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A. Background
A.1. Private Le Cam and Fano Method

Given a finite set  , a family of distributions {Pv, v ∈ } with Pv ∈  is 2�-separated in a metric � if �(�(Pv), �(Pv′ )) ≥ 2�
for all distinct pairs v, v′ ∈  . Given any 2�-separated set, the private Fano’s method for the � non-interactive private
minimax risk can be summarized by the following lemma.

Lemma 1 (Prop. 2 in (Duchi et al., 2018)). Given any 2�-separated set {Pv, v ∈ }, and � ∈ (0, 2335 ], the � non-interactive
private minimax risk satisfies the following inequality

Nint
n (�(),Φ◦�, �) ≥ Φ(�)

2
(

1 −
n�2Nint∞ ({Pv}v∈ ) + log 2

log ||
)

,

where Nint∞ ({Pv}v∈ ) =
1
|| sup
∈B∞

∑

v∈ ( v(
))2, B∞ is the 1-ball of the supremum norm B∞ = {
 ∈ L∞() ∣ ‖
‖∞ ≤
1}, and L∞() = {f ∶  → ℝ ∣ ‖f‖∞ < ∞} is the space of uniformly bounded functions with the supremum norm
‖f‖∞ = supx |f (x)|. Also, for each v ∈  ,  v ∶ L∞() → ℝ is a linear function defined by

 v(
) = ∫

(x)dPv(x) − dP̄ (x),

where P̄ is the mixture distribution P̄ = 1
||

∑

v∈ P
n
v .

A useful corollary is the following:
Lemma 2 (Corollaries 2 and 4 in (Duchi et al., 2013)). Let V be randomly and uniformly distributed in  . Assume that
given V = v, Xi is sampled independently according to the distribution of Pv,i for i = 1,⋯ , n. Then, there is a universal
constant c < 19 such that for � ∈ (0, 2335 ],

I(Z1, Z2,⋯ , Zn;V ) ≤ c�2
n
∑

i=1

1
||2

∑

v,v′∈
‖Pv,i − Pv′,i‖2TV .

The � non-interactive private minimax risk satisfies

Nint
n (�(),Φ◦�, �) ≥ Φ(�)

2
(

1 −
I(Z1,⋯ , Zn;V ) + log 2

log ||
)

.

Now we introduce the generalized private Le Cam method. Let 0 and 1 be two collections of distributions in  .
We say that 0 and 1 are �-separated for loss function L if dL(P0, P1) ≥ � for all P0 ∈ 0 and P1 ∈ 0, where
dL(P0, P1) = inf�∈Θ{L(�, �(P0)) + L(�, �(P1)). Then we have the following lemma.
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Lemma 3 (Theorem 2 in (Duchi & Ruan, 2018)). For any � ∈ (0, 2335 ], the � sequential private minimax risk in the loss
function L satisfies the following inequality

Int
n (�(), L, �) ≥

1
2
min
v∈

dL(P0, Pv)
(

1 − 1
2

√

Dkl(Mn
0‖M̄

n)
)

,

where

Dkl(Mn
0‖M̄

n) ≤ n�2

4
∞({Pv}v∈ ) min{e� ,maxv∈

‖

dP
dPv

‖∞}

for any distribution P supported on  . Here

∞({Pv}v∈ ) = inf
suppP ∗∈

sup


{ 1
||

∑

v∈
�v(
)2|‖
‖L∞(P ∗)}.

Where the linear functional �v(f ) is defined as

�v(f ) ∶= ∫ f (x)(dP0(x) − dPv(x)).

A.2. Technical Lemmas

For the estimation error, we first give some definitions and lemmas.

Definition 1. A random variable X is said to be sub-Gaussian with �2 if E(X) = 0 and

E[exp(X)] ≤ exp(�
2s2

2
),∀s ∈ ℝ.

For the case that X is a d-dimensional random vector, it is sub-Gaussian with �2 if for any unit vector u ∈ Sd−1, uTX is
sub-Gaussian with �2.

It is well known that ifX1, X2,⋯ , Xn are all sub-Gaussian with �2, then a1X1+⋯+anXn is sub-Gaussian with (
∑n
i=1 a

2
i )�

2.

We can easily see that if x ∼ Uniform{+1,−1}d , x is sub-Gaussian with �2 = 1.

Lemma 4 ((Vershynin, 2010)). Let X1, X2,⋯ , Xn be n random variables such that each Xi is sub-Gaussian with �2. Then
the following holds

Pr[max
i∈n

Xi ≥ t] ≤ ne−
t2

2�2 ,

Pr[max
i∈n

|Xi| ≥ t] ≤ 2ne−
t2

2�2 .

Lemma 5 ((Jain et al., 2014)). For any � ∈ ℝk and an integer s ≤ k, if �t = Trunc(�, s) then for any �∗ ∈ ℝk with
‖�∗‖0 ≤ s, we have ‖�t − �‖2 ≤

k−s
k−s∗ |�

∗ − �‖22.
Lemma 6. Let  be a convex body in ℝp, and v ∈ ℝp. Then for every u ∈ , we have

‖(v) − u‖2 ≤ ‖v − u‖2,

where  is the operator of projection onto .

The following theorem says that when X ∈ Uniform{+1,−1}n×p, with high probability it satisfies the Restricted Isometry
Property if n is sufficiently large.

Lemma 7 (Theorem 2.12 in (Rauhut, 2010)). Let X ∈ {+1,−1}n×p be a Bernoulli Random Matrix and �, � ∈ (0, 1).
Assume that

n ≥ C�−2(s log(p∕s) + log(1∕�)).

Then with probability at least 1 − �, X satisfies the Restricted Isometry Property (RIP) with sparsity level s and parameter �,
that is, for every ‖v‖0 ≤ s,

(1 − �)‖v‖2 ≤ 1
n
‖Xv‖22 ≤ (1 + �)‖v‖

2
2.
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Note that if X satisfies the Restricted Isometry Property (RIP) with sparsity level s and parameter �, it means that

� = max
‖x‖2=1,‖x‖0≤s

‖(1
n
XTX − Ip×p)x‖2.

Lemma 8 ((Laurent & Massart, 2000)). If z ∼ �2n , then

Pr[z − n ≥ 2
√

nx + 2x] ≤ exp(−x).

We now review the randomizer �(⋅) in (Smith et al., 2017; Duchi et al., 2018) and its properties .

Randomizer � On input x ∈ ℝp, the randomizer �(x) does the following. It first sets x̃ = bx
‖x‖2

where b ∈ {−1,+1} a

Bernoulli random variable Ber( 12 +
‖x‖
2 ). We then sample T ∼ Ber( e�

e�+1 ) and outputs O(
√

p)�(x), where

�(x) =

{

Uni(u ∈ Sp−1 ∶ ⟨u, x̃⟩ > 0) if T = 1
Uni(u ∈ Sp−1 ∶ ⟨u, x̃⟩ ≤ 0) if T = 0

(1)

Lemma 9 ((Smith et al., 2017)). Given any vector x ∈ ℝp, the randomizer �(x) defined above is a sub-Gaussian random
vector with variance �2 = O( p�2 ) and E(�(x)) = x.

