 | 67.56+0.16 93.00 £ 0.01 63.42+0.11
C-OBS 7344 £0.04 71.17+£0.03 33.77+0.67 | 71.30+0.12 84.07 £0.01 56.74+0.13 | 66.90+0.23 91.20 £0.04 73.39 £0.31
Kron-OBD 7324 +£0.05 74.00+0.03 36.56+0.03 | 71.01 £0.13 86.66 £0.05 52.66 £0.21 | 67.24 £0.20 9290 +0.05 68.62 + 0.21
Kron-OBS 7320+£0.12  7227+0.03 3645+0.66 | 71.88 +0.11 84.77 £0.01 50.53 +£0.08 | 67.75+0.14 92.08 £0.01 67.39 £0.17
EigenDamage 7323 +£0.08 66.80+0.02 29.49+0.03 | 71.81 £0.13 84.27+0.04 52.75+0.21 | 69.83 +£0.24 9236 +£0.01 73.68 £0.13

Table 5. One pass pruning on CIFAR-10 with ResNet

Prune Ratio (%) 50% 70% 80%
Method Test Reduction in  Reduction in Test Reduction in  Reduction in Test Rec_luc[ion in  Reduction in
acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)
ResNet32(Baseline) 95.30 - - - - - - - -
C-OBD 9527 £0.10 60.67 +0.44 5546 +0.35 | 95.00 £ 0.17 80.64 £0.40 76.78 £0.63 | 9441 £0.10 90.73 £0.11  86.66 £ 0.34
C-OBS 9530+ 0.15 5899+0.02 6554+025 | 9443+0.17 76.27+035 85894023 | 9345+0.25 86.15+0.68 92.77 £0.05
Kron-OBD 9530 +£0.09 56.05+024 52.21+036 | 94.94+0.02 73.98+046 7497+0.63 | 94.60 + 0.14 8596 +£0.41 86.36 £0.38
Kron-OBS 95.46 + 0.08 56.48 +0.26 5093 +0.46 | 9492 +0.11 73.77 £0.24 7458 £0.44 | 9444 +0.08 85.65+0.46 86.05+ 0.55
EigenDamage 9528 £0.16 59.68 +£0.28 5832+023 | 94.86+0.11 82.57+027 80.88+0.36 | 9423 +0.13 90.48 +£0.35 88.86 £ 0.50
PreResNet29+L; (Baseline) 94.42 - - - - - - - -
NN Slimming (Liu et al., 2017) 92.60 + - 58.12 + - 69.88 + - 90.60 + - 81.99 + - 87.05 + - 87.24 + - 86.68 + - 91.33 £ -
C-OBD 92.85+0.14 79.67+0.41 6890+ 049 | 88.74+032 93.22+0.08 86.37+£0.32 | 85.75+0.66 96.14 £0.04 91.39£0.16
C-OBS 9243 +0.03 73.81+0.14 7633 +021 | 8585+036 91.74£0.17 92.39+£0.07 | 7897 £0.84 96.55+0.02 96.60 £ 0.06
Kron-OBD 93.19+£0.06 59.72+0.31 54264034 | 87.99+ 037 86.50+0.05 7896+0.17 | 86.40+0.28 95.02 +£0.04 88.58 £0.04
Kron-OBS 92.88 £0.08 58.95+0.14 57.61+0.12 | 87.71 £0.22 8538 +0.03 82.00+0.10 | 85.67 £0.31 93.93£0.07 90.74 £0.31
EigenDamage 9415+ 0.07 62.06 +0.15 54.40+0.10 | 93.33 £0.07 77.71 £0.11 71.92 £0.15 | 92.30 £ 0.15 86.27 £0.04 81.59 +0.07
Table 6. One pass pruning on CIFAR-100 with ResNet
Prune Ratio (%) 50% 70% 80%
Method Test Rec!uction in  Reduction in Test Re@uction in  Reduction in Test Re@uction in  Reduction in
acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)
ResNet32(Baseline) 78.17 - - - - - - - -
C-OBD 76.59 £ 0.06 57.82 +0.48 56.88+0.37 | 73.74+042 77.08 £0.32 78.64 +0.32 | 68.86 +0.40 89.67 £0.19 88.45+0.19
C-OBS 7626 £0.25 5847+022 63.81+026 | 73.06+023 7433+0.15 86.06+0.03 | 63.15+0.41 80.61 £0.15 91.10 £ 0.06
Kron-OBD 76.41 £0.29 53.08+0.35 52.06+027 | 72.82+028 7340+0.11 752540.15 | 69.62+0.38 8450 £0.16 88.04 £0.10
Kron-OBS 76.74 £ 0.32 5221 +020 49.40+0.13 | 73.00+0.19 71.60 +0.15 73.33 +£0.48 | 7042+ 0.20 80.34 £0.25 86.96 = 0.27
EigenDamage 76.12+£0.12 61.73+0.12 60.87 +0.38 | 73.82+0.07 79.85+0.07 81.03+0.11 | 70.78 + 0.08 88.68 + 0.08 88.68 £ 0.06
PreResNet29+L; (Baseline) 75.70 - - - - - - - -
NN Slimming (Liu et al., 2017) 7193 £+ - 47.55 £ - 7344 & - 63.47 &+ - 7841 & - 89.92 £ - 61.64 + - 8547 £ - 92.38 + -
C-OBD 67.18 £0.10 8472+ 0.05 7548+0.11 | 55.02+0.50 93.42+0.01 88.124+0.06 | 47.87 £0.57 96.57 £0.01 93.48 £0.02
C-OBS 7117 £0.11 6567 £0.12 80.77+0.05 | 51.45+0.74 91.88+0.06 95.00+0.03 | 41.554+ 091 95.64 £0.02 97.20 £ 0.01
Kron-OBD 69.64 £0.19 56.63+020 5824+0.05 | 4646+0.72 89.50+0.07 8244 40.05 | 41.64 £0.86 95.83 £0.01 89.63 £ 0.06
Kron-OBS 69.87 £0.17 49.09+0.13 62.59+0.05 | 49.00+0.68 87.03+0.05 87.82+0.10 | 40.51 +1.04 94.72 £0.01 93.86 £ 0.01
EigenDamage 7450 £ 0.13 5798 +£0.15 53.87+0.14 | 7241 +0.16 7579 +0.04 71.924+0.12 | 70.09 +0.11 85.34 £0.02 81.61 £ 0.06

