Deep Factors for Forecasting

A. Deep Factor Models with Random Effects

In this section, we provide additional details on the models discussed in Section 3.1. In what follows, we overload the
notation and use g;(-) : IR? — IR¥ to denote the vector function consisting of the global factors.

NAME | DESCRIPTION | LOCAL | LIKELIHOOD (GAUSSIAN CASE)
Zero-mean Gaussian noise 9 _ 9

DF-RNN process given by RNN Tit ~ N(0, Ui,t) p(zi) = Ht N(Z%t - fl,t|07 Ui,t)

DF-LDS | State-space models | rix ~LDS;; (cf. Eqn. (6)) |  p(z;) given by Kalman Filter

DF-GP | Zero-mean Gaussian Process | r;; ~ GP;, (cf. Eqn. (7)) | p(z:) = N(z; — fi|0,K; + o71)

Table A.1. Summary table of Deep Factor Models with Random Effects. The likelihood column is under the assumption of Gaussian
noise.

A.1. DF-RNN: Gaussian noise process as the local model

The local model in DF-RNN is zero-mean i.i.d. Gaussian, where the variance ai . 1s generated by a noise RNN process. The
generative model is given as:
random effect : &, ~ N(0,0’Zt), oi = RNN(z; ),
fixed effect:  f;, = wiTgt(mi7t),
emission : 2, ~ p(-|ui ), Uiy = fir+ iy

Although the noise is i.i.d., there is correlated noise from the latent RNN process. For the non-Gaussian likelihood, the latent
innovation terms € in the latent function u requires inference. To do so, we use Algorithm 1. The variational lower bound
in Eqn. (10) is straightforward to calculate, since the marginal likelihood log p(w) is the log-likelihood of a multivariate

Gaussian with mean w ' g; and a covariance matrix with 2 on the diagonal entries. DF-RNN can be seen as a type of deep
Gaussian latent variable model.

A.2. DF-LDS: LDS as the local model
The generative model for DF-LDS is given as:
random effect :  h;, =F; hi1 + qir€ir, €4~ N(0,1),
Tit = aIthi,t

fixed effect :  f;; = w;—gt(xi,t)v

emission : 2 ~ p(-|wit), Wix = fir+ iz

We consider the level-trend ISSM model with damping,

0 0 i Q;
a;y = {%} , Fig= {0 ;] , and @iy = {ﬁj )

where §;,y; control the damping effect, and the parameters a;; > 0 and 3; > 0 contain the innovation strength for the level
and trend (slope), respectively. The initial latent state h; o is assumed to follow an isotropic Gaussian distribution. We
choose a simple level-trend ISSM because we expect the global factors with attention to explain the majority of the time
series” dynamics, such as trend and seasonality. This avoids having to hand design the latent states of the ISSM.

As a special case, we recover SSM with non-Gaussian likelihood, and our inference algorithm gives a new approach to
perform inference on such models, which we call Variational LDS.

Variational LDS: DF-LDS with no global factors Variational LDS is a state-space model (SSM) with an arbitrary
likelihood as its emission function. In this subsection, we supply additional details of the inference of the variational LDS
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using the synthetic example in Section 5.1. The data is generated as,

cosf —sinf
iy = Ahe +en, A= {sin@ cos 0 ] ’

€p ~ ./\/(07 a212)7 Vip1 = e?hH,l + €y, €y~ ./\/(07 0'2).
Our observations are generated as:
2¢ = Poisson[A(vq)], A(ve) = log[1 + exp(ve)],

resulting in the popular Poisson LDS.

Our goal is perform inference over the latent variables, {h,u}, where h = hy.7 and w = vy.7, given the observations
z = z1.7. Asin Section 3.2.2, we use a variational auto-encoder (VAE) with structural approximation, and a variational
posterior to approximate the true posterior p(h, u|z) as g4(h, u|z) = g4(u|z)p(h|u). As in DF-LDS, the first term is
generated by the recognition network, and the second term chosen to match the conditional posterior. For the training
procedure, we resort to Algorithm 1 with no global factors, i.e., 7 is the sample generated by the recognition network.

There are different neural networks structures to choose from for the variational encoder g4(h|z). We choose the bi-
directional LSTM since it considers information from both the past and the future. This is similar to the backwards message
in the Kalman smoother. Similar preference can also be found in (Krishnan et al., 2015), although their model structure
differs. The recognition network is only used in the training phase to better approximate the posterior distribution of the
latent function values, and so there is no information leak for the desired forecasting case.

A.3. DF-GP: Gaussian Process as the local model

With DF-GP, the random effects is assumed to be drawn from a zero-mean Gaussian process.

random effect :  r;(-) ~ GP(0, C; (-, -)),
fixed effect:  f; 4 = w;gt(xi7t),
latent function values :  w; ¢ = fit + e, Tt = 1i(@iy),

emission :  2;; ~ p(-|uiz)).

Simiarily with Variational LDS, with the proposed inference algorithm, we get a new approach for doing approximate
inference for GP with non-Gaussian likelihood. We leave the comparison with classical approaches (Rasmussen & Williams,
2006) such as Laplace approximation, Expectation Propagation, Variational Inference to future work.

B. Detailed Experimental Analysis

In this appendix, we provide further results in both the synthetic and empirical cases.

