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Abstract
Diversification has been shown to be a powerful
mechanism for learning robust models in non-
convex settings. A notable example is learn-
ing mixture models, in which enforcing diver-
sity between the different mixture components
allows us to prevent the model collapsing phe-
nomenon and capture more patterns from the ob-
served data. In this work, we present a varia-
tional approach for diversity-promoting learning,
which leverages the entropy functional as a nat-
ural mechanism for enforcing diversity. We de-
velop a simple and efficient functional gradient-
based algorithm for optimizing the variational
objective function, which provides a significant
generalization of Stein variational gradient de-
scent (SVGD). We test our method on various
challenging real world problems, including deep
embedded clustering and deep anomaly detec-
tion. Empirical results show that our method
provides an effective mechanism for diversity-
promoting learning, achieving substantial im-
provement over existing methods.

1. Introduction
Modern machine learning abounds with challenging non-
convex optimization. A typical source of non-convexity
comes from learning composite models consisting of sym-
metric units, such as latent variable or mixture models, en-
semble models and additive models. In these problems,
we are asked to estimate an un-ordered list of parameters,
denoted by ⇥ := {✓i}

m
i=1, by maximizing a permutation-

invariant objective function that does not depend on the or-
der of the elements of ⇥:

max
⇥

F ({✓1, . . . , ✓m}),
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where ✓i can be the component parameters in mixture mod-
els or additive models, or the posterior samples in Bayesian
ensemble prediction; F (·) can be the log-likelihood func-
tion or negative loss function on the training data.

Due to the non-convex nature of the objective function, di-
rectly solving these problems with standard local search
methods, such as gradient ascent, suffers from the risk
of obtaining sub-optimal solutions. A common degener-
ate case is when multiple elements of ✓i converge to simi-
lar values (a.k.a. mode collapsing), while other important
modes are missed due to insufficient exploration. In prac-
tice, it was found that this problem can be alleviated by
adding diversification constraints to encourage the diversity
among {✓i}, which can yield better and more robust em-
pirical performance (e.g., Kwok & Adams, 2012; Mariet &
Sra, 2016; Cogswell et al., 2015; Xie et al., 2016b; 2017).
However, because repulsive regularization functions are in-
herently highly non-convex, directly adding them into the
objective function casts additional difficulty in the opti-
mization problem.

Main Algorithm We propose a simple yet powerful
functional approach for learning diversified parameters.
Our main practical result is a general “diversified gradient
ascent” algorithm that learns the parameters by iteratively
updating ⇥ := {✓i}

m
i=1 in parallel by

✓i  ✓i + "

mX

j=1


r✓jF (⇥)
| {z }
gradient

k(✓j , ✓i) +
↵

m
r✓jk(✓j , ✓i)| {z }

repulsive

�
,

(1)

where k(✓, ✓0) is any positive definite kernel that specifies
the similarity between ✓ and ✓

0. The two terms of update
(1) yield intuitive interpretations: the first term performs
an (averaged) gradient ascent update to increase the value
of the objective F , while the second term corresponds to
a repulsive force that enforces {✓i} to be mutually differ-
ent, which theoretically corresponds to a functional entropy
regularization, as we show in the sequel. The balance of
these two terms is controlled by a coefficient ↵, which cor-
relates to a temperature parameter of the entropy regular-
ization.
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It is easy to see that our algorithm is a generalization of
Stein variational gradient descent (SVGD) (Liu & Wang,
2016), which corresponds to the special case of (1) when
F has a simple form of F ({✓i}) =

Pm
i=1 f(✓i)/m for

some function f ; in this case, the update (1) yields an
accurate particle approximation for distribution ⇢

⇤(✓) /
exp(f(✓)/↵). Our algorithm applies to more general
classes of non-linear functions F , and hence significantly
extends the scope of SVGD, especially in learning complex
composite models in order to obtain particles with complex
structures.

