
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

Chaoqi Wang 1 2 Roger Grosse 1 2 Sanja Fidler 1 2 3 Guodong Zhang 1 2

Abstract
Reducing the test time resource requirements
of a neural network while preserving test accu-
racy is crucial for running inference on resource-
constrained devices. To achieve this goal, we in-
troduce a novel network reparameterization based
on the Kronecker-factored eigenbasis (KFE),
and then apply Hessian-based structured prun-
ing methods in this basis. As opposed to existing
Hessian-based pruning algorithms which do prun-
ing in parameter coordinates, our method works
in the KFE where different weights are approx-
imately independent, enabling accurate pruning
and fast computation. We demonstrate empiri-
cally the effectiveness of the proposed method
through extensive experiments. In particular, we
highlight that the improvements are especially
significant for more challenging datasets and net-
works. With negligible loss of accuracy, an
iterative-pruning version gives a 10⇥ reduction in
model size and a 8⇥ reduction in FLOPs on wide
ResNet32. Our code is available at here.

1. Introduction
Deep neural networks exhibit good generalization behav-
ior in the over-parameterized regime (Zhang et al., 2016;
Neyshabur et al., 2018), where the number of network pa-
rameters exceeds the number of training samples. However,
over-parameterization leads to high computational cost and
memory overhead at test time, making it hard to deploy deep
neural networks on a resource-limited device.

Network pruning (LeCun et al., 1990; Hassibi et al., 1993;
Han et al., 2015; Dong et al., 2017; Zeng & Urtasun, 2019)
has been identified as an effective technique to improve the
efficiency of deep networks for applications with limited
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Figure 1. On the left-hand side, the proposed bottleneck structure
before and after pruning. The number after ‘Params’ and ‘FLOPs’
indicates the remaining portion compared to the original one. On
the right-hand side, we highlight the differences of the pruning
procedure between traditional methods (a) and our method (b).

test-time computation and memory budgets. Without much
loss in accuracy, classification networks can be compressed
by a factor of 10 or even more (Han et al., 2015; Zeng
& Urtasun, 2019) on ImageNet (Deng et al., 2009). A
typical pruning procedure consists of three stages: 1) train a
large, over-parameterized model, 2) prune the trained model
according to a certain criterion, and 3) fine-tune the pruned
model to regain the lost performance.

Most existing work on network pruning focuses on the sec-
ond stage. A common idea is to select parameters for prun-
ing based on weight magnitudes (Hanson & Pratt, 1989;
Han et al., 2015). However, weights with small magnitude
are not necessarily unimportant (LeCun et al., 1990). As a
consequence, magnitude-based pruning might delete impor-
tant parameters, or preserve unimportant ones. By contrast,
Optimal Brain Damage (OBD) (LeCun et al., 1990) and
Optimal Brain Surgeon (OBS) (Hassibi et al., 1993) prune
weights based on the Hessian of the loss function; the ad-
vantage is that both criteria reflect the sensitivity of the cost
to the weight. Though OBD and OBS have proven to be
effective for shallow neural networks, it remains challeng-
ing to extend them for deep networks because of the high
computational cost of computing second derivatives. To
solve this issue, several approximations to the Hessian have
been proposed recently which assume layerwise indepen-
dence (Dong et al., 2017) or Kronecker structure (Zeng &
Urtasun, 2019).

All of the aforementioned methods prune individual weights,
leading to non-structured architectures which do not enjoy
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computational speedups unless one employs dedicated hard-
ware (Han et al., 2016) and software, which is difficult and
expensive in real-world applications (Liu et al., 2018). In
contrast, structured pruning methods such as channel prun-
ing (Liu et al., 2017; Li et al., 2016) aim to preserve the
convolutional structure by pruning at the level of channels or
even layers, thus automatically enjoy computational gains
even with standard software frameowrks and hardware.

Our Contributions. In this work, we focus on structured
pruning. We first extend OBD and OBS to channel pruning,
showing that they can match the performance of a state-of-
the-art channel pruning algorithm (Liu et al., 2017). We then
interpret them from the Bayesian perspective, showing that
OBD and OBS each approximate the full-covariance Gaus-
sian posterior with factorized Gaussians, but minimizing
different variational objectives. However, different weights
can be highly coupled in Bayesian neural network poste-
riors (e.g., see Figure 2), suggesting that full-factorization
assumptions may hurt the pruning performance.

Based on this insight, we prune in a different coordi-
nate system in which the posterior is closer to factorial.
Specifically, we consider the Kronecker-factored eigenbasis
(KFE) (George et al., 2018; Bae et al., 2018), in which the
Hessian for a given layer is closer to diagonal. We propose
a novel network reparameterization inspired by Desjardins
et al. (2015) which explicitly parameterizes each layer in
terms of the KFE. Because the Hessian matrix is closer to
diagonal in the KFE, we can apply OBD with less cost to
prediction accuracy; we call this method EigenDamage.

Instead of sparse weight matrices, pruning in the KFE leads
to a low-rank approximation, or bottleneck structure, in
each layer (see Figure 1). While most existing structured
pruning methods (He et al., 2017; Li et al., 2016; Liu et al.,
2017; Luo et al., 2017) require specialized network architec-
tures, EigenDamage can be applied to any fully connected
or convolution layers without modifications. Furthermore,
in contrast to traditional low-rank approximations (Denton
et al., 2014; Lebedev et al., 2014; Jaderberg et al., 2014)
which minimize the Frobenius norm of the weight space er-
ror, EigenDamage is loss aware. As a consequence, the user
need only choose a single compression ratio parameter, and
EigenDamage can automatically determine an appropriate
rank for each layer, and thus it is calibrated across layers.
Empirically, EigenDamage outperforms strong baselines
which do pruning in parameter coordinates, especially in
more challenging datasets and networks.