B. Some Omitted Proofs
Proof of Theorem 1. We first prove the lower bound.

The main idea of the proof is :

• Find an index set  which corresponds to a 2�-separated set {Pv, v ∈ }.

• Obtain an upper bound on ∞({Pv}v∈ ), use Lemma 1 to specify �, and then get an lower bound.

We consider  as the set of {±ej , j ∈ [p]}, where {ej}nj=1 is the standard basis of ℝp. Let �v = �v for some � < 1 and every
v ∈  . Then for each �v, we define the distribution P�v as

P�v =
{

x ∈ Uniform{+1,−1}p; p�v (y ∣ x, �) = ⟨x, �v⟩ + �; where � =

{

1 − ⟨x, �v⟩ w.p. 1+⟨x,�v⟩2
−1 − ⟨x, �v⟩ w.p. 1−⟨x,�v⟩2

}

. (2)

It is easy to see that P�v ∈ 1,p,2 since the noise |�| ≤ 1 + |⟨x, �v⟩| ≤ 2. Note that the distribution in (2) is equivalent to

p�v ((x, y)) =
1 + y⟨x, �v⟩

2p+1
for (x, y) ∈ {+1,−1}p+1. (3)

Also for every fixed (x, y) ∈ {+1,−1}p+1, we have p̄((x, y)) ∶= 1
||

∑

v∈ p�v ((x, y)) =
1

2p+1 .

Now we show our main lemma used in the proof.

Lemma 10. The term Nint∞ ({Pv}v∈ ) satisfies the following inequality

Nint∞ ({Pv}v∈ ) ≤
�2

p
. (4)

Proof of Lemma 10. By definition, for each v ∈  we have

 v(
) =
∑

(x,y)∈{+1,−1}p+1

(x, y)[pv((x, y)) − p̄((x, y))]

= �
2p+1

∑

(x,y)∈{+1,−1}p+1

(x, y)y⟨x, v⟩

= �
2p+1

∑

x∈{+1,−1}p
[
(x, 1)⟨x, v⟩ − 
(x,−1)⟨x, v⟩]
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Thus, we can get

1
||

∑

v∈
 2v (
) ≤ 2 ×

1
2p

∑

v∈
[
( �
2p+1

∑

x∈{+1,−1}p

(x, 1)⟨x, v⟩

)2 +
( �
2p+1

∑

x∈{+1,−1}p

(x,−1)⟨x, v⟩

)2]

= �2

p4p+1
∑

v∈

∑

x1,x2∈{+1,−1}p
[
(


(x1, 1)
(x2, 1) + 
(x1,−1)
(x2,−1)
)

xT1 vv
T x2]

= 2�2

p4p+1
∑

x1,x2∈{+1,−1}p

(


(x1, 1)
(x2, 1)xT1 x2 + 
(x1,−1)
(x2,−1)x
T
1 x2

)

,

where the last equation is due to
∑

v∈ vv
T = 2Ip×p. Thus by the definition of Nint∞ ({Pv}v∈ ) we have

Nint∞ ({Pv}v∈ ) ≤
1
2
�2

p4p
[ sup

∈B∞

∑

x1,x2∈

(x1, 1)
(x2, 1)xT1 x2 + sup


∈B∞

∑

x1,x2∈

(x1,−1)
(x2,−1)xT1 x2]

= �2

2p
[ sup

∈B∞

‖EP0 [
(X, 1)X]‖
2 + sup


∈B∞
‖EP0 [
(X,−1)X]‖

2],

where P0 is the uniform distribution on {+1,−1}p. Note that since ‖a‖22 = sup‖v‖≤1⟨v, a⟩
2 for any vector a, by Cauchy-

Schwartz inequality we have

sup

∈B∞

‖EP0 [
(X, 1)X]‖
2

= sup

∈B∞,‖v‖2≤1

(EP0 [
(X, 1)v
TX])2

≤ sup

∈B∞

EP0 [
(X, 1)
2] × sup

‖v‖2≤1
EP0 [(v

TX)2]

≤ sup
‖v‖2≤1

vT
∑

x∈{−1,1}p

xxT

2p
v ≤ 1,

where the second inequality is due to the definition of X and 
 . Similarly, we can bound the term
sup
∈B∞ ‖EP0 [
(X,−1)X‖

2] ≤ 1. This completes the proof.

By Lemma 1 and Lemma 10 , we can get

Nint
n (�(1,p,2),Φ◦�, �) ≥

�2

2
(

1 −
n�2 �

2

p + log 2

log 2p
)

.

If we take �2 = Ω(min{1, p log 2pn�2 }), we can get the proof of the lower bound in Theorem 1.

Next, we prove the upper bound. We propose an (�, �) non-interactive LDP algorithm. Note that by using the protocol in
(Bun et al., 2018a) we can transform it into � non-interactive LDP algorithm.

The idea of the proof is that each user perturbs the data by using Gaussian mechanism and sends it to the server, and then the
server performs the following LASSO:

min
�∈ℝp

1
2n

n
∑

i=1
(⟨x̃i, �⟩ − ỹi)2 +

�
2
‖�‖1

for some �, see Algorithm 1.

Theorem 1. For any 0 < �, � < 1, Algorithm 1 is (�, �) non-interactive LDP. Furthermore, if n ≥ Ω( p log p�2 ) and X ∈
{−1, 1}n×p satisfies the Assumption 1 with some sparsity and parameter �′ = O(1) (by Lemma 7 we know this satisfies with
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probability at least 1− exp(Ω(−p))), then by setting � = O(

√

p ln 1�C

�

√

log p
n ), with high probability (at least 1− exp(−Ω(p))),

the output �̃ satisfies:

‖�̃ − �∗‖22 ≤ O(
p ln 1�C

2

n�2
).

Proof. By the construction of {x̃i}ni=1 and {ỹi}ni=1, we know

ỹi = ⟨xi, �
∗
⟩ + ⟨zi, �

∗
⟩ + si +wi. (5)

From the definition and the fact that ‖�∗‖2 ≤ 1, we know that the term ⟨zi, �∗⟩ + si + wi can be seen as a sub-Gaussian

noise with the variance �2 = O(
p ln 1�C

2

�2 ). By the definition and the assumption of X and Corollary 2 in (Negahban et al.,
2012), we can the get the proof.

Algorithm 1 Local Gaussian-LASSO
Input: Private data records {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈ 1,p,C , privacy parameters
�, �.

