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Abstract
The gradient of a deep neural network (DNN)
w.r.t. the input provides information that can be
used to explain the output prediction in terms of
the input features and has been widely studied
to assist in interpreting DNNs. In a linear model
(i.e., g(x) = wx + b), the gradient corresponds
to the weights w. Such a model can reasonably
locally-linearly approximate a smooth nonlinear
DNN, and hence the weights of this local model
are the gradient. The bias b, however, is usu-
ally overlooked in attribution methods. In this
paper, we observe that since the bias in a DNN
also has a non-negligible contribution to the cor-
rectness of predictions, it can also play a signif-
icant role in understanding DNN behavior. We
propose a backpropagation-type algorithm “bias
back-propagation (BBp)” that starts at the output
layer and iteratively attributes the bias of each
layer to its input nodes as well as combining the
resulting bias term of the previous layer. Together
with the backpropagation of the gradient gener-
ating w, we can fully recover the locally linear
model g(x) = wx+ b. In experiments, we show
that BBp can generate complementary and highly
interpretable explanations.

1 Introduction
Deep neural networks (DNNs) have produced good
results for many challenging problems in computer vision,
natural language processing, and speech processing. Deep
learning models, however, are usually designed using
fairly high-level architectural decisions, leading to a final
model that is often seen as a difficult to interpret black box.
DNNs are a highly expressive trainable class of non-linear

*Equal contribution 1Paul G. Allen School of Computer Sci-
ence & Engineering 2Department of Electrical & Computer En-
gineering, University of Washington, Seattle, USA. Correspon-
dence to: Shengjie Wang <wangsj@uw.edu>, Tianyi Zhou <tiany-
izh@uw.edu>, Jeffery A. Bilmes <bilmes@uw.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

functions, utilizing multi-layer architectures and a rich set
of possible hidden non-linearities, making interpretation by
a human difficult. This restricts the reliability and usability
of DNNs especially in mission-critical applications where
a good understanding of the model’s behavior is necessary.

The gradient is a useful starting point for understanding
and generating explanations for the behavior of a complex
DNN. Having the same dimension as the input data, the
gradient can reflect the contribution to the DNN output of
each input dimension. Not only does the gradient yield
attribution information for every data point, but also it helps
us understand other aspects of DNNs, such as the highly
celebrated adversarial examples and defense methods
against such attacks (Szegedy et al., 2013).

When a model is linear, the gradient recovers the weight
vector. Since a linear model locally approximates any
sufficiently smooth non-linear model, the gradient can also
be seen as the weight vector of that local linear model for
a given DNN at a given data point. For a piecewise linear
DNN (e.g., a DNN with activation functions such as ReLU,
LeakyReLU, PReLU, and hard tanh) the gradient is exactly
the weights of the local linear model1.

Although the gradient of a DNN has been shown to be help-
ful in understanding the behavior of a DNN, the other part of
the locally linear model, i.e., the bias term, to the best of our
knowledge, has not been studied explicitly and is often over-
looked. If only considering one linear model within a small
region, the bias, as a scalar, seems to contain less informa-
tion than the weight vector. However, this scalar is the result
of complicated processing of bias terms over every neuron
and every layer based on the activations, the non-linearity
functions, as well as the weight matrices of the network. Un-
covering the bias’s nature could potentially reveal a rich vein
of attribution information complementary to the gradient.
For classification tasks, it can be the case that the gradi-
ent part of the linear model contributes to only a negligible
portion of the target label’s output probability (or even a neg-
ative logit value), and only with a large bias term does the
target label’s probability becomes larger than that of other

1This is true except when the gradient is evaluated at an input
on the boundary of the polyhedral region within which the DNN
equals to the local linear model. In such case, subgradients are
appropriate.
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labels to result in the correct prediction (see Sec 5). In our
empirical experiments (Table 1), using only the bias term of
the local linear models achieves 30-40% of the performance
of the complete DNN, thus indicating that the bias term
indeed plays a substantial role in the mechanisms of a DNN.