Theoretical Framework The derivation of our method
leverages a general variational optimization framework
that generalizes the underlying principle of SVGD. As a
brief overview, note that any permutation-invariant func-
tion F ({✓i}) depends on {✓i} only through its empirical
measure ⇢(✓) :=

Pm
i=1 �(✓ � ✓i)/m, where � denotes the

Dirac Deta function. Therefore, we can consider F ({✓i})
as a functional of ⇢, which we rewrite as F [⇢] with an abuse
of notation (where we use F [·] for functionals and F (·) for
functions). We then relax the optimization of {✓i} to the
optimization of distribution ⇢ in the space of all distribu-
tions, on which an entropy regularization can be naturally
defined:

max
⇢

F [⇢] + ↵H[⇢], (2)

where the entropy H[⇢] = �
R
⇢(✓) log ⇢(✓)d✓ enforces

⇢ to distribute its probability more uniformly, and hence
encourages the diversity on the particles {✓i} drawn from
⇢. In the special case when F [⇢] is a linear functional of
⇢, that is, F [⇢] = E✓⇠⇢[f(✓)], the optimization reduces
to minimizing a KL divergence between ⇢ and ⇢

⇤(✓) /
exp(f(✓)/↵):

min
⇢

�
KL(⇢ || ⇢

⇤) := �E✓⇠⇢[f(✓)/↵] � H[⇢]
 
; (3)

this is the variational optimization solved by SVGD, which
returns a particle distribution ⇢(✓) =

P
i �(✓ � ✓i)/m that

weakly converges to the optimal solution of (3) when m!

1.1 By extending the basic idea of SVGD, we develop a
principled Stein variational optimization framework for (2)
with more general nonlinear functionals F [⇢], which yields
the simple update in (1) (see also Algorithm 1).

Empirical Results Our master algorithmic framework is
generally applicable to a broad range of problems, and
can be implemented easily by plugging standard paramet-
ric gradients into the simple update rule in (1). In this

1Note that H[⇢] is undefined for particle distribution of form
⇢(✓) =

P
i �(✓ � ✓i)/m, but the particle distributions returned

by SVGD and our method approximates the optimal solutions of
(2) and (3) in the sense of weak convergence as m ! 1.

work, we particularly focus on learning diversified mixture
models with our method and demonstrate its effectiveness
on deep unsupervised clustering (Dizaji et al., 2017) and
deep anomaly detection (Zong et al., 2018), for both of
which we obtain significant improvements with minor im-
plementation and computation overhead over baseline ap-
proaches. Our code is avalable at https://github.
com/dilinwang820/nonlinear_svgd.

2. Motivation: Learning Diversified Mixture
Models

We use learning diversified mixture models as a major ex-
ample to demonstrate our general framework. Consider a
mixture model p(x |⇥) := 1

m

Pm
i=1 p(x | ✓i) consisting of

m components p(x | ✓i), where ✓i 2 R
d is the parameter

of the i-th component and ⇥ = {✓i}
m
i=1. Given an obser-

vation dataset D = {x`}
n
`=1, the parameters ⇥ are often

estimated with the maximum likelihood estimator:

max
⇥

Ex⇠D

"
log

 
1

m

mX

i=1

p(x | ✓i)

!#
+ �(⇥), (4)

where �(⇥) is a regularization term that encodes prior in-
formation. For example, repulsive priors such as deter-
minantal point processes (Borodin, 2009) can be used to
learn diversified models in which different component pa-
rameters ✓i are forced to be different from each other (e.g.,
Kwok & Adams, 2012; Xie et al., 2016b). Unfortunately, it
is well known that (4) yields a challenging non-convex op-
timization, which significantly deteriorate with the addition
of the repulsive regularization.

In this work, we take a variational approach for learn-
ing diversified models, which allows us to flexibly encode
population-level priors such as diversity. Our framework
considers the class of infinite mixture models of form

p(x | ⇢) =

Z
⇢(✓)p(x | ✓)d✓,

where ⇢ is a distribution that parameterizes the mixture
model of (potentially) infinite number of components ✓. It
reduces to the finite mixture model when ⇢ =

Pm
i=1 �(✓ �

✓i)/m. We then formulate the estimation of the optimal
⇢ as the following variational optimization on the space
P(Rd) of all possible distributions on R

d:

⇢
⇤ = argmax

⇢

⇢
J [⇢] := F [⇢] + ↵H[⇢]

�
, (5)

with F [⇢] = Ex⇠D log(E✓⇠⇢[p(x; ✓)]),

where F [⇢] denotes the likelihood functional of mixture
model p(x | ⇢), and H[⇢] := �

R
⇢(✓) log ⇢(✓)d✓ denotes

the entropy of ⇢, which is introduced to encourage ⇢ to
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spread out its probability mass more uniformly. It promotes
exploration in the parameter space so that local optima are
more easily visited. Eq. (5) can be further extended to a
PAC-Bayesian like framework (McAllester, 1999), by re-
placing H[⇢] with KL[⇢ || ⇢0], where ⇢0 is a prior of ⇢.