2. Background
In this section, we first introduce some background for un-
derstanding and reinterpreting Hessian-based weight prun-
ing algorithms, and then briefly review structured pruning

to provide context for the task that we will deal with.

Laplace Approximation. In general, we can obtain the
Laplace approximation (MacKay, 1992) by simply taking
the second-order Taylor expansion around a local mode. For
neural networks, we can find such modes with SGD. Given a
neural network with local MAP parameters ✓⇤ after training
on a dataset D, we can obtain the Laplace approximation
over the weights around ✓⇤ by:

log p(✓|D) ⇡ log p(✓⇤
|D)�

1

2
(✓� ✓⇤)>H(✓� ✓⇤) (1)

where ✓ = [vec(W1), ..., vec(WL)], and H is the Hessian
matrix of the negative log posterior evaluated at ✓⇤. Assum-
ing H is p.s.d., the Laplace approximation is equivalent to
approximating the posterior over weights as a Gaussian dis-
tribution with ✓⇤ and H as the mean and precision, respec-
tively. In practice, we can use the Fisher information matrix
F to approximate H, as done in Graves (2011); Zhang et al.
(2017); Ritter et al. (2018). This ensures a p.s.d. matrix and
allows efficient approximation (Martens, 2014).

Forward and reverse KL divergence (Murphy, 2012).
Suppose the true distribution is p(✓), and the approximate
distribution is q�(✓), the forward and reverse KL diver-
gence are DKL(p(✓)||q�(✓)) and DKL(q�(✓)||p(✓)) respec-
tively. In general, minimizing the forward KL will arise the
mass-covering behavior, and minimizing the reverse KL
will arise the zero-forcing/mode-seeking behavior (Minka
et al., 2005). When we use a factorized Gaussian distri-
bution q�(✓) = N (✓|0,⌃) to approximate multivariate
Gaussian distribution p(✓) = N (✓|0,⌃⇤), the solutions to
minimizing the forward KL and reverse KL are

(a) ⌃ = diag(⌃⇤) (b) ⌃ = diag(⇤⇤)�1

where the precision matrix ⇤
⇤ = ⌃

⇤�1. For the Laplace
approximation, the true posterior variance ⌃

⇤ is H�1.

K-FAC. Kronecker-factored approximate curvature (K-
FAC) (Martens & Grosse, 2015) uses a Kronecker-factored
approximation to the Fisher matrix of fully connected layers,
i.e. no weight sharing. Considering l-th layer in a neural
network whose input activations are a 2 Rn, weight matrix
W 2 Rn⇥m, and output s 2 Rm, we have s = W

>
a.

Therefore, the weight gradient isrWL = a(rsL)>. With
this formula, K-FAC decomposes this layer’s Fisher matrix
F with an independence assumption:

F = E[vec{rWL}vec{rWL}
>]

= E[{rsL}{rsL}
>
⌦ aa

>]

⇡ E[{rsL}{rsL}
>]⌦ E[aa>] = S⌦A,

(2)

where A = E[aa>] and S = E[{rsL}{rsL}
>].

Grosse & Martens (2016) further extended K-FAC to
convolutional layers under additional assumptions of spa-
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Figure 2. Fisher information matrices measured in initial parameter
basis and in the KFE, computed from a small 3-layer ReLU MLP
trained on MNIST. We only plot the block for the second layer.
Note that we normalize the diagonal elements for visualization.

tial homogeneity (SH) and spatially uncorrelated deriva-
tives (SUD). Suppose the input a 2 Rcin⇥h⇥w and the
output s 2 Rcout⇥h⇥w, then the gradient of the reshaped
weight W 2 Rcout⇥cink

2

is rWL =
P

airsiL
>, and the

corresponding Fisher matrix is:

F ⇡

X
E
⇥
{rsiL}{rsi0L}

>⇤
⌦ E

⇥
aia

>
i0
⇤

⇡

✓
1

|I|

X
E
⇥
{rsiL}{rsiL}

>⇤
◆

| {z }
S,size=(cout)2

⌦

⇣X
E
⇥
aia

>
i

⇤⌘

| {z }
A,size=(cin⇥k2)2

(3)
where I = [h] ⇥ [w] is the set of spatial locations, ai 2
Rcink

2

is the patch extracted from a, rsiL 2 Rcout is the
gradient to each spatial location in s and i, i0 2 I. De-
composing F into A and S not only avoids the quadratic
storage cost of the exact Fisher, but also enables efficient
computation of the Fisher vector product:

Fvec{X} = S⌦Avec{X} = vec{AXS
>
} (4)

and fast computation of inverse and eigen-decomposition:

F
�1 = (S⌦A)�1 = S

�1
⌦A

�1

F = (QS ⌦QA)(⇤S ⌦⇤A)(QS ⌦QA)>
(5)

where Q and ⇤ are eigenvectors and eigenvalues. Since
QS ⌦QA gives the eigenbasis of the Kronecker product,
we call it the Kronecker-factored Eigenbasis (KFE).

Structured Pruning. Structured network pruning (He et al.,
2017; Liu et al., 2017; Li et al., 2016; Luo et al., 2017) is a
technique to reduce the size of a network while retaining the
original convolutional structure. Among structured pruning
methods, channel/filter pruning is the most popular. Let cin
denote the number of input channels for the l-th convolu-
tional layer and h/w be the height/width of the input feature
maps. The conv layer transforms the input a 2 Rcin⇥h⇥w

with cout filters Fi. All the filters constitute the kernel ma-
trix F 2 Rcin⇥cout⇥k⇥k. When a filter Fi is pruned, its
corresponding feature map in the next layer ai is removed,
so channel and filter pruning are typically referred to as the
same thing. However, most current channel pruning meth-
ods either require predefined target models (Li et al., 2016;
Luo et al., 2017) or specialized network architectures (Liu
et al., 2018), making them hard to use.