In this paper, we unveil the information embedded in the
bias term by developing a general bias attribution frame-
work that distributes the bias scalar to every dimension
of the input data. We propose a backpropagation-type
algorithm called “bias backpropagation (BBp)” to send
and compute the bias attribution from the output and
higher-layer nodes to lower-layer nodes and eventually to
the input features, in a layer-by-layer manner. Specifically,
BBp utilizes a recursive rule to assign the bias attribution
on each node of layer ` to all the nodes on layer `− 1, while
the bias attribution on each node of layer `− 1 is composed
of the attribution sent from the layer below and the bias
term incurred in layer ` − 1. The sum of the attributions
over all input dimensions produced by BBp exactly recovers
the bias term in the local linear model representation of the
DNN at the given input point. In experiments, we visualize
the bias attribution results as images on a DNN trained
for image classification. We show that bias attribution can
highlight essential features that are complementary with
what the gradient-alone attribution methods favor.

2 Related Work
Attribution methods for deep models are important to com-
plement good empirical performance of DNNs with explana-
tions for how, why, and in what manner do such complicated
models make their decisions. Ideally, such methods would
render DNNs as glass boxes rather than black boxes. To
this end, a number of strategies have been investigated. (Si-
monyan et al., 2013) visualized behaviors of convolutional
networks by investigating the gradients of the predicted
class output with respect to the input features. Deconvo-
lution (Zeiler & Fergus, 2014) and guided backpropaga-
tion (Springenberg et al., 2014) modify gradients with ad-
ditional constraints. (Montavon et al., 2017) extended to
higher order gradient information by calculating the Taylor
expansion, and (Binder et al., 2016) study the Taylor expan-
sion approach on DNNs with local renormalization layers.
(Shrikumar et al., 2017) proposed DeepLift, which sepa-
rates the positive from the negative attribution, and features
customer designed attribution scores. (Sundararajan et al.,
2017) declare two axioms an attribution method needs to
satisfy. It further develops an integrated gradient method
that accumulates gradients on a straight-line path from a
base input to a real data point and uses the aggregated gra-
dients to measure the importance of input features. Class
Activation Mapping (CAM) (Zhou et al., 2016) localizes the
attribution based on the activation of convolution filters, and

can only be applied to a fully convolutional network. Grad-
CAM (Selvaraju et al., 2017) relaxes the all-convolution con-
straints of CAM by incorporating the gradient information
from the non-convolutional layers. All the work mentioned
above utilizes information encoded in the gradients in some
form or another, but none of them explicitly investigates the
importance of the bias terms, which is the focus of this paper.
Some of them, e.g. (Shrikumar et al., 2017) and (Sundarara-
jan et al., 2017), consider the overall activation of neurons
in their attribution methods, so the bias terms are implic-
itly taken into account, but are not independently studied.
Moreover, some previous work (e.g. CAM) focuses on the
attribution for specific network architectures such as convo-
lutional networks, while our approach applies generally to
any piece-wise linear DNN, convolutional or otherwise.

3 Background and Motivation
We can write the output f(x) of any feed-forward deep
neural network in the following form:
f(x) =Wmψm−1(Wm−1ψm−2

(. . . ψ1(W1x+ b1) . . .) + bm−1) + bm,
(1)

where Wi and bi are the weight matrix and bias term
for layer i, ψi is the corresponding activation function,
x ∈ X is an input data point of din dimensions, f(x) is the
network’s output prediction of dout dimensions, and each
hidden layer i has di nodes. In this paper, we rule out the
last softmax layer from the network structure; for example,
the output f(x) may refer to logits (which are the inputs
to a softmax to compute probabilities) if the DNN is trained
for classification tasks.