Solving Eq. (5) exactly is both intractable and unnecessary
because p(x | ⇢) can be computationally infeasible for a
complex ⇢. The main technical contribution of this work is
to derive an efficient particle-based approximation of (5)
that outputs a finite set of component parameters {✓i} (re-
ferred to as particles), such that their empirical measure
⇢ =

Pm
i=1 �(✓ � ✓i)/m approaches to the optimal solu-

tion ⇢
⇤ as we use more particles (m ! 1). This yields

practically-useful finite mixture models, but with the ad-
vantage of having more well-explored diversified compo-
nents thanks to the functional entropic regularization.

3. Nonlinear Stein Variational Gradient
Descent

It is highly non-trivial to construct a particle-based approx-
imation for nonlinear variational optimization problems of
the form (5). An immediate obscurity is that the entropy
H[⇢] equals negative infinity for any empirical measures
⇢ =

Pm
i=1 �(✓ � ✓i)/m, making direct optimization of

{✓i}
m
i=1 impossible. We sidestep this problem by extend-

ing the key idea from Stein variational gradient descent
(SVGD) (Liu & Wang, 2016), which iteratively pushes
the particles {✓i} to minimize the variational objective as
fast as possible, following a functional gradient descent
direction constrained on reproducing kernel Hilbert space
(RKHS).

Specifically, our idea is to iteratively apply optimal trans-
port on a set of particles to descend the functional objective
as fast as possible. Starting from ⇢(✓) :=

P
i �(✓� ✓i)/m,

we want to iteratively move {✓i} towards the optimal so-
lution ⇢

⇤ of (5). To achieve this, we initialize the particles
to some initial locations and iteratively move them with a
transform map that resembles the gradient ascent update:

T (✓) = ✓ + "�(✓),

where " is a small step size and � : Rd
! R

d is a vector-
valued function (velocity field) that defines the moving di-
rection of the particles. The key question is to choose
an optimal � such that it brings the particle distribution
⇢ towards the optimum as fast as possible. Motivated by
SVGD, we explicitly formulate this into an optimization
problem from a predefined candidate function set H:

�⇤ := argmax
�2H

{GJ [⇢; �] s.t. ||�||H  1}

where GJ [⇢; �] :=
d

d"
(J [⇢T ]� J [⇢])

����
"=0

,

(6)

where ⇢T denotes the distribution of the updated particles
✓
0 = T (✓) as ✓ ⇠ ⇢, and GJ [⇢; �] denotes the increasing

rate of J [⇢] as we move ✓ with � using a infinitesimal step
size. We want to find the best �⇤ that maximizes GJ [⇢; �].

Following Liu & Wang (2016), we choose the candidate
function set H to be a reproducing kernel Hilbert space
(RKHS) H which allows us to derive a simple closed form
solution; the norm constraint k�k

H
 1 is introduced to

prevent the issue of arbitrary scaling.

Our key result, which we now present, derives a simple
closed form solution of (6), hence yielding a generalization
of SVGD for optimizing the general entropy regularized
nonlinear variational optimization in (2).

Definition 1. Let T (✓) = ✓+"�(✓) and ⇢T the distribution
of T (✓) as ✓ ⇠ ⇢. For a functional F [⇢], a vector-valued
function DF [⇢] : Rd

! R
d is said to be its transportation

derivative (T-derivative) if it satisfies

F [⇢T ]� F [⇢] = " E✓⇠⇢[DF [⇢](✓)>�(✓)] + O("2).

Equivalently, we have

d

d"
(F [⇢T ]� F [⇢])

����
"=0

= E✓⇠⇢[DF [⇢](✓)>�(✓)].

Here the concept of T-derivative is closely related to op-
timal transport and Wasserstein gradient flow (Vinh et al.,
2010; Santambrogio, 2014); it specifies how F [⇢] changes
under transform T (✓) = ✓ + "�(✓). It is easy, for ex-
ample, to show that the T-derivative of a linear functional
F [⇢] := E⇢[f ] equals DF [⇢](✓) = rf(✓). Further dis-
cussion of T-derivative is deferred to Section 3.1, where we
show that T-derivative in fact coincides with a typical para-
metric gradient function when ⇢ is a empirical distribution,
which allows convenient calculation in practice.

Theorem 1. I) Let J [⇢] = F [⇢] + ↵H[⇢], where F [⇢] is
a functional with a T-derivative of DF [⇢] and H[⇢] is the
differential entropy. Assume ⇢ is absolutely continuous and
H[⇢] <1, and � is continuous differentiable. We have

GJ [⇢; �] = E✓⇠⇢

⇥
DF [⇢](✓)>�(✓) + ↵r

>

✓ �(✓)
⇤
, (7)

where GJ [⇢; �] is defined in (6).