3. Revisiting OBD and OBS
OBD and OBS share the same basic pruning pipeline: first
training a network to (local) minimum in error at weight ✓⇤,
and then pruning a weight that leads to the smallest increase
in the training error. The predicted increase in the error for
a change in full weight vector �✓ is:

�L =
@L

@✓

>
�✓

| {z }
⇡0

+
1

2
�✓>

H�✓ +O(||�✓||3) (6)

Eqn. (6) is a simple second order Taylor expansion around
the local mode, which is essentially the Laplace approxima-
tion. According to Eqn. (1), we can reinterpret the above
cost function from a probabilistic perspective:

�L = � log pLA(✓
⇤ +�✓|D) + const

pLA(✓
⇤ +�✓|D) = N (�✓|0, H�1)

(7)

where LA denotes Laplace approximation.

OBD. Due to the intractability of computing full Hessian in
deep networks, the Hessian matrix H is approximated by a
diagonal matrix in OBD. If we prune a weight ✓q , then the
corresponding change in weights as well as the cost are:

�✓q = �✓⇤
q and �LOBD =

1

2

�
✓⇤
q

�2
Hqq (8)

It regards all the weights as uncorrelated, such that remov-
ing one will not affect the others. This treatment can be
problematic if the weights are correlated in the posterior.

OBS. In OBS, the importance of each weight is calculated
by solving the following constrained optimization problem:

min
q

{min
�✓

1

2
�✓>

H�✓ s.t. e
>
q �✓ + ✓⇤

q = 0} (9)

for considering the correlations among weights, where eq

is the unit selecting vector whose q-th element is 1 and
0 otherwise. Solving Eqn. (9) yields the optimal weight
change and the corresponding change in error:

�✓ = �
✓⇤
q

[H�1]qq
H

�1
eq and �LOBS =

1

2

(✓⇤
q)

2

[H�1]qq
(10)

The main difference is that OBS not only prunes a sin-
gle weight but takes into account the correlation between
weights and updates the rest of the weights to compensate.

3.1. New Insights and Perspectives

A common belief is that OBS is superior to OBD, though
it is only feasible for shallow networks. In the following
paragraphs, we will show that this may not be the case in
practice even when we can compute exact Hessian inverse.
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From Eqn. (8), we can see that OBD can be seen as OBS
with off-diagonal entries of the Hessian ignored. If we prune
only one weight each time, OBS is advantageous in the sense
that it takes into account the off-diagonal entries. However,
pruning weights one by one is time consuming and typically
infeasible for modern neural networks. It is more common
to prune many weights at a time (Zeng & Urtasun, 2019;
Dong et al., 2017; Han et al., 2015), especially in structured
pruning (Liu et al., 2017; Luo et al., 2017; Li et al., 2016).

We note that, when pruning multiple weights simultane-
ously, both OBD and OBS can be interpreted as using a
factorized Gaussian N (�✓|0, ⌃) to approximate the true
posterior over weights, but with different objectives. Specif-
ically, OBD can be obtained by minimizing the reverse
KL divergence (⌃ = diag(H)�1), whereas OBS is using
the forward KL divergence (⌃ = diag(H�1)). Reverse
KL underestimates the variance of the true distribution and
overestimates the importance of each weight. By contrast,
forward KL overestimates the variance and prunes more
aggressively. The following example illustrates that while
OBS outperforms OBD when pruning only a single weight,
there is no guarantee that OBS is better than OBD when
pruning multiple weights simultaneously since OBS may
prune highly correlated weights all together.

Example 1. Suppose a neural network converged to a local
minima with weight ✓⇤ = [1, 1, 1]>, and the associated Hes-
sian H =

⇣
1 0.99 0

0.99 1 0.01
0 0.01 0.5

⌘
. Compute the resulting weight and

increase in loss of OBD and OBS for the following cases.

Case 1: Prune one weight (OBS is better).

• OBD: �✓ = [0, 0,�1]>, �L = �LOBD = 0.25

• OBS: �✓ = [�1, 0.99, 0.02]>, �L = �LOBS = 0.01

Case 2: Prune two weights simultaneously (OBD is better).

• OBD: �✓ = [0,�1,�1]>, �L = 0.76(�LOBD = 0.75)

• OBS: �✓ = [�1,�1, 0]>, �L = 1.99(�LOBS = 0.02)

OBD and OBS are equivalent when the true posterior distri-
bution is fully factorized. It has been observed that different
weights are highly coupled (Zhang et al., 2017) and diago-
nal approximation is too crude. However, the correlations
are small in the KFE (see Figure 2). This motivates us to
consider applying OBD in the KFE, where the diagonal
approximation is more reasonable.

4. Methods
4.1. Approximating the Hessian with the Fisher Matrix

We use the Fisher matrix to approximate the Hessian. In the
following, we briefly discuss the relationship between these
matrices. For more detailed discussion, we refer readers
to Martens (2014); Pascanu & Bengio (2013a).

Suppose the function z = f(x,✓) is parameterized by ✓,
and the loss function is `(y, z) = � log p(y|z). Then the
Hessian H at (local) minimum is equivalent to the general-
ized Gauss-Newton matrix G:

H = E
h
J
>
f H`Jf +

mX

j=1

[rz`(y, z)|z=f(x,✓)]jH[f ]j

| {z }
⇡0

i

= E
h
J
>
f H`Jf

i
= G

(11)
where rz`(y, z)|z=f(x,✓) is the gradient of `(y, z) evalu-
ated at z = f(x,✓), H` is the Hessian of `(y, z) w.r.t. z,
and H[f ]j is the Hessian of j-th component of f(x,✓).