1: for Each i ∈ [n] do

2: Let x̃ = xi + zi, where � ∼  (0, �2Ip) for �2 =
32p ln 1.25�

�2 . And ỹi = yi + si, where si ∼  (0, �21 ), �
2
1 =

32(C+1)2 ln(1.25∕�)
�2 .

3: end for
4: for The server do
5: Solve and return

�̃ = arg min
�∈ℝp

1
2n

n
∑

i=1
(⟨x̃i, �⟩ − ỹi)2 +

�
2
‖�‖1.

Where � = O(

√

p ln 1�C

�

√

log p
n ).

6: end for

Proof of Theorem 2. Now we use the squared loss as the loss function L(�, �′) = ‖� − �′‖22. Then, dL(P0, P1) =
1
2‖�(P0) − �(P1)‖

2
2. Define P0 ∈ 1,p,C as the uniform distribution on {+1,−1}p × {+1,−1}, that is,

P0 =
{

x ∈ Uniform{+1,−1}p; p�v (y ∣ x, �) = ⟨x, 0⟩ + �; where � =

{

1 − ⟨x, 0⟩ w.p. 1+⟨x,0⟩2
−1 − ⟨x, 0⟩ w.p. 1−⟨x,0⟩2

}

.

Thus, �(P0) = 0.

Define the set of distributions {Pv, v ∈ } in the same way as in the proof of Theorem 1. Then, we have dL(P0, P1) =
1
2�
2.

For the KL-divergence Dkl between Mn
0 and M̄n, since

Dkl(Mn
0‖M̄

n) ≤ n�2

4
∞({Pv}v∈ ) min{e� ,maxv∈

‖

dP
dPv

‖∞}.

We can easily see that for each 
 ∈ B∞ and v ∈  , we have that  v(
) in the proof of Lemma 10 is equivalent to

�v(
) in Lemma 3 for our construction. Thus, by Lemma 10 we have ∞({Pv}v∈ ) ≤ �2

p . Taking P = P0, we get

maxv∈ ‖

dP
dPv

‖∞ = 1
1−� . Thus, if choosing �2 = Ω(min{1, p

n�2 }), we have

Dkl(Mn
0‖M̄

n) ≤ n�2�2(1 + �)
8p

.
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By Lemma 3, we can get

Int
n (�(1,p,2),Φ◦�, �) ≥

�2

4
(1 −

√

n�2�2(1 + �)
8p

).

Thus, if taking �2 = Ω(min{1, p
n�2 }), we have the proof.

Proof of Theorem 3. Now consider the case of L(�, �′) = |1T (� − �′)|. We can easily obtain dL(P1, P2) ≥ |1T (�(P2) −
�(P1))|. Consider the same distributions P0, {Pv, v ∈ } as in the proof of Theorems 2, we have minv∈ dL(P0, Pv) ≥ �.

Since Dkl(Mn
0‖M̄

n) ≤ n�2�2(1+�)
8p for �2 = Ω(min{1, p

n�2 }), we have

int
n (�(1,p,2), L, �) ≥

�
2
(1 −

√

n�2�2(1 + �)
8p

).

Thus, we have the proof if set �2 = Ω(min{1, p
n�2 }) .

Proof of Theorem 4. Follow from the fact that the linear model is a special case of the non-linear measurement. See the
proof of Theorem 3 in Section D for the case f (x) = x and a = b = 1.

Proof of Theorem 5. Follow from the fact that the linear model is a special case of the non-linear measurement. See the
proof of Theorem 4 in Section D for the case f (x) = x and a = b = 1.

Proof of Theorem 6. Follow from the fact that the linear model is a special case of the non-linear measurement. See the
proof of Theorem 5 in Section D for the case f (x) = x and a = b = 1.

Proof of Theorem 7. For the guarantee of (�, �)-DP, it follows from the Moment accountant and composition theorem, see
(Abadi et al., 2016; Wang et al., 2017) for details.

Let  = t+1
⋃

t
⋃

∗, where ∗ = supp(x∗), t = supp(xt) and t+1 = supp(xt+1), and gt = ∇L(xt) + zt. Since
‖xt+1 − xt‖0 ≤ 2k. By the assumption of RSS, we have

L(xt+1) ≤ L(xt) + ⟨∇L(xt), xt+1 − xt⟩ +
ls
2
‖xt+1 − xt‖2

≤ L(xt) + ⟨(gt) , (xt+1 − xt)⟩ +
ls
2
‖xt+1 − xt‖2 + ‖zt,‖‖(xt+1 − xt)‖2

= L(xt) +
1
2�

‖xt+1, − xt, + �gt,‖2 −
�‖gt,‖2

2
−
1 − �ls
2�

‖xt+1 − xt‖2 + ‖zt,‖‖(xt+1 − xt)‖2

= L(xt) +
1
2�
(‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖

2) −
�‖gt,t⋃∗‖2

2
−
1 − �ls
2�

‖xt+1 − xt‖2

+ ‖zt,‖‖(xt+1 − xt)‖2, (6)

where the second inequality is due to xt+1 − xt = xt+1, − xt, .

We now bound the term of ‖xt+1,−xt,+�gt,‖2−�2‖gt,∖(t⋃∗)‖
2 by the idea in (Jain et al., 2014). Since ∖(t

⋃

∗) =
t+1∖(t

⋃

∗) ⊆ t+1, we have
xt+1,∖(t⋃∗) = xt,∖(t⋃∗) − �gt,∖(t⋃∗).

Also, since xt,∖(t⋃∗) = 0, this means that xt+1,∖(t⋃∗) = −�gt,∖(t⋃∗). Next, we choose a set  ⊆ t∖t+1 such
that || = |t+1∖(t

⋃

∗)|. Note that such  can be found since |t+1∖(t
⋃

∗)| = |t∖t+1| − |(t+1
⋂

∗)∖t|
(which is a consequence of |t| = |t+1|). Thus, we have

�2‖gt,∖(t⋃∗)‖
2 = ‖xt+1,∖(t⋃∗)‖

2 ≥ ‖xt, − �gt,‖2. (7)
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With (7) and the fact that xt+1, = 0, we have

‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖
2 ≤ ‖xt+1, − xt, + �gt,‖2 − ‖xt+1, − xt, + �gt,‖2

= ‖xt+1,∖ − xt,∖ + �gt,∖‖2. (8)

We then bound the size of |∖| as |∖| ≤ |t+1|+ |(t∖t+1)∖|+ |∗| ≤ k+ |(t+1
⋂

∗)∖t|+ k∗ ≤ k+2k∗. Also,
since t+1 ⊆ (∖), we have xt+1,∖ = Trun(xt,∖ − �gt,∖, k). Thus, by (7) and Lemma 5 we have