II) Let H0 be a reproducing kernel Hilbert space (RKHS)
of scalar-valued functions with a positive definite kernel
k(✓, ✓0) on R

d
⇥R

d, and H := H0⇥· · ·⇥H0 be the vector-
valued RKHS of functions of form � = [�1, . . . ,�d]>,
where �i 2 H0. Assume r✓,✓0k(✓, ✓0) exits and contin-
uous. Then the optimal solution �⇤ of (6) satisfies

�⇤(·) / E✓⇠⇢ [DF [⇢](✓)k(✓, ·) + ↵r✓k(✓, ·)] . (8)
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This result generalizes Theorem 3.1 of Liu & Wang (2016)
for SVGD. Specifically, when F [⇢] = E✓⇠⇢[log p(✓)], we
can show that DF [⇢](✓) = r✓ log p(✓), and the left side of
(7) reduces to the Stein operator in Eq (5) of Liu & Wang
(2016). In general, we may formally view DF [⇢]+↵r✓ as
a functional operator, which generalizes the Stein operator
in Liu & Wang (2016).

The optimal �⇤ in (8) defines the optimal velocity field that
increases J [⇢] as fast as possible w.r.t. ⇢. If we recursively
apply this optimal transform T (✓)  ✓ + "�⇤(✓) starting
from some initial values, we obtain a sequence of particles
that form increasingly better approximation of the optimal
solution. In practice, we take ⇢ to be an empirical measure
of a set of particles, so that the updates on ⇢ reduces to its
corresponding particles. This yields our main algorithm,
Nonlinear Stein Variational Gradient Descent (NSVGD),
which iteratively performs the following updates until con-
vergence:

✓
t+1
i  ✓

t
i + "�⇤(✓ti), 8i = 1, . . . ,m,

�⇤(✓ti) = E✓⇠⇢t
m

⇥
DF [⇢tm](✓)k(✓, ✓ti)| {z }

gradient

+↵r✓k(✓, ✓
t
i)| {z }

repulsive

⇤
,

where {✓
t
i}

m
i=1 are the particles at the t-th iteration and

⇢
t
m(✓) :=

P
i �(✓ � ✓

t
i)/m is their empirical distribution.

Similar to SVGD, this update is simple and intuitive: the
first term in �⇤ drives the particles to increase F [⇢] follow-
ing its functional gradient DF [⇢], while the second term
serves to maximize the entropy H[⇢], and can be interpreted
as a repulsive force that enforces diversity among the parti-
cles.

3.1. More on the Transportation Derivative

It remains to be determined what the T-derivative DF [⇢] is
for a general nonlinear functional F [⇢] and how to calcu-
late it practically. It turns out that DF [⇢] simply equals the
typical notion of parametric derivative, if F [⇢] reduces to
a differentiable parametric function when ⇢ is an empirical
distribution of a set of particles.

Theorem 2. Assume ⇢⇥ :=
Pm

i=1 �(✓ � ✓i)/m is the em-
pirical measure of a set of particles ⇥ = {✓i}

m
i=1. With an

abuse of notation, let F (⇥) = F [⇢⇥] be the (parametric)
function that maps ⇥ to F [⇢⇥]. If F (⇥) is differentiable,
we have

DF [⇢⇥](✓i) = mr✓iF (⇥). (9)

Proof. Let T (✓) = ✓+ "�(✓), and ⇢⇥,T the distribution of
T (✓) when ✓ ⇠ ⇢⇥. We have

F [⇢⇥,T ] = F ({✓i + "�(✓i)}
m
i=1).

Therefore, by Taylor expansion,

F [⇢⇥,T ]� F [⇢⇥] = F ({✓i + "�(✓i)}
m
i=1)� F ({✓i}

m
i=1)

= ✏

mX

i=1

r✓iF ({✓i}
m
i=1)

>�(✓i) +O(✏2)

= ✏E✓⇠⇢⇥

⇥
mr✓F (⇥)>�(✓)

⇤
+O(✏2).

Comparing this with the definition of DF in Definition 1,
we have DF [⇢⇥](✓i) = mr✓iF (⇥).

Plugging (9) into the nonlinear SVGD update yields our
main algorithm (1), which can be easily implemented based
on the existing auto-differentiation tools that have been de-
veloped for gradient-based optimization algorithms.