Pascanu & Bengio (2013b) showed that the Fisher matrix F

and generalized Gauss-Newton matrix are identical when
the model predictive distribution is in the exponential fam-
ily, such as categorical distribution (for classification) and
Gaussian distribution (for regression), justifying the use of
the Fisher to approximate the Hessian.

4.2. Extending OBD and OBS to Structured Pruning

OBD and OBS were originally used for weight-level prun-
ing. Before introducing our main contributions, we first ex-
tend OBD and OBS to structured (channel/filter-level) prun-
ing. The most naïve approach is to first compute the impor-
tance of every weight, i.e., Eqn. (8) for OBD and Eqn. (10)
for OBS, then sum together the importances within each
filter. We use this approach as a baseline, and denote it
C-OBD and C-OBS. For C-OBS, because inverting the Hes-
sian/Fisher matrix is computationally intractable, we adopt
the K-FAC approximation for efficient inversion, as first pro-
posed by Zeng & Urtasun (2019) for weight-level pruning.

In the scenario of structured pruning, a more sophisticated
approach is to take into account the correlation of the
weights within the same filter. For example, we can compute
the importance of each filter as follows:

�Li =
1

2
✓⇤
i
>
F(i)✓⇤

i (12)

where ✓⇤
i 2 Rcink

2

and F(i) 2 Rcink
2⇥cink

2

are the param-
eters vector and Fisher matrix of i-th filter Fi, respectively.
To do this, we would need to store the Fisher matrix for each
filter, which is intractable for large convolutional layers. To
overcome this problem, we adopt the K-FAC approximation
F = S⌦A, and compute the change in weights as well as
the importance in the following way:

�✓i = �✓
⇤
i and �Li =

1

2
Sii✓

⇤
i
>
A✓⇤

i (13)

Unlike Eqn. (12), the input factor A is shared between
different filters, and therefore cheap to store. By analogy,
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we can compute the change in weights and importance of
each filter for Kron-OBS as:

�✓ = �
S
�1

ei ⌦ ✓⇤
i

[S�1]ii
and �Li =

1

2

✓⇤
i
>
A✓⇤

i

[S�1]ii
, (14)

where ei is the selecting vector with 1 for elements of Fi and
0 elsewhere. We refer to Eqn. (13) and Eqn. (14) as Kron-
OBD and Kron-OBS (See Algorithm 2 in Appendix A). See
Appendix B for derivations.

4.3. EigenDamage: Structured Pruning in a KFE

As argued in Section 3, weight-level OBD and OBS approx-
imate the posterior distribution with a factorized Gaussian
around the mode, which is overly restrictive and cannot
capture the correlation between weights. Although we just
extended them to filter/channel pruning, which captures cor-
relations of weights within the same filter, the interactions
between filters are ignored. In this section, we propose to
decorrelate the weights before pruning. In particular, we
introduce a novel network reparameterization by breaking
each linear operation into three stages. Intuitively, the role
of the first and third stages is to rotate to the KFE.

Considering a single layer with weight W with K-FAC
Fisher S⌦A (see Section 2), we can decompose the weight
matrix W as the following form:

vec{W} = (QS ⌦QA)vec{W} = vec{QAW
0
Q

>
S }

(15)
where vec{W0

} = (QS ⌦ QA)>vec{W}. It is easy to
show that the Fisher matrix for W0 is diagonal if the as-
sumptions of K-FAC are satisfied (George et al., 2018). We
then apply C-OBD (or equivalently C-OBS since the Fisher
is close to diagonal) on W

0 for both input and output chan-
nels. This way, each layer has a bottleneck structure which
is a low-rank approximation, which we term eigenpruning.
(Note that C-OBD and Kron-OBD only prune the output
channels, since it automatically results in removal of corre-
sponding input channel in the next layer.) We refer to our
proposed method as EigenDamage (See Algorithm 1).

EigenDamage preserves the input and output shape, and
thus can be applied to any convolutional or fully connected
architecture without modification, in contrast with Liu et al.
(2017), which requires adaptions for networks with cross-
layer connections. Furthermore, like all Hessian-based prun-
ing methods, our criterion allows us to set one global com-
pression ratio for the whole network, making it easy to use.
Moreover, the introduced eigen-basis QA can be further
compressed by the "doubly factored" Kronecker approxi-
mation (Ba et al., 2016), and W

0 can be also compressed
by depth-wise separable decomposition, as detailed in Sec-
tions 4.5 and 4.6.

Algorithm 1 Pruning in the Kronecker-factored eigenbasis,
i.e., EigenDamage. For simplicity, we focus on a single
layer. � denotes elementwise mutliplication.
Require: pruning ratio p and training data D

Require: model parameters (pretrained) ✓ = vec (W)
1: Compute Kronecker factors A = E[aa>] and S =

E[{rsL}{rsL}
>]

2: QS,⇤S = Eigen (S) and QA,⇤A = Eigen (A)
3: Decompose weight W according by Eqn. (15)
4: ⇥ = W

0
� diag(⇤A)diag(⇤S)> �W

0

5: for all row r or column c in ⇥ do
6: �Lr = ⇥r,·1 and �Lc = 1

>
⇥·,c

7: end for
8: Compute pth percentile of �L as ⌧
9: Remove rth row (or cth column) in W

0 and rth (or cth)
eigenbasis in QA (or QS) if �Lr (or �Lc)  ⌧

10: Finetune the network on D until convergence

4.4. Iterative Pruning

The above method relies heavily on the Taylor expansion (6),
which may be accurate if we prune only a few filters. Unfor-
tunately, the approximation will break down if we prune a
large number of filters. In order to handle this issue, we can
conduct the pruning process iteratively and only prune a few
filters each iteration. Specifically, once we finish pruning
the network for the first time, each layer has a bottleneck
structure (i.e., QA,W0, and QS). We can then conduct the
next pruning iteration (after finetuning) on W

0 in the same
manner. This will result in two new eigenbases assocated
with W

0. Conveniently, we can always merge these two
new eigenbases (i.e., Q0

A,Q0
S) into old ones so as to reduce

the model size as well as FLOPs by:

QA  QAQ
0
A and QS  QSQ

0
S (16)

This procedure may take several iterations until it reaches
desirable compression ratio.