‖xt+1, − xt, + �gt,‖2 − �2‖gt,∖(t⋃∗)‖
2

≤ ‖xt+1,∖ − xt,∖ + �gt,∖‖2

≤ 2k∗
k + k∗

‖x∗∖ − xt,∖ + �gt,∖‖
2

≤ 2k∗
k + k∗

‖x∗ − xt, + �gt,‖
2

= 2k∗
k + k∗

(‖x∗ − xt‖2 + 2�⟨gt, , (x∗ − xt)⟩ + �2‖gt,‖2)

= 2k∗
k + k∗

(‖x∗ − xt‖2 + 2�⟨∇L(xt), (x∗ − xt)⟩ + �2‖gt,‖2) +
4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩

≤ 2k∗
k + k∗

[‖x∗ − xt‖2 + 2�(L(x∗) − L(xt) −
�s
2
‖x∗ − xt‖2) + �2‖gt,‖2] +

4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩

=
4�k∗

k + k∗
(L(x∗) − L(xt)) +

2(1 − ��s)k∗

k + k∗
‖x∗ − xt‖2 +

2�2k∗

k + k∗
‖gt,∖(t⋃∗)‖

2 +
2�2k∗

k + k∗
‖gt,(t⋃∗)‖

2 + 4k∗
k + k∗

⟨zt, , (x∗ − xt)⟩.

Plugging this into (6), we get

L(xt+1) ≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt)) +
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2 +

�k∗

k + k∗
‖gt,∖(t⋃∗)‖

2 + (
�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2

+ 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ + ‖zt,‖‖(xt+1 − xt)‖2 −
1 − �ls
2�

‖xt+1 − xt‖2 (9)

≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt)) +
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2 − (

1 − �ls
2�

− k∗

�(k + k∗)
)‖xt+1 − xt‖2+

(
�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2 + 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ + ‖zt,‖‖(xt+1 − xt)‖2 (10)

≤ L(xt) +
2k∗
k + k∗

(L(x∗ − L(xt)) +
(1 − ��s)k∗

�(k + k∗)
‖x∗ − xt‖2 + (

�k∗

k + k∗
−
�
2
)‖gt,t⋃∗‖

2

+ 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ +
�(k + k∗)

2((1 − �ls)k − (1 + �ls)k∗)
‖zt,‖

2, (11)

where the second inequality is due to the fact that ‖xt+1 − xt‖ ≥ �‖gt,∖(t⋃∗)‖ and the third inequality is due to the fact

that ab ≤ a2

4c + cb
2 for any c > 0.

For the term ‖xt − x∗‖2, we have the following lemma:

Lemma 11.
‖xt − x∗‖2 ≤

4
�
[L(x∗) − L(xt)] +

8
�2s
‖gt,t⋃∗‖

2 + 8
�2s
‖zt,‖

2. (12)

Proof. From RSC, we have

L(x∗) ≥ L(xt) + ⟨∇L(xt), x∗ − xt⟩ +
�s
2
‖x∗ − xt‖2

= L(xt) + ⟨∇t
⋃

∗L(xt) − gt,t⋃∗ + gt,t⋃∗ , x
∗ − xt⟩ +

�s
2
‖x∗ − xt‖2

≥ L(xt) −
2
�s
‖zt,‖

2 − 2
�s
‖gt,t⋃∗‖

2 +
�s
4
‖x∗ − xt‖2,



LDP Sparse Linear Regression

where the last inequality is due to ab ≤ a2

4c + cb
2.

With this lemma, we get

L(xt+1) ≤ L(xt) +
2k∗
k + k∗

(1 +
2(1 − ��s)

��s
)(L(x∗) − L(xt)) − (

�
2
−
(�2�2s + 8(1 − ��s))k

∗

��2s(k + k∗)
)‖gt,t⋃∗‖

2

+ 2k∗
�(k + k∗)

⟨zt, , (x∗ − xt)⟩ + (
�(k + k∗)

2((1 − �ls)k − (1 + �ls)k∗)
+
8(1 − ��s)k∗

��2s(k + k∗)
)‖zt,‖2. (13)

Taking � = 1
2ls

and k ≥ (1 + 64l2s
�2s
)k∗, we further get

L(xt+1) ≤ L(xt) +
�s
8ls

(L(x∗) − L(xt)) +
4k∗ls
(k + k∗)

⟨zt, , (x∗ − xt)⟩ +
37ls
�2s

‖zt,‖
2. (14)

Lemma 12. For x ∼ (0, �2Ip)
E|x|2∞ ≤ O(�2 log p)

Proof. By definition of expectation, we have

E|x|2∞ = ∫

∞

0
Pr[|x|2∞ ≥ t]dt = ∫

O(�2 log p)

0
Pr[|x|2∞ ≥ t]dt + ∫

∞

O(�2 log p)
Pr[|x|2∞ ≥ t]dt

≤ O(�2 log p) + ∫

∞

O(�2 log p)
2p exp(− t

2�2
)dt

≤ O(�2 log p) + 2
√

2p�2 exp(−O(log p)) = O(�2 log p).

Note that E⟨zt, , (x∗ − xt)⟩ = E⟨zt, x∗ − xt⟩ = 0. Taking the expectation w.r.t zt and by the fact that ‖zt,‖2 ≤ |I||zt|2∞
(from the above lemma), we have

EL(xt+1) ≤ L(xt) +
�s
8ls

(L(x∗) − L(xt)) + O(
�sk∗G2 log

1
� log pT

�sn2�2
). (15)

That is

E[L(xt+1) − L(x∗)] ≤ (1 −
�s
8ls

)E[L(xt) − L(x∗)] + O(
�sk∗G2 log p log

1
�T

�sn2�2
). (16)

Thus, taking T = O(�s log(
n2

k∗ )), we get the theorem.

C. Discussion on Relaxation of �-LDP
In Section 4 of the main paper, we show that even if sequential interaction and some relaxation on the loss function
are allowed, the polynomial dependence on p still cannot be avoided. We now consider the possibility of lowering the
dependence by relaxing the definition of � local differential privacy. This is motivated by the following fact in the central
model, where there is a big difference between � and (�, �)-differential privacy for a number of problems, such as the
Empirical Risk Minimization (Bassily et al., 2014) and the 1-way marginal (Bun et al., 2018b). However, as shown in a
recent study (Bun et al., 2018a), any non-interactive (�, �)-LDP protocol can be transformed to an �-LDP protocol. This
implies that relaxing to (�, �) LDP cannot avoid the polynomial dependence.

To further investigate the problem, we consider other types of relaxation for LDP, such as Local Rényi Differential Privacy
(LRDP) (Mironov, 2017) and Local Zero-Concentrated Differential Privacy (LzCDP) (Bun & Steinke, 2016). The following
theorem shows that the lower bounds on the minimax risk of the (2, log(1 + �2)) sequential LRDP and (�, �) sequential
LzCDP still have polynomial dependence on p.
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Theorem 2. For a given fixed privacy parameter 0 < � ≤ 1, the (�, �) sequential zCDP minimax risk (under the ‖ ⋅ ‖22
metric) of the 1-sparse high dimensional sparse linear regression problem 1,p,2 needs to satisfy the following inequality,

int
n (�(1,p,2), ‖ ⋅ ‖

2
2, (�, �)) ≥ Ω(min{1,

p
n(e�+2� − 1)

}).