For the sake of theoretical completeness, the following re-
sult characterizes T-derivative when ⇢ is absolutely contin-
uous; it shows that T-derivative equals the derivative of the
typical notion of first variation.

Theorem 3. Define the first variation of functional F [⇢] to
be the scalar-valued function LF [⇢] : Rd

! R that satis-
fies

F [⇢+ "v] = F [⇢] + " E[LF [⇢](✓)v(✓)] + O("2),

for " 2 R and function v : Rd
! R. Assume ⇢ is a contin-

uous differentiable density function supported on R
d and

LF [⇢](✓) is differentiable w.r.t. ✓. We have

DF [⇢](✓) = r✓(LF [⇢](✓)).

As an example, consider the entropy functional H[⇢] =
�E⇢[log ⇢]. We can show that LH[⇢](✓) = � log ⇢(✓),
and hence DH[⇢](✓) = r✓(LH[⇢](✓)) = �r✓ log ⇢(✓).
Note that H[⇢], DH[⇢] and LH[⇢] are all infinite when ⇢ is
an empirical delta measure, and hence Theorem 2 does not
apply. Using Stein’s identity (see e.g., Stein et al. (2004);
Liu & Wang (2016)), we have

E⇢[r
>

✓ �(✓)] = �E⇢[r✓ log ⇢(✓)
>�(✓)]

= E⇢[DH[⇢](✓)>�(✓)],

which suggests that the differential operatorr✓ can be for-
mally viewed as DH[⇢], which is consistent with the result
in (7) of Theorem 1.

4. Related Work
Diversity-promoting learning has been exploited in various
contents (e.g. Xie et al., 2016b; 2017; Cogswell et al., 2015;
Kathuria et al., 2016; Affandi et al., 2013; Kuncheva &
Whitaker, 2003; Banfield et al., 2005; Partalas et al., 2008;
Yu et al., 2011; Kwok & Adams, 2012). For example, de-
terminant point process (DPP) has been widely exploited
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Algorithm 1 Nonlinear SVGD for Learning Mixture Models
Input: A collection of data D

Goal: Learn a mixture model
Pm

i=1 p(x | ✓i)/m with diversified parameters ⇥ = {✓i}
m
i=1, by optimizing the functional

objective in (5).
Initialize a set of particles {✓0i }mi=1; pick a positive define kernel k(✓, ✓0) and a stepsize scheme {"t}.
for iteration t do

✓
t+1
i  ✓

t
i + "t�

⇤(✓ti), with �⇤(✓ti) =
mX

j=1


r✓t

j
F (⇥)k(✓tj , ✓

t
i) +

↵

m
r✓t

j
k(✓tj , ✓

t
i)

�
,

where F (⇥) = Ex⇠D[log(
Pm

i=1 p(x | ✓i)/m)] is the standard parametric log-likelihood of the mixture model.
end for
Remark. When the size of the dataset D is large, we may subsample a mini-batch M = {x1, · · · , xm} from the data D

at each iteration and use it to calculate F (⇥).

as a diversity regularization mechanism (e.g., Gong et al.,
2014; Kulesza et al., 2012; Borodin, 2009; Hough et al.,
2009; Chen et al., 2018; Zhang et al., 2017; Mariet et al.,
2018). A few works have been developed in the particular
content of learning diversified mixture models; examples
include (Kwok & Adams, 2012; Xie et al., 2016b; 2017).
Our algorithm differs from these previous works in that we
take a functional view. Our method is also more computa-
tionally efficient than methods based on DPP, which require
calculating the matrix determinant.

5. Experiments
In this section, we present experiments on learning diver-
sified mixture models. We start with a toy Gaussian mix-
ture example and then present results on deep embedded
clustering (Dizaji et al., 2017) and deep anomaly detection
(Zong et al., 2018). We also provide additional results on
variational inference in Appendix C. In all cases, we find
that our method provides an effective approach for promot-
ing diversity, hence increasing the robustness of learning.

For all of our experiments, we use the Gaussian RBF kernel
k(✓, ✓0) = exp(� ||✓�✓0

||
2

2h2 ) following Liu & Wang (2016),
and take the bandwidth h to be the median of the pairwise
distances of the set of particles at each iteration.