4.5. Reducing the Parameter Count of the Eigenbasis

W

C

H
Since the eigenbasis QA can take up a
large chunk of memory for convolutional
networks1, we further leverage the inter-
nal structure to reduce the model size. In-
spired by Ba et al. (2016)’s “doubly fac-

tored” Kronecker approximation for layers whose input
feature maps are too large, we ignore the correlation among
the spatial locations within the same input channel. In that
case, A 2 Rcin⇥cin only captures the correlation between
different channels. Here we abuse the notation slightly and
let A denote the covariance matrix along the channel dimen-
sion and a 2 Rcin (see blue cubes) the activation of each

1
QA has the shape of cink2 ⇥ cink

2.
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Figure 3. Two schemes for depthwise separable decomposition of
the convolution layer. The parameters in the blank region are zeros.
spatial location:

A = E
⇥
aa

>⇤ = 1

N |T |

X

x

X

t2T
at(x)at(x)

> (17)

The expectation in Eqn. (17) is taken over training examples
x and spatial locations T . We note that with such approxi-
mation, QA can be efficiently implemented by 1⇥ 1 conv,
resulting in compact bottleneck structures like ResNet (He
et al., 2016a), as shown in Figure 1. This will greatly re-
duces the size of eigen-basis to be 1/k4 of the original one.

4.6. Depthwise Separable Decomposition

Depthwise separable convolution has been proven to be
effective in designing lightweight models (Howard et al.,
2017; Chollet, 2017; Zhang et al., 2018b; Ma et al., 2018).
The idea of separable convolution can be naturally in-
corporated in our method to further reduce the computa-
tional cost and model size. For convolution filters W

0
2

Rcin⇥cout⇥k⇥k, we perform the singular value decomposi-
tion (SVD) for every slice W

0
:,:,i 2 Rcin⇥cout ; then we can

get a diagonal matrix as well as two new bases, as shown in
Figure 3 (a). However, such a decomposition will result in
more than twice the original parameters due to the two new
bases. Therefore, we again ignore the correlation along the
spatial dimension of filters, i.e. sharing the basis for each
spatial dimension (see Figure 3 (b)). In particular, we solve
the following problem:

min
U,{Di}k2

i=1,V

1

2

k2X

i=1

||UDiV
>
�W

0
:,:,i||

2
Frob (18)

where U 2 Rcin⇥cin , Di 2 Dcin⇥cout2 and V 2 Rcout⇥cout .
We can merge U and V into QA and QS respectively, and
then replace W

0 with D, which can be implemented with a
depthwise convolution. By doing so, we are able to further
reduce the size of the filter to be 1/cin of the original one.

5. Experiments
In this section, we aim to verify the effectiveness of Eigen-
Damage in reducing the test-time resource requirements of
a network without significantly sacrificing accuracy. We

2Dcin⇥cout is the domain of diagonal matrices.

compare EigenDamage with other compression methods
in terms of test accuracy, reduction in weights, reduction
in FLOPs, and inference wall-clock time speedup. Wher-
ever possible, we analyze the tradeoff curves involving test
accuracy and resource requirements. We find that Eigen-
Damage gives a significantly more favorable tradeoff curve,
especially on larger architectures and more difficult datasets.

5.1. Experimental Setup

We test our methods on two network architectures: VG-
GNet (Simonyan & Zisserman, 2014) and (Pre)ResNet3 (He
et al., 2016b;a). We make use of three standard bench-
mark datasets: CIFAR10, CIFAR100 (Krizhevsky, 2009)
and Tiny-ImageNet4. We compare EigenDamage to the
extended versions C-OBD/OBS and Kron-OBD/OBS as
well as one state-of-the-art channel-level pruning algorithm,
NN Slimming (Liu et al., 2017; 2018), and a low-rank ap-
proximation algorithm, CP-Decomposition (Jaderberg et al.,
2014). Note that because NN Slimming requires impos-
ing L1 loss on the scaling weights of BatchNorm (Ioffe &
Szegedy, 2015), we train the networks with two different
settings, i.e., with and without L1 loss, for fair comparison.

For networks with skip connections, NN Slimming can
only be applied to specially designed network architec-
tures. Therefore, in addition to ResNet32, we also test
on PreResNet-29 (He et al., 2016b), which is in the same
family of architectures considered by Liu et al. (2017). In
our experiments, all the baseline (i.e. unpruned) networks
are trained from scratch with SGD. We train the networks
for 150 epochs for CIFAR datasets and 300 epochs for Tiny-
ImageNet with an initial learning rate of 0.1 and weight
decay of 2e�4. The learning rate is decayed by a factor of
10 at 1

2 and 3
4 of the total number of training epochs. For

the networks trained with L1 sparsity on BatchNorm, we
followed the same settings as in Liu et al. (2017).