The (2, log(1 + �2)) sequential RDP minimax risk (under the ‖ ⋅ ‖22 metric) of the 1-sparse high dimensional sparse linear
regression problem 1,p,2 needs to satisfy :

int
n (�(1,p,2), ‖ ⋅ ‖

2
2, (2, log(1 + �

2))) ≥ Ω(min{1, p
n�2

}).

To prove Theorem 2, we first recall the definitions of Rényi Differential Privacy, zero-Concentrated Differential Privacy and
�2-differential privacy and then extend them to the sequentially interactive model. For any � ≥ 1, we denote the Rényi
divergence of distribution P and Q as

D�(P‖Q) =
1

� − 1
log∫ (dP

dQ
)�dQ.

For � = 1, it is just the KL-divergence.

Definition 2. Similar to the Definition of local differential privacy, a random variable Zi is a (�, �) lo-
cally zero-concentrated differentially private view of Xi if for all � > 1, z1, z2,⋯ , zi−1 and x, x′ ∈  ,
D�(Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i,= z1∶i−1)) ≤ � + �� holds for all events S. Similar to the locally differentially
private case, we have (�, �) local zero-concentrated differential privacy (LzCDP) and (�, �) sequential zero-concentrated
differential private minimax risk (sequential zCDP minimax risk).

Definition 3. Similarly, we have (�, �) local Rényi differential privacy and (�, �) (sequential) Renyi differential private
minimax risk (called sequential RDP minimax risk) if

D�(Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i, z1∶i−1)) ≤ �.

For any convex function f on ℝ+ with f (1) = 0, the f -divergence of distributions P and Q is

Df (P‖Q) ∶= ∫ f (dP
dQ

)dQ.

Definition 4. Let f (x) = (x− 1)2. Following the above definitions, we have �2-�2-divergence local differential privacy and
�-�2-divergence (sequentially) private minimax risk if

Df (Qi(Zi ∈ S ∣ xi, z1∶i−1)‖Qi(Zi ∈ S ∣ x′i,= z1∶i−1)) ≤ �2.

From the above definitions, it is easy to see that if a channel Q is (�, �) sequentially locally zero-concentrated differentially
private, it is (�2 = e�+2� − 1 )-�2-divergence sequentially locally differentially private. Also, since (2, log(1 + �2)) local
Renyi differential privacy is equivalent to �2-�-divergence local differential privacy, (to prove Theorem 2) we only need to
show the lower bound of �2-�2-divergence sequential local private minimax risk, which is denoted as Int

n,�2
(�(), L, �2).

To do that, we need the following lemma.

Lemma 13. [Theorem 2 in (Duchi & Ruan, 2018)] For any � ∈ (0, 1], the �2-�2-divergence sequential private minimax
risk in the loss function L satisfies the following inequality

Int
n,�2

(�(), L, �2) ≥ 1
2
min
v∈

dL(P0, Pv) × (1 −
1
2

√

Dkl(Mn
0‖M̄

n)),

where

Dkl(Mn
0‖M̄

n) ≤ n�22({Pv}v∈ ) min{e� ,maxv∈
‖

dPv
dP

‖∞}

for any distribution P supported on  , and 2({Pv}v∈ ) =
1
|| inf suppP⊂ sup
{

∑

v∈ (�v(
))2 ∣ ‖
‖L2(P ) ≤ 1}, where
�(
) is defined in Lemma 3.
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Proof of Theorem 2 in Section C. The construction of P0 and {Pv, v ∈ } is the same as in the proof of Theorem 2 in
Section B. Thus, by Lemma 13, we only need to bound 2({Pv}v∈ ), instead of ∞({Pv}v∈ ). From the proof of Lemma 10,
we can see that if taking P as a uniform distribution, then for any 
 with ‖
‖L2(P0) ≤ 1, we always have EP0 [
(X, 1)

2] ≤ 1.

This means that 1
||

∑

v∈ ( v(
))2 ≤
�2

p . Thus, we have 2({Pv}v∈ ) ≤
�2

p . The remaining part of the proof is the same as
the one in the proof of Theorem 2.

D. Extending Linear to Non-linear Measurements
Our methods in Algorithm 1 and 2 are actually quite general which can be extended to a model with non-linear non-convex
measurement: yi = f (⟨�∗, xi⟩) + �, where f is some known function and �∗ is sparse. This model has recently been studied
in (Zhang et al., 2018; Yang et al., 2016). Note that when f is the identity function, it reduces to the sparse linear regression
model. In this paper, we focus on a special class of functions called (a, b) monotone:

Definition 5. A function f ∶ ℝ → ℝ is (a, b) monotone for some 0 < a ≤ b if f is differentiable and f ′(x) ∈ [a, b] for all
x ∈ ℝ.

Like in the linear model, we also consider the cases of keeping the whole dataset and only the responses {yi}ni=1 locally
differentially private.

D.1. Keeping the Whole Dataset Private

Same as in the linear model case, we consider the following distribution collection of samples (x, y) ∈ {+1,−1}p ×ℝ:

s,p,C,f ,a,b = {P�,� ∣ x ∼ Uniform{+1,−1}p, y = f (⟨�, x⟩)+�, where � is the random noise satisfying the condition of

|�| ≤ C,C > 0 is some constant ‖�‖2 ≤ 1, ‖�‖0 ≤ s, f is (a, b) monotone }. (17)

We note that when f (x) = x, it reduces to (1) in Section 4.1.

To obtain an upper bound of the empirical risk, we can easily extend Algorithm 1 in Section 4 to the non-linear measurement
case (see Algorithm 2) to solve the following problem

minL(�;D) = 1
n

n
∑

i=1
(f (⟨xi, �⟩) − yi)2

s.t.‖�‖2 ≤ 1, ‖�‖0 ≤ s. (18)

Algorithm 2 LDP-IHT
Input: Private data records {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈ s,p,C,f ,a,b, T is the Iteration number, � is the privacy
parameter, and � is the step size. Set �0 = 0. s is a parameter to be specified later.