5.1. Toy Gaussian Mixture Models

We first study a toy Gaussian mixture model (GMM)
case. Suppose that we observe n i.i.d. 1-dimensional
samples {x`}

n
`=1 drawn from an unknown GMM p(x) =

1
m

Pm
i=1 N (x;µ⇤

i , 1) whose variance of each mixture com-
ponent is fixed to be 1. We draw n = 2000 ⇥m samples
from p and learn a GMM q(x) = 1

m

Pm
i=1 N (x;µi,�

2
i )

to best fit the observations. The log-likelihood objective is

given by

F (⇥) =
1

n

nX

`=1

log

✓
1

m

mX

i=1

N (x`|µi,�
2
i )

◆
,

where model parameters ⇥ = {✓i}
m
i=1 with each particle

✓i = [µi,�i].

In this case, the difficulty of estimating GMM parameters
depends on the amount of separation between the mean
vectors of the different components of the unknown target
distribution p. We construct the true mean vectors µ⇤

i to be
on a uniform grid µ

⇤

i = i�, where � is separation distance
of the different components of the mixture model. For the
learning algorithms, we initialize the mean estimates in all
the algorithms by µi ⇠ Uniform[�m,m]; therefore, when
� is very large, the initialization is much more concentrated
than the true values, creating a challenging situation for it-
erative learning algorithms to find all the true mixture com-
ponents. The idea is that by using the diversification mech-
anisms like the ones in our algorithm, we can push the com-
ponents apart to avoid redundant and degenerate solutions.

We compare our method with standard maximum like-
lihood optimization without repulsive regularization (de-
noted as GMM). We also compare our method with two
standard diversity regularizers as baselines: 1) GMM-PT,
an MLE estimator regularized by a repulsive force defined
by the pairwise sum of a kernel function; the training ob-
jective is

max
⇥

{F (⇥) + ↵

X

i 6=j

k(✓i, ✓j)},

where k(✓i, ✓j) is a kernel function that measures the sim-
ilarity between ✓i and ✓j ; 2) GMM-LogDet, an MLE esti-
mator regularized by a log-determinant divergence term,

max
⇥

{F (⇥) + ↵ log detK⇥};
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(a) Initializations (m = 5) (b) GMM (m = 5) (c) GMM-PT (m = 5) (d) GMM-LogDet (m = 5) (e) Ours (m = 5)

(f) Initializations (m = 6) (g) GMM (m = 6) (h) GMM-PT (m = 6) (i) GMM-LogDet (m = 6) (j) Ours (m = 6)

Figure 1. Visualization of the densities of the true distributions (red) and the learned densities (blue) of each method. (a)-(e) show the
case when we have m = 5 components, and a separation distribution of � = 2, and (f)-(j) show the case of m = 6 and � = 4.

(a) Mode-recovering Error (b) Variance ratio (c) Mode-recovering Error (d) Variance ratio
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Figure 2. (a)-(b) plot the mode-recovering errors and the variance ratios var(q)/var(p) between the learned density q and the true density
p. (a)-(b) show the case when we increase the separation distribution � with fixed number of components m = 6; (c)-(d) show the case
when we increase the number of components m, with fixed � = 4. All the results are averaged over 20 random trials.

with K⇥ = [k(✓i, ✓j)]ij 2 R
m⇥m representing the kernel

matrix over the particles. Both regularizers act as a role to
prevent collapsed components.

To evaluate the mass-covering property of different meth-
ods, we calculate a mode-recovering error between p and q

following Wang et al. (2018). Specifically, for each Gaus-
sian component i of the target p, we measure its distance
to its nearest Gaussian component j in the distribution q,
which is defined as di = minj{||µ⇤

i � µj ||2, 8j}, where
µ
⇤

i denotes the true mean parameter of component i and
µj the estimated parameter of component j. The overall
mode-recovering error between p and q is the average over
all distance di over all i. We also calculate the ratio of the
variance of the estimated model q and the true model p, that
is, var(q)/var(p).

In our experiments, all methods are optimized using Ada-
grad with a constant learning rate of 0.05. For each model,
we train 50, 000 iterations with a mini-batch size of 256.
We clip the logarithm values of the variance �i to [�3, 3]
to avoid singularities. We choose the best temperature
parameter ↵ from {1.0, 0.1, 0.5, 0.05, 0.01} for GMM-PT,
GMM-LogDet and our method to minimize the mode-
recovering error. We use RBF kernel for both regularizers

and set the bandwidth as the median distance.

Figure 1 shows example density functions learned by our
methods and the baselines. We can see that our method
recovers the density well, while the other methods tend to
degenerate as a consequence of the poor initialization in
our setting.