The above DNN formalization generalizes many widely
used architectures. Clearly, Eq. (1) can represent a
fully-connected network of m layers. Moreover, the
convolution operation is essentially a matrix multiplication,
where every row of the matrix corresponds to applying a
filter from convolution on a certain part of the input, and
therefore the resulting weight matrix has tied parameters, is
very sparse, and typically has a very large (compared to the
input size) number of rows. Average-pooling is essentially
a linear operation and therefore is representable as matrix
multiplication, and max-pooling can be treated as an
activation function. Batchnorm (Ioffe & Szegedy, 2015) is a
linear operation and can be combined into the weight matrix.
Finally, we can represent a residual network (He et al., 2015)
block by appending an identity matrix at the bottom of a
weight matrix so that we can keep the input values, and then
add the kept input values later via another matrix operation.

3.1 Piecewise Linear Deep Neural Networks

In this paper, we will focus on DNNs with piecewise linear
activation functions, which cover most of the recently
successful neural networks in a variety of application
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domains. Some widely used piecewise linear activation
functions include the ReLU, leaky ReLU, PReLU, and the
hard tanh functions. A general form of a piecewise linear
activation function applied to a real value z is as follows:

ψ(z) =


c(0) · z, if z ∈ (η0, η1]
c(1) · z, if z ∈ (η1, η2]
· · · , · · ·
c(h−1) · z, if z ∈ (ηh−1, ηh)

(2)

In the above, there are h linear pieces, and these correspond
to h predefined intervals on the real axis. We define the
activation pattern φ(z) of z as the index of the interval
containing z, which can be any integer from 0 to h − 1.
Both ψ(z) and φ(z) extend to element-wise operators when
applied to vectors or high dimensional tensors.

As long as the activation function is piecewise linear, the
DNN is a piecewise linear function and is equivalent to a
linear model at and near each input point x (Montufar et al.,
2014; Wang et al., 2016). Specifically, each linear model
piece of the DNN (associated with an input point x) is:

f(x) =

m∏
i=1

W x
i x+

 m∑
j=2

m∏
i=j

W x
i b

x
j−1 + bm


=
∂f(x)

∂x
x+ bx. (3)

This holds true for all the possible input points x on the
linear piece of a DNN. We will give a more general result
later in Lemma 1. NoteW x

i and bxi in the above linear model
are modified from Wi and bi respectively and have to fulfill

xi+1 = ψi(Wixi + bi) =W x
i xi + bxi , (4)

where xi is the activation of layer i (x1 is the input data)
and bxi is an xi-dependent bias vector. In the extreme
case, no two input training data points share the same
linear model in Eq. (3). In this case, the DNN can still
be represented as a piecewise linear model and each local
linear model is only applied to one data point.

Given xi, W x
i and bxi can be derived from Wi and bi accord-

ing to the activation pattern vector φ(Wixi+ bi). In particu-
lar, each row ofW x

i is a scaled version of the associated row
of Wi, and each element in bxi is a scaled version of bi, i.e.,

W x
i [p] = c(φ(Wixi+bi)[p]) ·Wi, (5)

and bxi [p] = c(φ(Wixi+bi)[p]) · bi. (6)
For instance, if ReLU ψReLU (z) = max(0, z) is used as
the activation function ψ(·) at every layer i, we have an
activation pattern φ(Wixi+bi) ∈ {0, 1}di , where φ(Wixi+
bi)[p] = 0 indicates that ReLU sets the output node p to 0
or otherwise preserves the node value. Therefore, at layer i,
W x
i and bxi are modified from Wi and bi by setting the rows

ofWi, whose corresponding activation patterns in φ(Wixi+
bi) are 0, to be all-zero vectors 0, and setting the associated
elements in bxi to be 0 while other elements to be bi.

We can apply the above process to deeper layers as well,
eliminating all the ReLU functions to produce an x-specific
local linear model representing one piece of the DNN, as
shown in Eq. (3). Since the model is linear, the gradient
∂f(x)
∂x is the weight vector of the linear model. Also, given

all the weights of the DNN, each linear region, and the
associated linear model can be uniquely determined by the
ReLU patterns {φ(xi)}mi=2, which are m binary vectors.