5.2. One-pass Pruning Results

We first consider the single-pass setting, where we per-
form a single round of pruning, and then fine-tune the net-
work. Specifically, we compare eigenpruning5 (EigenDam-
age) against our proposed baselines C-OBD, C-OBS, Kron-
OBD, Kron-OBS and a state-of-the-art channel-level prun-
ing method, NN Slimming, on CIFAR10 and CIFAR100
with VGGNet and (Pre)ResNet. For all methods, we test a
variety of pruning ratios, ranging from 0.5 to 0.9. Due to the
space limit, please refer to Appendix F for the full results.
In order to avoiding pruning all the channels in some layers,

3For ResNet, we widen the network by a factor of 4, as done
in Zhang et al. (2018a)

4https://tiny-imagenet.herokuapp.com
5For EigenDamage, we count both the parameters of W0 and

two eigenbasis.
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Table 1. One-pass pruning on CIFAR10 and CIFAR100 with VGG19, ResNet32 and PreResNet29. To be noted, we cannot control the
pruned ratio of parameters since we prune the whole filter and different filters are not of the same size. We run each experiment five times,
and present the mean and standard variance.

Dataset CIFAR10 CIFAR100
Prune Ratio (%) 60% 90% 60% 90%

Method Test Reduction in Reduction in Test Reduction in Reduction in Test Reduction in Reduction in Test Reduction in Reduction in
acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%) acc (%) weights (%) FLOPs (%)

VGG19(Baseline) 94.17 - - - - - 73.34 - - - - -
NN Slimming (Liu et al., 2017) 92.84 ± - 80.07 ± - 42.65 ± - 85.01 ± - 97.85 ± - 97.89 ± - 71.89 ± - 74.60 ± - 38.33 ± - 58.69 ± - 97.76 ± - 94.09 ± -
C-OBD 94.04 ± 0.12 82.01 ± 0.44 38.18 ± 0.45 92.34 ± 0.18 97.68 ± 0.02 77.39 ± 0.36 72.23 ± 0.15 77.03 ± 0.05 33.70 ± 0.04 58.07 ± 0.60 97.97 ± 0.04 77.55 ± 0.25
C-OBS 94.08 ± 0.07 76.96 ± 0.14 34.73 ± 0.11 91.92 ± 0.16 97.27 ± 0.04 87.53 ± 0.41 72.27 ± 0.13 73.83 ± 0.03 38.09 ± 0.06 58.87 ± 1.34 97.61 ± 0.01 91.94 ± 0.26
Kron-OBD 94.00 ± 0.11 80.40 ± 0.26 38.19 ± 0.55 92.92 ± 0.26 97.47 ± 0.02 81.44 ± 0.68 72.29 ± 0.11 77.24 ± 0.10 37.90 ± 0.24 60.70 ± 0.51 97.56 ± 0.08 82.55 ± 0.39
Kron-OBS 94.09 ± 0.12 79.71 ± 0.26 36.93 ± 0.15 92.56 ± 0.21 97.32 ± 0.02 80.39 ± 0.21 72.12 ± 0.14 74.18 ± 0.04 36.59 ± 0.11 60.66 ± 0.35 97.48 ± 0.03 83.57 ± 0.27
EigenDamage 93.98 ± 0.06 78.18 ± 0.12 37.13 ± 0.41 92.29 ± 0.21 97.15 ± 0.04 86.51 ± 0.26 72.90 ± 0.06 76.64 ± 0.12 37.40 ± 0.11 65.18 ± 0.10 97.31 ± 0.01 88.63 ± 0.12
VGG19+L1 (Baseline) 93.71 - - - - - 73.08 - - - - -
NN Slimming (Liu et al., 2017) 93.79 ± - 83.45 ± - 49.23 ± - 91.99 ± - 97.93 ± - 86.00 ± - 72.78 ± - 76.53 ± - 39.92 ± - 57.07 ± - 97.59 ± - 93.86± -
C-OBD 93.84 ± 0.04 84.19 ± 0.01 47.34 ± 0.02 91.29 ± 0.30 97.88 ± 0.02 81.22 ± 0.38 72.73 ± 0.09 79.47 ± 0.02 39.04 ± 0.02 56.49 ± 0.06 97.96 ± 0.03 80.91 ± 0.16
C-OBS 93.85 ± 0.01 82.88 ± 0.02 44.58 ± 0.10 91.14 ± 0.13 97.31 ± 0.03 88.18 ± 0.27 72.58 ± 0.09 76.17 ± 0.01 41.61 ± 0.06 44.18 ± 0.87 97.31 ± 0.02 91.90 ± 0.07
Kron-OBD 93.86 ± 0.06 84.78 ± 0.00 50.10 ± 0.00 91.14 ± 0.26 97.74 ± 0.02 83.09 ± 0.33 72.44 ± 0.03 79.99 ± 0.02 43.46 ± 0.02 57.59 ± 0.21 97.53 ± 0.02 85.04 ± 0.07
Kron-OBS 93.84 ± 0.04 84.33 ± 0.03 48.01 ± 0.13 91.13 ± 0.17 97.37 ± 0.01 81.52 ± 0.18 72.61 ± 0.15 77.27 ± 0.03 40.89 ± 0.59 57.61 ± 0.67 97.51 ± 0.02 86.60 ± 0.14
EigenDamage 93.88 ± 0.04 79.50 ± 0.02 39.84 ± 0.11 91.79 ± 0.16 96.84 ± 0.02 84.82 ± 0.21 73.01 ± 0.05 75.41 ± 0.03 37.46 ± 0.06 64.91 ± 0.23 97.28 ± 0.04 88.65 ± 0.06

