On the Convergence and Robustness of Adversarial Training

A. Proof of Theorem 1

The proof of Theorem 1 is inspired by Sinha et al. (2018). Before we prove this theorem, we need the following two
technical lemmas.

Lemma 1. Under Assumptions I and 2, we have Lg(0) is L-smooth where L = Ly, Lo/ + Lo, i.e., for any 61 and 6,
it holds

L
Ls(01) < Ls(02) + (VLg(62),0, — 62) + §||91 - 053,
[VLs(01) — VLs(02)2 < L|[61 — 02|z

Proof. By Assumption 2, we have for any 61, 02, and x;(601),x(02), we have
[(02,%7(601)) < f(02,%7(02)) + (Vi f(02,%;(02)), %7 (61) — %7 (62)) — gIIXZ‘(@l) - x;(62)|I3
< F(62.x; (62)) — 5 1x: (6:) - x; (62)]3 ©)
where the inequality follows from (Vy f(62,%x(62)),x5(01) — x}(02)) < 0. In addition, we have
[(62,%(602)) < f(02,%;(61)) + (Vi f(62,%;(01)), %7 (62) — %7 (61)) — %HXZ‘(‘%) —x;(62)[I3 ()

Combining (6) and (7), we obtain

pllx; (01) — x5 (02)[13 < (Vaf(02,%7(61)),%; (62) — % (61))
< (Vi f(02,%](01)) — Vx f(01,%;(61)),%; (62) — x;(61))
<[V f(62,%](01)) — Vx f(01,%;(61))2x; (62) — %7 (01) ]2
< Lygl|02 — 61|2]x; (82) — x7(61)]|2 ®)

where the second inequality holds because (Vy f(61,x(61)),x;(02) — x;(01)) < 0, the third inequality follows from
CauchySchwarz inequality, and the last inequality holds due to Assumption 1. (8) immediately yields

lIx;(01) —x;(02)]|2 <

1P €))

Then we have for i € [n],

[Vof(01,%x;(01)) — Vo f(02,x;(62))]2 < [[Vof(01,%](01)) — Vo f(01,%x;(02))]2
+1|Vef(61,%;(02)) — Vo f(02,%;(02))]]2
< Lo ||x; (01) — x;(02)]l2 + Log||61 — 02]|2

LozLy
("M"+Leg)|el — 0,2 (10)

where the first inequality follows from triangle inequality, the second inequality holds due to Assumption 1, and the last
inequality is due to (10). Finally, by the definition of Lg(0), we have

|VLs(6:1) — VLs(82)]2 < H Zvef (61,%;(61)) ——Zvef 02,%;(6-))
=1

2

IN

-~ Z Vo f(61,%;(01)) = Vo f(02,%;(62))]2

<L01Lr0
17

IN

+ L99> |61 — 02]|2,

where the last inequality follows from (10). This completes the proof. O
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Lemma 2. Under Assumptions 1 and 2, the approximate stochastic gradient g(0) satisfies

[1£(0) —g(0)l2 < L%\/E'

Proof. We have

18(0) — £(0)]2 = H“lg' S (Vo f(8.%(6)) — V1i(6))

i€B

2

< %,' S Vo f(0,%:(0) - Vof(0,x:(8))],

i€EB

1 s *
<18 > Looll%i(6) — x;(8)]l2,

i€eB

(an

(12)

where the first inequality follows from triangle inequality, and the second inequality holds due to Assumption 1. By

Assumption 2, we have for any 0, and x}(0),x;(0), we have

pll; (8) —%i(0)[13 < (Vxf(6,%](8)) — VxS (8, %i(8)), %:(0) — x;

Since %;(0) is a §-approximate maximizer of f(6,%;(0)), we have
(x7(0) —%,(0), Ve f(6,%,(0))) < 0.

In addition, we have
(%:(0) —x;(0), Vi f(0,x;(8))) < 0.
Combining (14) and (15) gives rise to
(%i(6) — x7(8), V< f(8,%;(0)) — Vo f(0,%(0))) < 0.
Substitute (16) into (13), we obtain
plix; (8) —%;(0)|3 < 9,

which immediately yields

Substitute (17) into (12), we obtain

which completes the proof.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let f(0) = 1/n) 1 miny, f(8,x;) =1/n> ., f(0,x}). By Lemma 1, we have
L
Ls(0") < Ls(6") + (VLs(6"),0""" — 6") + |07 — 6'|3

= Ls(0) — mlIVLs (03 + T2 g(0)]3 + m{VLs(6°"), VLs(6'*") ~ &(6))
— Ls(0") - (1—L”’f)nws<9t>n2+m (1—L)<VLs<et> VLs(0") — £(60")
L77t2 ~nt (12
+ 20 g(67) - VL (813
— Ls(6") - <1Lm)IIVLs(Gt)Ilz+m<1Lm)<VL (0).5(0") — £(6))
(1= 2 ) (VLs(0), 925(0) — (0 + S 610" - 610" + 810") - VLs(0)]
< Lo(0)~ 2 (1 - 1)V Lsto] + (1—““)|| (®") - &(0")]3

(14 55 ) (VLs(6. TLs(6) ~ 869) + L (12(6") — (@) 3 + (@) - VEs(6)]B)

Taking expectation on both sides of the above inequality conditioned on 8%, we have

L 3L L2 6
BILs(0) — Ls0)0] < - (1= 5 IvLs@l+ (14 550 ) 0 h nger

where we used the fact that E[g(6")] = VLs(0"), Assumption 3, and Lemma 2. Taking telescope sum of (18) over

t=20,. — 1, we obtain that

T-1

tz: 73(1 - ) [IVZs(@)15] < E[Ls(8%) — Ls ()] + Z 3 (1 - 3L2m> LZxé +LZ77

t=0

Choose n; = n = min(1/L, \/A/TLo?) where L = Ly, Lo/p + Lgg, we can show that

— LA 5L2 5
Z [IVLs(6)2] < 404/ = - eallEasy

=0 K

This completes the proof. ]