B.1. Synthetic Experiments

The local model and observations are generated using the variational-LDS example in Appendix A.2. We want to test the
ability of the algorithm to recover the underlying latent factors. To do so, we add global factors that are generated from
Fourier series of different orders, to the synthetic dataset described in Section 5.1. For each time series, the coefficients of
the linear combination are sampled from a uniform distribution.

In the presence of Gaussian LDS noise (u; observed), Figure B.1 shows that the algorithm does not precisely recover the
global factors. The distance between the subspaces spanned by the true and estimated factors reveals that they are reasonably
close. Even with Poisson observations in Figure B.2, the method is still able to roughly recover the factors.
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Synthetic Data with Gaussian Likelihood True (solid) vs. Estimated (dashed) Global Factors

Figure B.1. Synthetic data with Gaussian noise and true (solid) vs. estimated (dashed) global factors.

Synthetic Data with Poisson Likelihood True (solid) vs. Estimated (dashed) Global Factors
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Figure B.2. Synthetic data with Poisson noise and true (solid) vs. estimated (dashed) global factors.

B.2. Empirical Studies

Table B.1 summarizes the datasets that are used to test our Deep Factor models.

NAME | SUPPORT ~ GRANULARITY NO.TS COMMENT

electricity R* hourly 370 electricity consumption of different customers
traffic [0,1] hourly 963 occupancy rate of SF bay area freeways

taxi Nt hourly 140 No. of taxi pick ups in different blocks of NYC
uber N hourly 114 No. of Uber pick ups in different blocks of NYC

Table B.1. Summary of the datasets used to test the models.

We first compare our two methods, DF-RNN and DF-LDS with level-trend ISSM, on the electricity dataset with
forecast horizon 24. Table B.2 shows the averaged results over 50 trials. We see that both methods have similar accuracy
with DF-RNN being slightly preferrable. Due to its simplicity and computational advantages, we choose DF-RNN as the
Deep Factor model to compare against the other baseline methods. Regarding DF-GP, although it shows a good performance
in our perliminary results, still extra exploration is needed for which we left to future work.

METHOD | P50QL | POOQL | RMSE
DF-RNN ‘ 0.144 £+ 0.019 ‘ 0.101 £ 0.044 ‘ 888.285 + 278.798
DF-LDS \ 0.153 £ 0.016 \ 0.135 £ 0.052 \ 1012.551 + 240.118

Table B.2. Comparison of DF-RNN and DF-LDS with level-trend ISSM on electricity over 50 runs.
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We provide the result of one trial for Prophet in Table 2 since its classical methods have less variability between experiments
and are more computationally expensive. The acronyms DA, P, MR, DF in these tables stand for DeepAR, Prophet,
MQ-RNN and DeepFactor, respectively. Figure B.5 illustrates example forecasts from our model.

In our experiments, we do not tune the hyper-parameters of the methods. With tuning and a much bigger model, DeepAR
would achieve higher accuracy in our preliminary experiments. For example, with the SageMaker HPO, we achieve the
DeepAR'’s best performance of 0.118 MAPE and 0.042 P90 Loss on the electricity dataset for horizon 72. The
hyper-parameters are selected to be a two-layer LSTM each with 40 units, a learning rate of 5e-3, 2000 epochs and an

early stopping criteria of 200 epochs. As we can see, this metric is on par with our results in Table 2 and DF achieves such
accuracy with much less number of parameters.

DeepAR#Prophet®=MQRNN#DeepFactor
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Figure B.3. P90OQL and log(1 + RMSE) normalized by 8 results for the forecast horizon 72 in Tables 2 and B.3, respectively. Purple
denotes the proposed method.
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Figure B.4. P50QL (MAPE) P90QL and log(1 + RMSE) /8.0 (to make them in the same scale) results for forecast horizon 24 in Tables 2
and B.3, respectively. Purple denotes the proposed method.



Deep Factors for Forecasting

ps | m RMSE
DA P MR DF
E 72 | 1194.421+ 295.603  902.724  1416.992 £ 510.705  770.437 £ 68.151
24 | 2100.927 £535.733  783.598 1250.233 £ 509.159  786.667 £ 144.459
N 72 108.963 £ 15.905 97.706 106.588 £+ 9.988 53.523 + 13.096
24 98.545 £ 13.561 91.573 102.721 £ 9.640 63.059 £+ 11.876
T 72 0.027 £ 0.001 0.032 0.029 + 0.003 0.019 + 0.002
24 0.025 £ 0.001 0.028 0.028 £ 0.001 0.021 + 0.003
U 72 9.218 £ 0.486 7.488 14.373 £ 0.997 6.393 + 1.185
24 6.043 £ 0.295 6.948 16.585 £ 3.452 8.044 £+ 2.307

Table B.3. RMSE: Results for short-term (3-day forecast, 72-hour) and near-term (24-hour forecast) scenario with one week of training

data.
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Figure B.5. Example forecast for (top row) uber (left) and taxi (center left) in the cold-start situation, and regular setting (center
right) and traffic. For the taxi cold-start example, our model fails to produce a reasonable forecast, possibly due to insufficient

information of corresponding latitude and longitude. Bottom role: another set of example forecasts for uber, taxi,

electricity.
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