Figure 2 (a)-(b) show the result when we fix the number of
components m = 6 and gradually increase the value of �
so that p is increasingly multi-modal. We can see from
Figure 2 (a)-(b) that GMM generally underestimates the
variance, and the variance ratio between q and p is rela-
tive small when � is large and the true target p is highly
multi-modal, which suggests that GMM fails to learn di-
verse components and only places mass in small regions.
We can see from Figure 2 (c)-(d) that, as we increase the
number of components, our approach still yields robust per-
formance and outperforms other baseline approaches sig-
nificantly.

5.2. Deep Embedded Clustering

We demonstrate an application of our method on deep em-
bedded clustering, for which a latent space representation
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AE+k-means DEPICT DEPICT+ Ours

Figure 3. Visualization of the learned low-dimensional representations by different methods on MNIST. PCA is used to project the latent
representations to a 2-D space. Different colors correspond to different clusters.

k-means AE+k-means DEC* JULE* DEPICT DEPICT+ Ours
NMI 0.500 0.805 0.816 0.913 0.917 0.933
ACC 0.534 0.899 0.844 0.964 0.965 0.974

Table 1. Clustering performance (NMI and ACC) of different algorithms on MNIST (higher values are better for both metrics). The
results labeled by (*) are baselines reported in Dizaji et al. (2017). Our results are averaged over 10 random trials.

of high dimension data is trained jointly with clustering pa-
rameters. Specifically, we build our method on DEPICT
(Dizaji et al., 2017), which joint trains a deep convolutional
auto-encoder to map the data to a low-dimensional feature
space and simultaneously fits a mixture model in the fea-
ture space for clustering. We apply our method as an inter
loop to learn the parameters of the mixture model. Exper-
imental results show our approach yields more diversified
clusters and achieves better clustering performance.

DEPICT Consider the problem of clustering a set of n
points {x1, · · · , xn} into m categories. DEPICT consists
of two main parts: a deep convolutional autoencoder AE
parameterized with  that learns clustering oriented rep-
resentations {z1, · · · , zn}; a softmax layer parameterized
with ⇥ = {✓1, · · · , ✓m} stacked on the latent representa-
tions to give cluster assignments. Specifically, the proba-
bility that x` with latent representation z` belongs to the
i-th cluster can be written as

c`i = exp(✓>i z`)/
mX

j=1

exp(✓>j z`). (10)

DEPICT jointly minimizes the reconstruction error and a
clustering-related regularization term:

min
 ,⇥

F ( ,⇥) =
1

n

nX

`=1

||x` �AE(x`; )||
2
2 +R(⇥, {z`}),

where AE(x`; ) denotes the reconstruction of x` from
the antoencoder, and C = [c`i]`i 2 R

n⇥m relates to the
clustering probabilities. The regularizer R(⇥, {z`}) de-
fines a nonlinear optimization objective over ⇥ that re-
fines the cluster assignments by placing more emphasis

on data points assigned with high confidence and prevents
large clusters from distorting the hidden feature space in
the meantime. We refer the reader to Appendix (or Dizaji
et al. (2017)) for more detailed discussions.

DEPICT with Nonlinear SVGD We replace the soft-
max layer with a Gaussian mixture model, pg(z; ⇥) =
1
m

Pm
i=1 N (z; ✓i, I) where {✓i} are the mean vectors and

and the convariance matrices are fixed to be identity. In
this way, the corresponding probability that x` belongs to
the cluster i is changed from (10) to

c`i = N (z`; ✓i, I)/
mX

j=1

N (z`; ✓i, I).

We keep the updates of the autoencoder parameters  the
same, but update the GMM parameters ⇥ using Algo-
rithm 1 by taking F (⇥) = �R(⇥, {z`}).

Empirical Results We evaluate our approach on the
MNIST dataset (LeCun et al., 1998), which consists of
70,000 handwritten digits of 28-by-28 pixel size. For fair
comparison, we use the same network architectures and
hyper-parameters settings as reported in DEPICT. Specif-
ically, we use Adam with a constant learning rate 0.0001
for optimization and fix the dimension of the feature space
to 10 and the temperature ↵ to 0.5.