1: For t = 1,⋯ , T , define the index set St = {(t − 1)
⌊

n
T

⌋

,⋯ , t
⌊

n
T

⌋

− 1}, if t = T , then St = St
⋃

{t
⌊

n
T

⌋

,⋯ , n}.
2: for t = 1, 2,⋯ , T do
3: The server sends �t−1 to all the users. Every use i which i ∈ St does the following operation: let ∇i =

xTi f
′(⟨�t−1, xi⟩)(f (⟨�t−1, xi⟩)−yi), compute zi = �(∇i), where � is the randomizer defined in (Smith et al., 2017)

or (Duchi et al., 2018) and send back to the server.
4: The server compute ∇̃t−1 =

1
|St|

∑

i∈St zi.
5: Do the gradient descent updating �̃t = �t−1 − �∇̃t−1.
6: �′t = Trunc(�̃t, s).
7: �t = arg�∈B1 ‖� − �

′
t‖
2
2.

8: end for
9: Return �T
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Theorem 3. For any � > 0, Algorithm 2 is � sequential interactive LDP. Moreover, if {XSt} satisfoes Assumption 1 with

0 ≤ �′ ≤ 9a2−5b2
14 in Section 4.2 and n

log n ≥ Ω( ps
∗ log p
�2 ), and {(xi, yi)}ni=1 ∼ P�∗,� , where P�∗,� ∈ s∗,p,C,f ,a,b (we assume

a2

b2 ≥ 5
9 ), then after taking s = 8s∗ and � = �(a, b), the output �T satisfies

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

√

p log p
√

T
√

s
√

n�
), (19)

with probability at least 1 − 2T
pc for some constant c > 0.

Proof of Theorem 3. W.o.l.g we assume that each |St| =
n
T . From the randomizer �(⋅) and Lemma 9, we can see that

∇̃t =
T
n
∑

i∈St x
T
i f

′(⟨xi, �t−1⟩)(f (⟨xi, �t−1⟩)−y)+�t, where �t is a sub-Gaussian vector with �2 = O( pTn�2 ). By the definition
of sub-Gaussian vector we know that each coordinate of �t is a sub-Gaussian random variable.

Let ∗ = supp(�∗) denote the support of �∗, and s∗ = |∗|. Similarly, we define  t = supp(�t), and  t−1 =  t−1 ∪ t ∪∗.
Thus, we have | t−1

| ≤ 2s + s∗.

We let �̃t− 12
denote the following

�̃t− 12
= �t−1 − �∇̃t−1, t−1 ,

where v t−1 means keeping vi for i ∈  t−1 and converting all other terms to 0. By the definition of  t−1, we have
�′t = Trunc(�̃t− 12

, s). Denote by Δt the difference of �t − �∗. We have the following

‖�̃t− 12
− �∗‖2 = ‖Δt−1 − �([∇Lt(�t−1) + �t] t−1 )‖2,

where ∇Lt(�t−1) =
T
n
∑

i∈St (f (⟨xi, �t−1⟩) − yi)f
′(⟨xi, �t−1⟩)xTi . Taking yi = ⟨xi, �∗⟩+ �i and by the triangle inequality we

can get

‖�̃t− 12
− �∗‖2 ≤ ‖Δt−1 − �[

T
n
∑

i∈St

(f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t−1⟩)xTi ] t−1‖2+

�
√

| t−1
|[|T
n
∑

i∈St

f ′(⟨xi, �t−1⟩)�ixTi |∞ + |�t|∞].

We denote the followings:

At−1 = ‖Δt−1 − �[
T
n
∑

i∈St

(f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t−1⟩)xTi ] t−1‖2 (20)

Bt−1 = �
√

| t−1
||

T
n
∑

i∈St

f ′(⟨xi, �t−1⟩)�ixTi |∞ (21)

C t−1 = �
√

| t−1
||�t|∞ (22)

We first bound Bt−1. Since each xi ∈ Uniform{+1,−1}p, which is sub-Gaussian with 1, we know that for each coordinate

j ∈ [p], Tn
∑

i∈St f
′(⟨xi, �t−1⟩)�ixi,j is sub-Gaussian with �2 = T 2

n2
∑

i∈St f
′2(⟨xi, �t−1⟩)�2i ≤ T b2C2

n . Thus, by Lemma 4
we have

Pr[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ ≤ O(

√

T log pbC
√

n
)] ≥ 1 − 1

pc
.

This means that with probability at least 1 − 1
pc , we have

Bt ≤ �
√

2s + s∗O(

√

T log pbC
√

n
). (23)
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For the term C t−1, by Lemma 9 and 4 and since each coordinate �t,i is sub-Gaussian, we have C t−1 ≤ �
√

2s + s∗O(
√

T p log p
√

n�2
)

with probability at least 1 − 1
pc for some constant c > 0.

Finally, we bound the term At−1. By the mean value theorem, we know that there exists a �t−1,i line between �t−1 and �∗
which satisfies the equation f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩) = f ′(⟨xi, �t−1,i⟩)⟨xi, �t−1 − �∗⟩). Hence, we have

T
n
∑

i∈St

(f (⟨xi, �t−1⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t−1⟩)xTi = D
t−1Δt−1,

where Dt−1 = T
n
∑

i∈St f
′(⟨xi, �t−1,i⟩)f ′(⟨xi, �t−1⟩)xixTi ∈ ℝp×p.

Since Supp(Dt−1Δt−1) ⊂  t−1 (by assumption), we have At−1 = ‖Δt−1 − �Dt−1
 t−1,⋅

Δt−1‖2 ≤ ‖(I − �Dt−1
 t−1, t−1

)‖2‖Δt−1‖2.
Now we bound the term ‖(I − �Dt−1

 t−1, t−1
)‖2, where I is the | t−1

|-dimensional identity matrix.

By the RIP property of X and | t−1
| ≤ 2s + s∗, we can easily get the following for any | t−1

|-dimensional vector v

a2[1 − �(2s + s∗)]‖v‖22 ≤ vTDt−1
 t−1, t−1v ≤ b2[1 + �(2s + s∗)].

Thus, ‖(I − �Dt−1
 t−1, t−1

)‖2 ≤ max{1 − �a2[1 − �(2s + s∗)], �b2[1 + �(2s + s∗)] − 1}.

This means that if we can find an � satisfying the condition of

5
7

1
a[1 − �(2s + s∗)]

≤ � ≤ 9
7

1
b2[1 + �(2s + s∗)]

,

then we have ‖(I − �Dt−1
 t−1, t−1

)‖2 ≤
2
7 . Note that such an � can indeed be found if �(2s + s∗) ≤ 5a2−9b2

14 . This means that

a
b >

√

5
3 .

Thus, in total we have the following with probability at least 1 − 2
pc

‖�̃t− 12
− �∗‖2 ≤

2
7
‖Δt−1‖2 + O(

√

T p(2s + s∗) log pbC
√

n�
).

Our next task is to bound ‖�′t − �
∗
‖2 by ‖�̃t− 12

− �∗‖2 by Lemma 5.

Thus, we have ‖�′t − �̃t− 12
‖

2
2 ≤

| t−1|−s
| t−1|−s∗ ‖�̃t− 12

− �∗‖22 ≤
s+s∗
2s ‖�̃t− 12

− �∗‖22.