3.2 Attribution of DNN Outputs to Inputs

Given a specific input point x, the attribution of each dimen-
sion f(x)[j] of the DNN output (e.g., the logit for class j)
to the input features aims to assign a portion of f(x)[j] to
each of the input features i, and all the portions assigned
to all the input features should sum up to f(x)[j]. For
simplicity, in the rest of this paper, we rename f(x) to be
f(x)[j], which does not lose any generality since the same
attribution method can be applied for any output dimen-
sion j. According to Eq. (3), f(x) as a linear model on
x can be decomposed into two parts, the linear transfor-
mation ∂f(x)

∂x and the bias term bx. The attribution of the
first part is straightforward because we can directly assign
each dimension of the gradient ∂f(x)∂x to the associated input
feature, and we can generate the gradient using the standard
backpropagation algorithm. The gradient-based attribution
methods have been widely studied in previous work (see
Section 2). However, the attribution of the second part, i.e.,
the bias b, is arguably a more challenging problem since it is
not obvious how to assign a portion of b to each input feature
since b is a scalar value rather than a vector that, like the
gradient, has the same dimensionality as the input vector.

One possible reason for the dearth of bias attribution studies
might be that people consider bias, as a scalar, less important
relative to the weight vector, containing only minor informa-
tion about deep model decisions. The final bias scalar bx of
every local linear model, however, is the result of a complex
process (see Eq. (3)), where the bias term on every neuron
of a layer gets modified based on the activation function
(e.g., for ReLU, a bias term gets dropped if the neuron has a
negative value), then propagates to the next layer based on
the weight matrix, and contribute to the patterns of activa-
tion function in the next layer. As the bias term applied to
every neuron can be critical in determining the activation
pattern (e.g., changing a neuron output from negative to
positive for ReLU), we wish to be able to better understand
the behavior of deep models by unveiling and reversing the
process of how the final bias term is generated.

Moreover, as we show in our empirical studies (see
Section 5), we train DNNs both with and without bias for
image classification tasks, and the results show that the bias
plays a significant role in producing accurate predictions.
In fact, we find that it is not rare that the main component
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of a final logit, leading to the final predicted label, comes
from the bias term, while the gradient term ∂f(x)

∂x x makes
only a minor, or even negative, contribution to the ultimate
decision. In such a case, ignoring the bias term can provide
misleading input feature attributions.

Intuitively, the bias component also changes the geometric
shape of the piecewise linear DNNs (see Fig. 1); this means
that it is an essential component of deep models and should
also be studied, as we do in this paper.

It is a mathematical fact that a piecewise linear DNN is
equivalent to a linear model for each input data point. There-
fore, the interpretation of the DNN’s behavior on the input
data should be exclusive to the information embedded in
the linear model. However, we often find that the gradient
of the DNN, or the weight of the linear model, does not
always produce satisfying explanations in practice, and in
many cases, it may be due to the overlooked attribution of
the bias term that contains the complementary or even key
information to make the attribution complete.

4 Bias Backpropagation for Bias
Attribution

In this section, we will introduce our method for bias at-
tribution. In particular, the goal is to find a vector β of
the same dimension din as the input data point x such that∑din
p=1 β[p] = bx. However, it is not clear how to directly

assign a scalar value b to the din input dimensions, since
there are m layers between the outputs and inputs. In the
following, we explore the neural net structure for bias at-
tribution and develop a backpropagation-type algorithm to
attribute the bias b layer by layer from the output f(x) to
the inputs in a bottom-up manner.