ResNet32(Baseline) 95.30 - - - - - 78.17 - - - - -
NN Slimming (Liu et al., 2017) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
C-OBD 95.11 ± 0.10 70.36 ± 0.39 66.18 ± 0.46 91.75 ± 0.42 97.30 ± 0.06 93.50 ± 0.37 75.70 ± 0.31 66.68 ± 0.25 67.53 ± 0.25 59.52 ± 0.24 97.74 ± 0.08 94.88 ± 0.08
C-OBS 95.04 ± 0.07 67.90 ± 0.25 76.75 ± 0.36 90.04 ± 0.21 95.49 ± 0.22 97.39 ± 0.04 75.16 ± 0.32 66.83 ± 0.03 76.59 ± 0.34 58.20 ± 0.56 91.99 ± 0.07 96.27 ± 0.02
Kron-OBD 95.11 ± 0.09 63.97 ± 0.22 63.41 ± 0.42 92.57 ± 0.09 96.11 ± 0.12 94.18 ± 0.17 75.86 ± 0.37 63.92 ± 0.23 62.97 ± 0.17 62.42 ± 0.41 96.42 ± 0.05 95.85 ± 0.08
Kron-OBS 95.14 ± 0.07 64.21 ± 0.31 61.89 ± 0.79 92.76 ± 0.12 96.14 ± 0.27 94.37 ± 0.54 75.98 ± 0.33 62.36 ± 0.40 60.41 ± 1.02 63.62 ± 0.50 93.56 ± 0.14 95.65 ± 0.13
EigenDamage 95.17 ± 0.12 71.99 ± 0.13 70.25 ± 0.24 93.05 ± 0.23 96.05 ± 0.03 94.74 ± 0.02 75.51 ± 0.11 69.80 ± 0.11 71.62 ± 0.21 65.72 ± 0.04 95.21 ± 0.04 94.62 ± 0.06
PreResNet29+L1 (Baseline) 94.42 - - - - - 75.70 - - - - -
NN Slimming (Liu et al., 2017) 92.32 ± - 71.60 ± - 80.95 ± - 82.50 ± - 93.49 ± - 95.88 ± - 68.87 ± - 61.68 ± - 82.03 ± - 49.48 ± - 93.70 ± - 96.33 ± -
C-OBD 91.17 ± 0.16 87.48 ± 0.23 78.14 ± 0.70 80.03 ± 0.21 98.45 ± 0.02 96.03 ± 0.10 62.19 ± 0.18 89.72 ± 0.01 82.24 ± 0.16 36.44 ± 0.90 98.65 ± 0.00 96.81 ± 0.02
C-OBS 91.64 ± 0.22 83.52 ± 0.12 76.33 ± 0.21 76.59 ± 0.69 98.34 ± 0.02 98.47 ± 0.02 68.10 ± 0.29 81.26 ± 0.10 89.47 ± 0.04 32.77 ± 0.89 97.89 ± 0.01 98.73 ± 0.00
Kron-OBD 90.22 ± 0.43 74.84 ± 0.20 67.83 ± 0.33 82.68 ± 0.20 98.18 ± 0.04 94.90 ± 0.13 57.76 ± 0.28 76.85 ± 0.06 72.38 ± 0.02 34.26 ± 1.12 98.62 ± 0.00 96.09 ± 0.00
Kron-OBS 89.02 ± 0.17 72.96 ± 0.20 70.14 ± 0.18 81.77 ± 0.59 98.44 ± 0.01 96.85 ± 0.09 60.28 ± 0.37 70.53 ± 0.11 76.60 ± 0.14 33.45 ± 0.96 98.31 ± 0.00 97.15 ± 0.01
EigenDamage 93.80 ± 0.05 70.09 ± 0.12 63.13 ± 0.26 89.10 ± 0.13 93.45 ± 0.04 90.67 ± 0.06 73.62 ± 0.16 66.73 ± 0.17 62.86 ± 0.12 65.11 ± 0.15 92.33 ± 0.02 90.52 ± 0.02

we constrain that at most 95% of the channels can be pruned
at each layer. After pruning, the network is finetuned for
150 epochs with an initial learning rate of 1e�3 and weight
decay of 1e�4. The learning rate decay follows the same
scheme as in training. We run each experiment 5 times in
order to reduce the variance of the results.

Results on CIFAR datasets. The results on CIFAR
datasets are presented in Table 1. It shows that even C-OBD
and C-OBS can almost match NN slimming on CIFAR10
and CIFAR100 with VGGNet, if trained with L1 sparsity
on BatchNorm, and outperform when trained without it.
Moreover, when the pruning ratio is 90%, two channel-
level variants outperform NN Slimming on CIFAR100 with
VGGNet by ⇠ 2% in terms of test accuracy. For the ex-
periments on ResNet, EigenDamage achieves better perfor-
mance (⇠ 2%) than others when the pruning ratio is 90%
on CIFAR-100 dataset. Besides, for the experiments on
PreResNet, EigenDamage achieves the best performance in
terms of test accuracy on all configurations and outperforms
other baselines by a bigger margin.

To summarize, EigenDamage performs the best across al-
most all the settings, and the improvements become more
significant when the pruning ratio is high, e.g. 90%, es-
pecially on more complicated networks, e.g. (Pre)ResNet,
which demonstrates the effectiveness of pruning in the KFE.
Moreover, EigenDamage adopts the bottleneck structure,
which preserves the input and output dimension, as illus-
trated in Figure 1, and thus can be trivially applied to any
fully connected or convolution layer without modification.

As we mentioned in Section 2, the success of loss-aware
pruning algorithms relies on the approximation to the loss
function for identifying unimportant weights/filters. There-
fore, we visualize the loss on training set after one-pass
pruning (without fintuning) in Figure 6 in the Appendix D.

Table 2. One pass pruning on Tiny-ImageNet with VGG19. To be
noted, the network for NN Slimming is pretrained with L1 loss as
required by the method. See Appendix F for the full results.