We compare with several baseline methods: 1) k-means,
the naive k-means (Lloyd, 1982) algorithm applied on the
raw pixel as inputs; 2) AE+k-means, which first pre-trains a
deep autoencoder with the same structure as DEPICT and
then applies k-means on learned representations; 3) DEC
(Xie et al., 2016a) and JULE (Yang et al., 2016): simi-
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Method Precision Recall F1
DSEBM (Zhai et al., 2016)* 0.7369 0.7477 0.7423
DCN (Yang et al., 2017)* 0.7696 0.7829 0.7762
DAGMM-p (Zong et al., 2018)* 0.7579 0.7710 0.7644
DAGMM-NVI (Zong et al., 2018)* 0.9290 0.9447 0.9368
DAGMM (Zong et al., 2018)* 0.9297 0.9442 0.9369
DAGMM+ Ours 0.9659 0.9490 0.9573

Table 2. Average precision, recall and F1 scores on DAGMM. The results labeled by (*) were baselines reported in Zong et al. (2018).

lar to DEPICT, the idea of DEC and JULE is to connect a
clustering module to the output layer of a deep neural net-
work (DNN) and jointly learn DNN parameters and clus-
ters. DEC achieves this by minimizing a Kullback-Leibler
(KL)-like clustering loss, and JULE minimizing an ag-
glomerative clustering loss.

We visualize in Figure 3 the learned embeddings on the
MNIST dataset using PCA. We can see that our method
learns more diversified clusters compared to the base-
lines. Table 1 shows the average normalized mutual in-
formation (NMI) and clustering accuracy (ACC) scores on
MNIST. We can see that our approach improves DEPICT
and achieves the best NMI and ACC scores.

5.3. Deep Anomaly Detection

We evaluate our approach on an anomaly detection task.
We use a recently proposed deep autoencoding Gaussian
mixture model (DAGMM) (Zong et al., 2018) as our base
model. DAGMM utlizes a deep autoencoder to learn low-
dimensional representations for the inputs, which are fur-
ther fed into a GMM. During testing time, data points with
GMM densities smaller than a threshold are classifed as
anomalies. On the KDDCUP benchmark dataset, we show
our method improves DAGMM by simply replacing the
gradients of the GMM parameters with our method.

DAGMM Assume we have a collection of observations
{x1, · · · , xn} and its corresponding low dimensional la-
tent representations {z1, · · · , zn} generated by a deep au-
toencoder. DAGMM proposes to simultaneously optimize
the deep autoencoder network AE(x; ) that learns fea-
ture representations and a GMM pg(z;⇥) to fit the low-
dimensional latent features z. The objective is to minimize
the reconstruction error and the negative log-likelihood
jointly,

min
 ,⇥

L( ,⇥) =
1

n

nX

`=1

||x` �AE(x`; )||
2
2 � E(⇥, {z`})

where E(⇥, {z`}) =
�1

n

nX

`=1

log pg(z`;⇥)� �2R(⇥).

Here AE(x`; ) denotes the reconstructed counterpart of
x`, R(⇥) is a regularization term, which prevents the co-

variance matrix of each GMM component to be singular.
�1,�2 are hyperparameters. See Zong et al. (2018) for
more details.

DAGMM with Nonlinear SVGD We propose to up-
date the GMM parameters ⇥ using our Algorithm 1 with
F (⇥) = E(⇥, {z`}) at each iteration. For the GMM
model, we assume

pg(z; ⇥) =
1

m

mX

i=1

N (z;µi, S
>

i Si),

where⇥ = {✓1, · · · , ✓m} with each particle ✓i = {µi, Si},
representing the mean vectors {µi} and square root of co-
variance matrices {Si}. We keep Si a lower triangular ma-
trix in our implementation.

Empirical Results For fair comparison, we follow ex-
actly the implementation details in Zong et al. (2018). We
evaluate on the KDDCUP99 10 percent dataset2, which
contains 494,021 instances and an anomaly ratio of 0.2. We
replace the categorical features with one-hot representation
as suggested in Zong et al. (2018). We take 50% of the nor-
mal data for training and the rest for testing. For testing, the
top 20% samples with the lowest likelihood are classified
as anomalies. We fix the temperature ↵ to be 0.5. Table 2
reports the average precision, recall and F1 score after 20
runs for our approach and the baselines. We can see that
our approach achieves the best performance.

6. Conclusions
In this paper, we generalize Stein variational gradient de-
scent (SVGD) for learning entropy regularized diversified
mixture models. Our algorithm has a straightforward and
simple form, which closely mimics the typical gradient
updates but with a repulsive force for encouraging explo-
ration in the parameter space. Empirical results on the deep
embedded clustering and the deep anomaly detection task
demonstrate the practical effectiveness of our approach.

2http://archive.ics.uci.edu/ml/datasets/
kdd+cup+1999+data
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