4.1 Bias Backpropagation (BBp)

Recall x` denotes the input nodes of layer ` ≥ 2, i.e.,

x` =ψ`−1(W`−1x`−1 + b`−1)

=ψ`−1(W`−1ψ`−2(. . . ψ1(W1x+ b1) . . .) + b`−1).
(7)

According to the recursive computation shown in Eq. (3),
the output f(x) can be represented as a linear model of x`
consisting of the gradient term and the bias term, as shown
in the following lemma. Note that the bias term depends on
the input x, as W x

i and bxi are all modified based on input x.

Lemma 1. Given x, the output f(x) of a piecewise linear
DNN can be written as a linear model of the input x` of any
layer ` > 2 (x1 = x is the raw input) in the following form.

f(x) =

(
m∏
i=`

W x
i

)
x` +

 m∑
j=`+1

m∏
i=j

W x
i b

x
j−1 + bm

 .

(8)

For each input node x`[p] of layer `, we aim to compute
β`[p] as the bias attribution on x`[p]. We further require
that summing β`[p] over all input nodes of layer ` recovers
the bias in Eq. (8), i.e.,

d∑̀
p=1

β`[p] =

m∑
j=`+1

m∏
i=j

W x
i b

x
j−1 + bm, (9)

so the linear model in Eq. (8) can be represented as
the sum of d` terms associated with the d` input nodes,
each composed of a linear transformation part and a bias
attribution part, i.e.,

f(x) =

d∑̀
p=1

[(
m∏
i=`

W x
i

)
[p] · x`[p] + β`[p]

]
. (10)

The above equation gives the attribution of the output f(x)
on each hidden node x`[p] of the DNN. It is composed
of two parts, i.e., the gradient attribution and the bias
attribution. Since the bias in the right-hand side of Eq. (9)
can be represented as an accumulated sum of the bias
terms incurred from the last layer to layer ` (i.e., bm for
the last layer and

∏m
i=jW

x
i b

x
j−1 for layer j − 1), we can

design a recursive rule that computes the bias attribution
on layer ` − 1 given the bias attribution β` on layer `. In
particular, we assign different portions of β`[p] to each
node x`−1[q] on layer `− 1, and make sure that summing
up those portions recovers β`[p]. Each portion B`[p, q] can
be treated as a message regarding bias attribution that node
x`[p] sends to node x`−1[q]. For each node x`[p] of layer `,
we compute a vector of attribution scores α`[p], and define
the message B`[p, q] as

B`[p, q] , α`[p, q]× β`[p], (11)
d`−1∑
q=1

α`[p, q] = 1 and, ∀p ∈ [d`], q ∈ [d`−1]. (12)

We will discuss several options to compute the attribution
scores α`[p] later. To make our bias attribution method
flexible and compatible with any attribution function, we
allow both negative scores and positive scores in α`[p].

The bias attribution β`−1[q] on node x`−1[q] of layer `−1 is
achieved by firstly summing up the bias attribution messages
sent from nodes in layer `, and then adding the bias term∏m
i=`W

x
i b

x
j−1 incurred in layer `− 1 (which is applied to

all nodes in layer `− 1), as shown below:

β`−1[q] =

m∏
i=`

W x
i b

x
j−1 +

d∑̀
p=1

B`[p, q]. (13)

It can be easily verified that summing up the attribution
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Blue Planes: Separating planes based on weights
Red Plane: b = 1 projection plane

No Bias With Bias

Planes projected onto b=1
form convex polyhedrons

Figure 1: A Piecewise linear weight matrix divides the input plane into regions. Without the bias term, the regions are cones,
while with the bias term, the regions are convex polyhedra.

β`−1[q] over all the nodes on layer `−1 yields the bias term
in Lemma 1, when writing f(x) at x as a linear model of
x`−1, i.e.,

d`−1∑
q=1

β`−1[q] =

m∑
j=`

m∏
i=j

W x
i b

x
j−1 + bm. (14)

Hence, the complete attribution of f(x) on the
nodes of layer ` − 1 can be written in the same
form as the one shown in Eq. (10) for layer `, i.e.,
f(x) =

∑d`−1

q=1

[(∏m
i=`−1W

x
i

)
[q] · x`−1[q] + β`−1[q]

]
.