Taking s = 8s∗, we get

‖�′t − �̃t− 12
‖2 ≤

3
4
‖�̃t− 12

− �∗‖2

and

‖�′t − �
∗
‖2 ≤

7
4
‖�̃t− 12

− �∗‖2 ≤
1
2
‖Δt−1‖2 + O(

√

T ps∗ log pbC
√

n�
).

Finally, we need to show that ‖Δt‖2 = ‖�t − �∗‖2 ≤ ‖�′t − �
∗
‖2, which is due to the Lemma 6.

Putting all together, we have the following with probability at least 1 − 2
pc ,

‖Δt‖ ≤ 1
2
‖Δt−1‖2 + O(

√

T ps∗ log pbC
√

n�
).
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Thus, we get with probability at least 1 − 2T
pc ,

‖ΔT ‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

√

T ps∗ log pbC
√

n�
).

D.2. Keeping the Labels Private

For a fixed X = (xT1 ,⋯ , xTn )
T ∈ {+1,−1}n×p, we consider the following collection of distributions:

 ′s,p,C,f ,a,b = {P�,�({yi}
n
i=1) ∣ yi = f (⟨�

∗, xi⟩) + �i,where ‖�‖0 ≤ s, ‖�‖2 ≤ 1, the random noise

|�i| ≤ C for some constant C > 0, and f is (a, b) monotone}.

The following theorem shows the lower bound of the private minimax risk (under the ‖ ⋅ ‖22 metric) with respect to the above
collection of distributions, which is similar to the one in Theorem 6.

Theorem 4. Under Assumption 3 and for a given fixed privacy parameter � ∈ (0, 12 ], the � non-interactive local private
minimax risk (under the ‖ ⋅ ‖2 metric) in the case of keeping {yi}ni=1 locally private satisfies the following inequality

Nint
n (�( ′s,p,C,f ,a,b), ‖ ⋅ ‖

2
2, �) ≥ Ω(min{1, C

2
s log ps

nb2�2(1 + �)
}).

Comparing to the lower bound in Theorem 6 in the main paper, we can see that there is an additional factor of b2 in Theorem
4, which is due to the fact that the model is more complicated.

Proof. Our proof is inspired by the ones in (Duchi et al., 2013; Yang et al., 2016) and (Raskutti et al., 2011). Since it is
reduced to the linear model when f (x) ≡ x, we only need to consider the general case. Similar to the proof of Theorem 1,
we first construct a packing set {Pv ∶ v ∈ } and then bound ∞({Pv}). To do so, we need the following lemma.

Lemma 14 ((Raskutti et al., 2011)). For any s ∈ [p], define the set

(s) ∶= {z ∈ {−1, 0,+1}d ∣ ‖z‖0 = s}

with Hamming distance �H (z, z′) =
∑d
i=1 1[zj ≠ z′j] between the vectors z and z′. Then, there exists a subset ̃ ⊂  with

cardinality |̃| ≥ exp( s2 log
p−s
s∕2 ) such that �H (z, z′) ≥

s
2 for all z, z′ ∈ ̃.

Now consider the rescaled version of ̃,
√

2
� ̃, for some � ≤ 1

√

2
. For any two �, �′ ∈ ̃, we have

8�2 ≥ ‖� − �′‖22 ≥ �2. (24)

Then,
√

2
� ̃ is a � packing in l2 norm with M = |̃| elements, denoted as {�1, �2,⋯ , �M}. For each �i, let �i denote the

uniform distribution on the interval [−C,C]. Thus, we have P�i , which can be easily verified that P�i ∈  ′s,p,C,f ,a,b.

Our idea is to use Lemma 2. Thus, our goal is to bound the sum of the Total Variance
∑

v,v′∈ ‖Pv,i − Pv′,i‖2TV . Now
consider the case of P�,i and P�′,i, where (due to our construction) P�,i is the uniform distribution on the interval of
[f (⟨xi, �⟩ − C, f (⟨xi, �⟩ + C]. Thus, we have

‖P�,i − P�′,i‖TV =
1
2 ∫

|p�,i(y) − p�′,i(y)|dy ≤
1
2C

|f (⟨�, xi⟩) − f (⟨�′, xi⟩)| ≤
b
2C

|⟨� − �′, xi⟩|,
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where the last inequality is due to the assumption on f . Hence, we have

n
∑

i=1

1
||2

∑

v,v′∈
‖Pv,i − Pv′,i‖2TV ≤

n
∑

i=1

b2

4C2
∑

v,v∈
(�v − �v′ )T xixTi (�v − �v′ )

= b2

4C2
1

||2
∑

v,v∈
(�v − �v′ )XTX(�v − �v′ )

≤ 8b
2(1 + �)
4C2

�2 =
2b2(1 + Δ)�2

C2
,

where the last inequality is due to the fact that for every pair (v, v′)with ‖�v−�v′‖0 ≤ 2s, (�v−�v′ )XTX(�v−�v′ ) ≤ n(1+Δ)
holds (by Assumption 1).

Thus by Lemmas 14 and 2, we have

Φ(�)
2

≥ �2

8
(1 −

2cn�2�2 b
2(1+Δ)
C2 + log 2

s
2 log

p−s
s∕2

).

Taking �2 = Ω(min{1, s log p∕sC
2

(1+Δ)b2n�2 ), we get the result.

For the upper bound, we adopt a similar approach as in DP-IHT for linear regression. Particularly, we let L(�) =
1
2n
∑n
i=1(ỹi − ⟨xi, �⟩)2 and then apply the ideas of IHT.

Algorithm 3 General DP-Iterative Hard Thresholding
Input: Public dataset {xi}ni=1, private {yi}ni=1 ∈ P�∗,� , where P�∗,� ∈ s∗,p,C,f ,a,b, �, � are privacy parameters, T is the
number of iteration, � is the step size, and s is a parameter to be specified. Set �0 = 0.

1: for Each i ∈ [n] do
2: Denote ỹi = yi + zi, where zi ∼ (0, �21 ), �

2
1 =

32C2 ln(1.25∕�)
�2 .

3: end for
4: for t = 0, 1,⋯ , T − 1 do
5: �̃t+1 = �t − �∇L(�t).
6: �′t+1 = Trunc(�̃t+1, s).
7: �t+1 = arg�∈B1 ‖� − �

′
t+1‖

2
2.

8: end for
9: Return �T .