Prune Ratio (%) 50%

Method Test Reduction in Reduction in
acc (%) weights (%) FLOPs (%)

VGG19(Baseline) 61.56 - -
VGG19+L1(Baseline) 60.68 - -
NN Slimming (Liu et al., 2017) 50.90 ± - 60.14 ± - 85.42 ± -
C-OBD 51.10 ± 0.60 69.27 ± 0.22 63.61 ± 0.19
C-OBS 53.13 ± 0.47 57.99 ± 0.52 78.51 ± 0.56
Kron-OBD 53.82 ± 0.32 67.22 ± 0.19 76.11 ± 0.24
Kron-OBS 53.54 ± 0.32 64.51 ± 0.23 74.57 ± 0.29
EigenDamage 58.20 ± 0.30 61.87 ± 0.11 66.21 ± 0.15
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Figure 4. The percentage of remaining weights at each conv layer
after one-pass pruning with a ratio of 0.5 on Tiny-ImageNet with
VGG19. The legend is sorted in descending order of test accuracy.

For EigenDamage, we can see that for VGG19 on CIFAR10,
when even prune 80% of the weights, the increase in loss is
negligible, and for other settings, the loss is also significantly
lower than for other methods. For the remaining methods,
which conduct pruning in the original weight space, they all
result in a large increase in loss, and the resulting network
performs similarly to uniform predictions in terms of loss.

Results on Tiny-ImageNet dataset. Apart from the results
on CIFAR datasets, we futher test our methods on a more
challenging dataset, Tiny-ImageNet, with VGGNet. Tiny-
ImageNet consists of 200 classes and 500 images per class
for training, and 10,000 images for testing, which are down-
sampled from the original ImageNet dataset. The results
are in Table 2. Again, EigenDamage outperforms all the
baselines by a significant margin.
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Figure 5. Low-rank approximation results on VGG19 on CIFAR100 and Tiny-ImageNet by varying either pruning ratios or ranks.

We further plot the pruning ratio in each convolution layer
for a detailed analysis. As shown in Figure 4, NN Slimming
tends to prune more in the bottom layers but retain most
of the filters in the top layers, which is undesirable since
neural networks typically learn compact representations in
the top. This may explain why NN Slimming performs
worse than other methods in Tiny-ImageNet (see Table 2).
By contrast, EigenDamage yields a balanced pruning ratio
across different layers (retains most filters in the bottom
layers while pruning most redundant weights in the top
layer).

5.3. Iterative Pruning Results

We further experiment with the iterative setting, where the
pruning can be conducted iteratively until it reaches a de-
sired model size or FLOPs. Concretely, the iterative pruning
is conducted for 6 times with a pruning ratio of 0.5 at each
iteration for simulating the process. In order to avoiding
pruning the entire layer, we also adopt the same strategy as
in Liu et al. (2017), i.e. we constrain that at most 50% of
the channels can be pruned in each layer for each iteration.

We compare EigenDamage to C-OBD, C-OBS, Kron-OBD
and Kron-OBS. The results are summarized in Figure 8 in
Appendix E due to the space limit. We notice that Eigen-
Damage performs slightly better than other baselines with
VGGNet and achieves significantly higher performance on
ResNet. Specifically, for the results on CIFAR10 dataset
with VGGNet, nearly all the methods achieved similar re-
sults due to the simplicity of CIFAR10 and VGGNet. How-
ever, the performance gap is a bit more clear as the dataset
becoming more challenging, e.g., CIFAR100. On a more
sophisticated network, ResNet, the performance improve-
ments of EigenDamage were especially significant on CI-
FAR10 or CIFAR100. Furthermore, EigenDamage was
especially effective in reducing the number of FLOPs, due
to the bottleneck structure.

5.4. Comparisons with Low-rank Approximation

Since EigenDamage can also be viewed as low-rank ap-
proximation, we compared it with a state-of-the-art low-

rank method, CP-Decomposition (Lebedev et al., 2014),
which computes a low-rank decomposition of the filter into
a sum of rank-one tensors. We experimented low-rank ap-
proximation for VGG19 on CIFAR100 and Tiny-ImageNet.
For CP-Decomposition, we tested it under two settings:
(1) we varied the ranks from {0.1, . . . , 1.0, 1.25, 1.5, 2.0}
times of the original rank at each layer; (2) we varied ranks
in {4, 8, . . . , 512} for computing the approximation6. For
EigenDamage, we chose different pruning ratios in the range
of {0, 4, . . . , 0.9}, and EigenDamage-Depthwise Frob is ob-
tained by applying depthwise separable decomposition on
the network obtained by EigenDamage.

The results are presented in Figure 5. EigenDamage outper-
forms CP-Decomposition significantly in terms of speedup
and accuracy. Moreover, CP-Decomposition approximates
the original weights under the Frobenius norm in the orig-
inal weight coordinates, which does not precisely reflect
the sensitivity to the training loss. In contrast, EigenDam-
age is loss-aware, and thus the resulting approximation will
achieve lower training loss when only pruning is applied,
i.e. without finetuning, as is shown in the Figure 5. Note that
EigenDamage will determine the approximation rank for
each layer automatically given a global pruning ratio. How-
ever, CP-Decomposition requires pre-determined approxi-
mation rank for each layer and thus the search complexity
will grow exponentially in the number of layers.

6. Conclusion
In this paper, we introduced a novel network reparameteri-
zation based on the Kronecker-factored eigenbasis, in which
the entrywise independence assumption is approximately
satisfied. This lets us prune the weights effectively using
Hessian-based pruning methods. The pruned networks give
low-rank (bottleneck structure) which allows for fast compu-
tation. Empirically, EigenDamage outperforms strong base-
lines which do pruning in original parameter coordinates,
especially on more chanllenging datasets and networks.

6We choose the minimum of the target rank and the original
rank of the convolution filter as the rank for approximation.
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