Therefore, we start from the last layer, and recursively apply
Eq. (11)-(13) from the last layer to the first layer. This
process backpropagates to the lower layers the bias term
incurred in each layer and the bias attributions sent from
higher layers. Eventually, we can obtain the bias attribution
β[p] for each input dimension p. The bias attribution
algorithm is detailed in Algorithm 1.

4.2 Options to Compute Attribution Scores in α`[p]

In the following, we discuss three possible options to com-
pute the attribution scores in α`[p], where α`[p, q] measures
how much of the bias x`[p] should be attributed to x`−1[q].
For the first option, we design α`[p] so that the bias attri-
bution on each neuron serves as a compensation for the
weight or gradient term to achieve the desired output value,
and for the other two options, we design α`[p] based on the
contribution of the gradient term.

We have x`[p] =
∑dl−1

r:=1W
x
`−1[p, r]x`−1[r] + bx` [p].

Suppose bx` [p] is negative, we may reason that to achieve
the target value of x`[p], the positive components of the
gradient term

∑dl−1

r:=1W
x
`−1[p, r]x`−1[r] are larger than

desirable, so that we need to apply the additional negative
bias in order to achieve the desired output x`[p]. In other
words, the large positive components can be thought as

Algorithm 1 Bias Backpropagation (BBp)
input :x, {W`}m`=1, {b`}m`=1, {ψ`(·)}m`=1

1 Compute {W x
` }m`=1 and {bx` }m`=1 for x by Eq. (5) ; // Get

data point specific weight/bias

2 βm ← bm ; // β` holds the accumulated attribution for

layer `

3 for `← m to 2 by −1 do
4 for p← 1 to d` by 1 do
5 Compute α`[p] by Eq. (15)-(17) or Eq. (18) ;

// Compute attribution score

6 B`[p, q] ← α`[p, q] × β`[p], ∀ q ∈ [d`−1] ;
// Attribute to the layer input

7 end
8 for q ← 1 to d`−1 by 1 do
9 β`−1[q] ←

∏m
i=`W

x
i b

x
j−1 +

∑d`
p=1B`[p, q] ;

// Combine with bias of layer `− 1

10 end
11 end
12 return β1 ∈ Rdin

the causal factor leading to the negative bias term, so we
attribute more bias to the larger positive components.

On the other hand, suppose bx` [p] is positive, then the
negative components of the gradient term are smaller (or
larger in magnitude) than desirable, so the small negative
values cause the bias term to be positive, and therefore,
we attribute more bias to the smaller negative components.
Thus, we have

α`[p, q] =
1e(l−1,p,q)=1 exp(s`[p, q]/T )∑d`−1

r=1 1e(l−1,p,r)=1 exp(s`[p, r]/T )
, (15)

where s`[p, q] = − sign(bx` [p]) ·W x
`−1[p, q]x`−1[q], (16)

e(l − 1, p, q) = | sign(W x
`−1[p, q]x`−1[q])|. (17)
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We use the logistic function to attribute the bias so that the
sum over all components recovers the original bias, and T
serves as a temperature parameter to control the sharpness of
the attribution. With T large, the bias is attributed in a more
balanced manner, while with T small, the bias is attributed
mostly to a few neurons in layer `−1. Also note that we only
consider the non-zero components (indicator 1e(l−1,p,q)=1

checks whether the component is zero), as the zero-valued
components do not offer any contribution to the output value.
For example, consider a convolutional layer, the correspond-
ing matrix form is very sparse, and only the non-zero entries
are involved in the convolution computation with a filter.