Table 7. One pass pruning on Tiny-ImageNet with VGG19. N/A denotes the network failed to converge, and achieves random guess
performance on the test set.

Prune Ratio (%) 40% 60% 70% 80%

Method Test Re@uc(ion in  Reduction in Test Re@uclion in  Reduction in Test Requclion in  Reduction in Test Rec!uclion in  Reduction in
acc (%) weights (%) FLOPs (%) ace (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)

VGGI9(Baseline) 61.56 - - - - - - - - - - -

NN Slimming (Liu et al., 2017) 57.40 + - 52.61 £ - 76.99 + - 40.05 + - 71.04 + - 90.04 + - N/A &+ - 84.63 + - 94.09 + - N/A & - 93.02 + - 95.45 £ -

C-OBD 56.87 £0.13  58.95+0.06 5549 +£0.50 | 47.36 £0.47 79.10 £ 0.32  69.74 +0.38 | 43.61 £0.31 88.57 £ 0.14 7490+ 0.31 | 4229 £0.53 95.62+0.13 7845+ 0.46

C-OBS 56.72+£0.21 4690+ 0.18 68.87 £0.14 | 39.80 £0.53 6746 +0.34 86.81 £0.25 | 3530 £0.33 7647 £0.07 92.71 £0.07 | 31.52£0.66 86.19 £0.07 96.66 £ 0.04

Kron-OBD 56.81 £0.22  56.754+0.27 66.96 = 0.65 | 4441 £0.82 76.55+0.15 81.27+0.16 | 41.03+0.50 8528 £0.11 86.12+£0.05 | 38.88 £ 043 95.02+£0.33 90.98 + 0.34

Kron-OBS 5647 £020 50.67 £0.11 62.28 £0.66 | 44.54 £ 043 73.88+:0.10 8327 +0.13 | 4144+ 041 8261 =041 87914022 | 39.54+020 92.77+0.19 9191033

EigenDamage 59.09 £0.05 48.62+0.06 57.30+0.12 | 56.92+0.23 74.12+0.15 74.37+0.13 | 5446 +£0.32 8377 +0.02 81.19+0.16 | 51.34 £ 0.37 91.05+0.06 87.82+0.16
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Figure 9. The results of one pass pruning, which are plotted based on the results in Tables. The first row are the curves of reduction
in weights vs. test accuracy, and second row are the curves of pruned FLOPs vs. test accuracy of VGGNet trained on CIFAR10 and
CIFAR100 dataset under the settings of with and without L; sparsity on BatchNorm. The shaded areas represent the standard variance

over five runs.
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Figure 10. The results of one pass pruning, which are plotted based on the results in Tables. The first row are the curves of reduction in
weights vs. test accuracy, and second row are the curves of pruned FLOPs vs. test accuracy of (Pre)ResNet trained on CIFAR10 and
CIFAR100 dataset under the settings of with and without L; sparsity on BatchNorm. The shaded areas represent the standard variance

over five runs.
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Figure 11. The results of one pass pruning, which are plotted based on the results in Tables. The base network for NN Slimming is
pre-trained with L sparsity on BatchNorm as required, and the others are normally pre-trained.



