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1 Proofs of Lemmas and Theorems
Lemma 1.1 (Zero-Expectation Term). Given any imputed
errors Ê, suppose learned propensities P̂ are accurate, the
expectation of the term EDR − EIPS over all the possible
instances of the indicator matrix O is equal to zero.

Proof. When the learned propensities are accurate, we have
∆u,i = 0 for u, i ∈ D. Therefore, we can compute the
expectation of the term EDR − EIPS over all the possible
instances of the indicator matrix O by
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This completes the proof.

Lemma 1.2 (Bias of EIB Estimator). Given imputed errors
Ê, the bias of the EIB estimator is given by

Bias
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)
=

1

|D|

∣∣∣∣∣ ∑
u,i∈D

(1− pu,i)δu,i

∣∣∣∣∣ .
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Proof. According to the definition of the bias, we can derive
the bias of the EIB estimator as follows
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which completes the proof.

Corollary 3.1 (Double Robustness). The DR estimator is
unbiased when either imputed errors Ê or learned propen-
sities P̂ are accurate for all user-item pairs.

Proof. On one hand, when the imputed errors are accurate,
we have δu,i = 0 for u, i ∈ D. In such case, we can compute
the bias of the DR estimator by

Bias(EDR)
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On the other hand, when the learned propensities are accu-
rate, we have ∆u,i = 0 for u, i ∈ D. In this case, we can
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compute the bias of the DR estimator by
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In both cases, the bias of the DR estimator is zero, which
means that the expectation of the DR estimator over all the
possible instances of O is exactly the same as the prediction
inaccuracy. This completes the proof.

Lemma 3.2 (Tail Bound of DR Estimator). Given imputed
errors Ê and learned propensities P̂, for any prediction
matrix R̂, with probability 1 − η, the deviation of the DR
estimator from its expectation has the following tail bound

∣∣∣EDR − EO[EDR]
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Proof. To keep the notation uncluttered, we define random
variable `u,i that equals

`u,i = êu,i +
ou,i(eu,i − êu,i)

p̂u,i
.

Since we assume that each observation indicator ou,i follows
a Bernoulli distribution with probability pu,i, we can rewrite
the random variable `u,i as follows{

P (`u,i = êu,i + ρu,i) = pu,i ,
P (`u,i = êu,i) = 1− pu,i ,

where ρu,i is given by

ρu,i =
eu,i − êu,i

p̂u,i
=
δu,i
p̂u,i

.

We can see that the random variable `u,i takes value in
the interval [êu,i, êu,i + ρu,i] of size ρu,i with probabil-
ity 1. Recall that we assume that the observation indica-
tors {ou,i|u, i ∈ D} are independent random variables, so
the random variables {`u,i|u, i ∈ D} are also independent.
Therefore, according to the Hoeffding’s inequality, for any
ε̃ > 0, we have the following inequality

P
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Here, the three summations are summed over all user-item
pairs u, i ∈ D. Setting ε̃ = ε|D| (ε̃ > 0 ⇔ ε > 0) in the

above inequality and simplifying the inequality with the
definition of the DR estimator yield

P
(∣∣∣EDR − EO[EDR]

∣∣∣ ≥ ε) ≤ 2 exp

(
−2ε2|D|2∑

u,i ρ
2
u,i

)
.

Setting the right hand side of the inequality to η and solving
for ε complete the proof.

Corollary 3.2 (Tail Bound Comparison). Suppose imputed
errors Ê are such that 0 ≤ êu,i ≤ 2eu,i for u, i ∈ D, then
for any learned propensities P̂, the tail bound of the DR
estimator will be lower than that of the IPS estimator.

Proof. To simplify the notation, we define a constant C as
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)
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.

Then, we can derive the following inequalities

0 ≤ êu,i ≤ 2eu,i for u, i ∈ D ,

⇒ δ2u,i ≤ e2u,i for u, i ∈ D ,

⇒

√√√√C
∑
u,i∈D

(
δu,i
p̂u,i

)2
≤

√√√√C
∑
u,i∈D

(
eu,i
p̂u,i

)2
.