The second option adopts a different philosophy of at-
tributing based on the contribution of the gradient term.
Again, the target is to achieve the value of x`[p], and
we may assume that to achieve such a value, every
component W x

`−1[p, r]x`−1[r] should have an equal re-
sponsibility, which is the average target value, i.e.,
x`[p]/

∑dl−1

r=1 1e(l−1,p,q)=1 (again, we only need to consider
the contribution from non-zero components). The offsets of
each component to the average target value can be treated
as the contribution of each feature to the output of the layer,
and we attribute the bias term based on the exponentiated
values of the contribution. This produces the following
method to compute s`[p, q], i.e.,

s`[p, q] =
x`[p]∑dl−1

r=1 1e(l−1,p,q)=1

−W x
`−1[p, q]x`−1[q].

(18)
Note we use the same equations for e(l−1, p, q) and αl[p, q]
as defined in Eq. (15)-(17)

The third option utilizes a similar idea of attributing based
on contribution of the gradient term, but it is specific for the
ReLU nonlinearity. Since hidden neurons are non-negative
for ReLU networks, we may consider only the positive part
of the gradient term as the contribution. Thus, we propose
the following option for the attribution score:

α`[p, q] =
1e+(l−1,p,q)=1W

x
`−1[p, q]x`−1[q]∑d`−1

r=1 1e+(l−1,p,r)=1W
x
`−1[p, r]x`−1[r]

,

(19)

where e+(l − 1, p, q) = sign(W x
`−1[p, q]x`−1[q]). (20)

The above options are our designs for the α`[p, q] function.
The attribution function is valid as long as

∑dl−1

r=1 α`[p, r] =
1. While for the first two options, we utilize the logistic
function so that the attribution factors are positive, α`[p, r]
can be negative and still applicable to our BBp framework.
We note that there is no single solution to get the optimal
attribution function. The first two proposed options can
be applied to any piecewise-linear deep neural networks,
and for specific activation function, it is possible to design
specialized attribution functions to get still better bias attri-

bution (like the third option).

5 Experiments

5.1 Importance of Bias in DNNs

We first evaluate the importance of bias terms, or in other
words, the amount of information encoded in the bias terms
by comparing networks trained both with and without bias.

In Table 1, we compare results on the CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton, 2009) and Fashion
MNIST (Xiao et al., 2017) datasets. We trained using the
VGG-11 Network of (Simonyan & Zisserman, 2014), and
we compare the results trained with bias, and without bias.
Moreover, in the trained with bias case, we derive the linear
model of every data point g(x) = wx+ b, and compare the
performance using only the resulting gradient term wx and
only the resulting bias term b. From the results shown in the
table, we find that the bias term carries appreciable infor-
mation and makes unignorable contributions to the correct
prediction of the network.

5.2 Bias Attribution Analysis Visualization

We present our bias attribution results, using the three
options of attribution scores discussed in section 4.2, and
compare to the attribution result based only on gradient
information. We test BBp on STL-10 (Coates et al., 2011)
and ImageNet(ILSVRC2012) (Russakovsky et al., 2015)
and show the results in Fig. 4. For STL-10, we use a
10-layer convolutional network ((32,3,1), maxpool, (64,3,1),
maxpool, (64,3,1), maxpool, (128,3,1), maxpool, (128,3,1),
and dense10, where (i,j,k) corresponds to a convolutional
layer with i channels, kernel size j and padding k), and
for ImageNet we use the VGG-11 network of (Simonyan
& Zisserman, 2014). For both gradient and bias attribution,
we select the gradient/bias corresponding to the predicted
class (i.e., one row for the final layer weight matrix and
one scalar for the final layer bias vector). Note that BBp is
a general framework and can work with other choices of
gradients and biases for the last layer (e.g. the top predicted
class minus the second predicted class).