Theorem 5. For any 0 < � ≤ 1 and 0 < � < 1, Algorithm 3 is (�, �) (non-interactively) locally differentially private for

{yi}ni=1. Moreover, if {yi}ni=1 ∈ P�∗,� (where P�∗,� ∈  ′s∗,p,C,f ,a,b with 1 ≥ a
b >

√

5
3 ) and X satisfies Assumption 1 with

0 < � ≤ 9a2−5b2
14 , then by setting s = 8s∗ in Algorithm 3, there is an � = �(�′) which ensures that the output �T satisfies the

following inequality

‖�T − �∗‖2 ≤ (
1
2
)T ‖�∗‖2 + O(

bC log(1∕�)
√

s∗ log p
√

n�
),

with probability at least 1 − T exp(−n) − 2T
pc .

Proof. For the guarantee that Algorithm 2 is (�, �) locally differentially private, it is due to the fact that xi is known and
each yi ∈ [⟨xi, �∗⟩ − C, ⟨xi, �∗⟩ − C] (since the random noise �i is bounded by C). Thus, by the Gaussian Mechanism
(Dwork et al., 2006), we can see that it is locally differentially private.

Now we prove Theorem the upper bound.
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Let ∗ = supp(�∗) denote the support of �∗, and s∗ = |∗|. Similarly, we define  t+1 = supp(�t+1), and  t =  t∪ t+1∪∗.
Thus, we have | t

| ≤ 2s + s∗.

We let �̃t+ 12
denote the following

�̃t+ 12
= �t − �∇ tL(�t),

where v t means keeping vi for i ∈  t and making all other terms 0. By the definition of  t, we have �′t+1 = Trunc(�̃t+ 12
, s).

Denote by Δt+1 the difference of �t+1 − �∗. We have the following

‖�̃t+ 12
− �∗‖2 = ‖Δt − �∇ tL(�t)‖2,

where ∇ tL(�t) = [
1
n
∑n
i=1(f (⟨xi, �t⟩) − ỹi)f

′(⟨xi, �t⟩)xTi ] t . Plugging ỹi = f (⟨�∗, xi⟩) + �i + zi, where zi ∼  (0, �2),

and �2 = 32C2 log(1.25∕�)
�2 into the above equality, we get

‖�̃t+ 12
− �∗‖2 ≤ ‖Δt − �[

1
n

n
∑

i=1
(f (⟨xi, �t⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t⟩)xTi ] t‖2+

�
√

| t
|[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ + |

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞].

Define the following terms

At = ‖Δt − �[
1
n

n
∑

i=1
(f (⟨xi, �t⟩) − f (⟨xi, �∗⟩))f ′(⟨xi, �t⟩)xTi ] t‖2

Bt = �
√

| t
||

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞,

C t = �
√

| t
||

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞.

We first bound Bt. Since each xi ∈ Uniform{+1,−1}p, which is sub-Gaussian with 1, we know that for each coordinate

j ∈ [p], 1n
∑n
i=1 f

′(⟨xi, �t⟩)�ixi,j is sub-Gaussian with �2 = 1
n2
∑n
i=1 f

′2(⟨xi, �t⟩)�2i ≤ b2C2

n . Thus, by Lemma 4 we have

Pr[|1
n

n
∑

i=1
f ′(⟨xi, �t⟩)�ixTi |∞ ≤ O(

√

log pbC
√

n
)] ≥ 1 − 1

pc
.

This means that with probability at least 1 − 2
pc , we have

Bt ≤ O(�
√

2s + s∗
√

log pbC
√

n
). (25)

Similarly, for C t we have that with probability at least 1 − 1
pc , the following holds

|

1
n

n
∑

i=1
f ′(⟨xi, �t⟩)zixTi |∞ ≤ O(

b
√

log p
√

∑n
i=1 z

2
i

n
).

Since zi is Gaussian with variance �2, we know that
∑n
i=1 z

2
i = �

2∑n
i=1 r

2
i , where

∑n
i=1 r

2
i is a �2-distribution with parameter

n.
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By the above concentration bound for �2-distribution and Lemma 8, we have
∑n
i=1 z

2
i ≤ 5�2n with probability at least

1 − exp(−n). Thus,

C t ≤ �
√

2s + s∗O(
b
√

log p�
√

n
) (26)

with probability at least 1 − 1
pc − exp(−n).

For the term of At, the proof is the same as the one for At−1 in the proof of Theorem 3, and thus we omit it from here.

By (25) and (26) and plugging �2 = 32C2 log(1.25∕�)
�2 into (26), we have the following with probability at least 1− 2

pc −exp(−n)

‖�̃t+ 12
− �∗‖2 ≤

2
7
‖Δt‖2 + O(

√

(2s + s∗) log p log(1∕�)bC
n�

).

Putting all together, we have the following with probability at least 1 − 2
pc − exp(−n),

‖Δt+1‖ ≤ 1
2
‖Δt‖2 + O(

√

s∗ log p log(1∕�)bC
n�

).

Thus, we get the bound in Theorem 5 with probability at least 1 − 2T
p − T exp(−n). For the linear case, since f ′ ≡ 1, (25)

and (26) will be the same in each iteration, the probability for the linear case becomes 1 − 2
pc − exp(−n).

E. Experiments
E.1. Tests on Real World Dataset for Keeping the Lable Private

We apply our algorithms (Algorithms 2) to an image reconstruction problem. Note that the �-LDP of high dimensional
sparse linear regression is essentially a private sparse signal recovery problem. The construction of the sparse signals follows
the one in (Zhang et al., 2018). Let  ∈ ℝℎ×w be the image with height ℎ and width w with ℎ ≤ w. Let  =

∑ℎ
i=1 �iuiv

T
i be

the singular value decomposition of , where �1,⋯ , �ℎ are the eigenvalues in descending order. For a fixed integer s∗, let
̃ =

∑s∗
i=1 �iuiv

T
i be the best rank-s∗ approximation of . We choose b = (�1, �2,⋯ , �s∗ , 0,⋯ , 0)T ∈ ℝℎ and �∗ = b

‖b‖2
,

and fix {(ui, vi)}i∈[ℎ] and � = ‖b‖2. Given an estimator �T ∈ ℝℎ, we reconstruct an image by ̂ =
∑ℎ
i=1 ��T ,iuiv

T
i , which

is an estimator of the image ̃.

Experiment Results In the experiment, we let  be an image with ℎ = 2448, w = 3264. The sparse signal �∗ is
constructed with s∗ = 100. We sample n = 2s∗ logℎ i.i.d observations of the regression model y = f (⟨x, �∗⟩) + � for
f (x) = x or f (x) = 8x + cos x, and apply our algorithms with � = 0.2, T = 1000, and s = 100. Figures 3 and 4 are the
reconstructed images using the two algorithms at different levels of privacy (see supplemental material for more details).
Comparing the original image with the reconstructed ones, we can see that there is very little visual difference even when
� = 0.5. This confirms the effectiveness of our algorithms. Also, it is worth noting that the relative error is about 10% when
� = 0.5, and decreases to 7% and 2.5% as � increases to 1 and 2, respectively.

E.2. More Results For Sparsity-constrained ERM
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