In the last inequality, the left hand side is the tail bound of
the DR estimator and the right hand side is the tail bound
of the IPS estimator (Schnabel et al., 2016). This completes
the proof.

Theorem 4.1 (Generalization Bound). For any finite hy-
pothesis spaceH 1 of prediction matrices, with probability
1 − η, the prediction inaccuracy P(R̂‡,Rf ) of the opti-
mal prediction matrix using the DR estimator with imputed
errors Ê and learned propensities P̂ has the upper bound
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|∆u,iδ
‡
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|D|︸ ︷︷ ︸
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,

where δ§u,i is the error deviation corresponding to the pre-

diction matrix R̂§ = argmaxR̂h∈H

{∑
u,i∈D

(
δhu,i

p̂u,i

)2}
.

Proof. To simplify notation, let EDR(R̂) = EDR(R̂,Ro).
Note that we can rewrite the finite hypothesis space with
H = {R̂1, ..., R̂|H|}. We define ρhu,i as follows

ρhu,i =
ehu,i − êhu,i

p̂u,i
=
δhu,i
p̂u,i

,

1For infinite hypothesis spaces, a similar generalization bound can
be derived using covering numbers (Anthony & Bartlett, 2009) or
other related measures (Maurer & Pontil, 2009).
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where ehu,i and êhu,i are the prediction and imputed errors
corresponding to a prediction matrix R̂h ∈ H, respectively.
Similarly, we define ρ§u,i as follows

ρ§u,i =
e§u,i − ê

§
u,i

p̂u,i
=
δ§u,i
p̂u,i

,

where e§u,i and ê§u,i are the prediction and imputed errors
corresponding to the prediction matrix R̂§ ∈ H, respec-
tively. By making the arguments of uniform convergence
and union bound, for any ε > 0, we have
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We solve the inequality in the last line for ε and obtain, with
probability 1− η, the following inequality
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(1)

Given the optimal prediction matrix R̂‡, imputed errors
Ê‡ = {ê‡u,i|u, i ∈ D}, and learned propensities P̂, the bias
of the DR estimator can be upper bounded as follows

P(R̂‡,Rf )− EO[EDR(R̂‡)]

≤ 1

|D|
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‡
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.

(2)

After adding the two inequalities in Eq. 1 and Eq. 2, we can
rearrange the terms to obtain the stated results.

2 Additional Experiment Results
Table 1 reports the results of rating prediction measured by
MAE and MAE-SNIPS on AMAZON and MOVIE.

Table 1: Inaccuracy of rating prediction on MNAR test ratings.

AMAZON MOVIE

MAE MAE-SNIPS MAE MAE-SNIPS

MF 0.764 0.761 0.745 0.743
PMF 0.767 0.764 0.754 0.748
AutoRec 0.759 0.755 0.743 0.737
Gaussian-VAE 0.730 0.727 0.733 0.728

CPT-v 1.001 0.991 0.956 0.939
MF-HI 0.773 0.770 0.749 0.742
MF-MNAR 0.747 0.739 0.741 0.727
MF-IPS 0.768 0.759 0.752 0.738

MF-JL 0.721 0.720 0.694 0.693
MF-DR-JL 0.725 0.717 0.703 0.689

* MF-JL and MF-DR-JL are the proposed approaches.

Table 2 shows the bias and standard deviation of the EIB,
IPS, SNIPS, NCIS, and DR estimators in terms of the per-
centage over the prediction inaccuracy under MAE on the
synthetic dataset (see Section 5.2 for details).

Table 2: Bias and standard deviation in terms of percentage over the
prediction inaccuracy under MAE. DR is the proposed estimator.

EIB IPS SNIPS NCIS DR

ONE 21.7±1.7 20.5±1.8 20.5±1.8 25.8±1.6 9.8±0.8
FOUR 66.9±1.7 66.8±1.8 66.8±1.8 84.0±1.8 24.1±0.6
ROT 12.7±0.2 12.7±0.4 12.8±0.2 16.0±0.2 7.1±0.1
SKEW 10.9±0.3 10.3±0.7 10.5±0.3 12.2±0.2 7.1±0.2
CRS 13.5±0.2 12.4±0.6 12.5±0.4 16.5±0.2 6.9±0.1
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