From Fig. 4, we present visualizations of bias attribu-
tion compared to gradient attribution and integrated gradi-
ent (Sundararajan et al., 2017) attribution (50 steps approxi-
mation, reference image all black) on ImageNet and STL-10
datasets. The label of every image is shown in the leftmost
column. The gradient attribution is the element-wise prod-
uct between the linear model weightw and data point x. The
“norm.grad.”, “norm.integrad.” and “norm.bias.” columns
show the attribution of gradient, integrated gradient and bias
normalized to the color range (0-255). The “grad.attrib”,
“integrad.attrib” and “bias.attrib” show the 10% data fea-
tures with the highest attribution magnitude of the original
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Table 1: Compare the performance (in test accuracy %) of models with/without the bias terms. The “only wx” and “only b”columns use
the same model as the “train with bias” column.

Dataset Train Without Bias Train With Bias, Test All Test Only wx Test Only b
CIFAR10 87.0 90.9 71.5 62.2
CIFAR100 62.8 66.8 40.3 36.5
FMNIST 94.1 94.7 76.1 24.6

image. Bias1 correspond to the first proposed option of
calculating the bias attribution score (Eq. (15)-(17)), bias2
(Eq. (18)) corresponds to the second proposed option and
bias3(Eq. (19)-(20)) corresponds to the third. For all options
of calculating the bias attribution score, the temperature pa-
rameter T is set to 1. We can observe that the bias attribution
can highlight meaningful features in the input data, and in
many cases, capture the information that is complementary
to the information provided by the gradient. For example,
for the “Brambling” image from ImageNet, BBp shows
stronger attribution on the bird’s head and wings compared
to the gradient method. For the “Fire- guard” image of Ima-
geNet, BBp has clear attribution to the fire, in addition to the
shape of the guard, while the gradient method only shows
the shape of the guard. Similarly, for the “folding chair” of
ImageNet, BBp shows clearer parts of the chair, while the
gradient attribution shows less relevant features such as the
background wall. Statistically, on ImageNet dataset, 59.4%,
56.3% and 55.2% of the 3 bias attribution pixels (top 10%
response) are not included in the gradient attribution, and
on STL-10 dataset, the portions are 50.52%, 48.29%, and
43.94% More visualizations can be found the appendix.

5.3 Bias Attribution for Various Layers
As we can naturally decompose the overall bias term into bi-
ases of individual layers, our BBp method has the advantage
of investigating the attributions of biases of various layers
of a given network. From Fig. 2, we compare attributions of
three options of BBp on ImageNet dataset with biases on var-
ious layers of the vgg-11 network. To exclude the biases of
certain layers, we run BBp with the corresponding biases set
to zeros. We can observe that attribution from all layers tend
to give the most complete shape of the objects. As we ex-
clude layers from the input, option 1 gives attributions more
concentrated on parts of the objects, such as the head parts of
the dog (the 2nd image) and the bird (the 3rd image), while
options 2 and 3 focus more on the contours of the objects.

5.4 MNIST Digit Flip Test
This experiment was proposed in (Shrikumar et al., 2017)
to verify that the attribution method is class sensitive. A
digit image of MNIST (LeCun et al., 1998) dataset gets
modified by a mask based on its difference of attributions
from two different classes, so that the image should have
fewer important features for the source class, and more
important features for the target class. Then we measure the
neural network’s output on the modified image to check if

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

original all layers
all except
first 2 layers

all except
first 4 layers

all except
first 6 layers

Figure 2: Bias attribution on ImageNet with biases on different
layers of the vgg-11 network. “bias.1(2,3)” corresponds to the
three attribution score options proposed in section 4.2

the prediction shifts from the source class to the target class
(the log-odds score is (f(x)[c1]− f(x)[c2])− (f(x̂)[c1]−
f(x̂)[c2]), where f is the network, x is an image, x̂ is the
modified x based on the attribution and c1, c2 correspond
to the source and target class). From Fig. 3, we see that the
bias attribution methods are class sensitive and comparable
to methods such as integrated gradient and DeepLift.
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Figure 3: MNIST digit flip test: boxplots of increase in log-odds scores of target vs. source class after the features removed. “Integrated
grads-n” refers to the integrated gradient method with n step approximations. "ba1, ba2 and ba3" refer to our 3 options of bias attribution.
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