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Abstract
We discuss three novel insights about dropout for
DNNs with ReLUs: 1) dropout encourages each
local linear piece of a DNN to be trained on data
points from nearby regions; 2) the same dropout
rate results in different (effective) deactivation
rates for layers with different portions of ReLU-
deactivated neurons; and 3) the rescaling factor
of dropout causes a normalization inconsistency
between training and test when used together
with batch normalization. The above leads to
three simple but nontrivial modifications resulting
in our method “jumpout.” Jumpout samples
the dropout rate from a monotone decreasing
distribution (e.g., the right half of a Gaussian), so
each local linear piece is trained, with high prob-
ability, to work better for data points from nearby
than more distant regions. Jumpout moreover
adaptively normalizes the dropout rate at each
layer and every training batch, so the effective
deactivation rate on the activated neurons is kept
the same. Furthermore, it rescales the outputs
for a better trade-off that keeps both the variance
and mean of neurons more consistent between
training and test phases, thereby mitigating the
incompatibility between dropout and batch nor-
malization. Jumpout significantly improves the
performance of different neural nets on CIFAR10,
CIFAR100, Fashion-MNIST, STL10, SVHN,
ImageNet-1k, etc., while introducing negligible
additional memory and computation costs.

1 Introduction
While deep neural networks (DNNs) are successful on a
wide variety of tasks (Russakovsky et al., 2015; Rajpurkar
et al., 2016), they are often able to fit training data
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perfectly, resulting in an overfitting problem and thereby
weakening the generalization performance on unseen data.
Dropout (Srivastava et al., 2014; Huang et al., 2016) is a
simple yet effective technique to mitigate such problems
by randomly setting the activations of hidden neurons to
0, a strategy that reduces co-adaptation amongst neurons.
Dropout applies to any layer in a DNN without causing
significant additional computational overhead.

Dropout, however, has several drawbacks. Firstly, dropout
rates, constituting extra hyper-parameters at each layer, need
to be tuned to get optimal performance. Too high a dropout
rate can slow the convergence rate of the model, and often
hurt final performance. Too low a rate yields few or no im-
provements on generalization performance. Ideally, dropout
rates should be tuned separately for each layer and also dur-
ing various training stages. In practice, to reduce computa-
tion, we often tune a single dropout rate and keep it constant
for all dropout layers and throughout the training process.

If we treat dropout as a type of perturbation on each
training sample, it acts to generalize the DNN to noisy
samples having that specific expected or typical amount
of perturbation (due to the fixed dropout rate) with high
probability. The fixed rate means noisy samples having less
perturbation, i.e., those potentially more likely to be closer
to the original samples and thus that are potentially more
helpful to improve generalization, are much less likely to
occur. Also, when a constant dropout rate is applied to
layers and samples having different fractions of activated
neurons, the effective dropout rate (i.e., the proportion of
the activated neurons that are deactivated by dropout) varies,
which might result in immoderate perturbation for some
layers and samples and insufficient perturbation for others.

Another deficiency of dropout lies in its incompatibility
with batch normalization (BN) (Ioffe & Szegedy, 2015)
(more empirical evidence of this is shown in Section 3.3).
As dropout randomly shuts down activated neurons, it needs
to rescale the undropped neurons to match the original
overall activation gain of the layer. Unfortunately, such
rescaling breaks the consistency of the normalization
parameters required between training and test phases1 and

1Dropout usually happens only during the training but not the
test phase, since using it for testing requires averaging the results
of multiple dropout inferences on each training sample, which is
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may cause poor behavior when used with BN. Since BN,
and its variants (Ba et al., 2016; Ulyanov et al., 2016; Wu
& He, 2018), has become an indispensable component of
modern DNN architectures, dropout is itself often dropped
out in the choice between these two non-complementary
options, and has recently become less popular.

1.1 Our Approach

We propose three simple modifications to dropout in order
to overcome the aforementioned drawbacks, leading to
an improved method we call “jumpout.” Our approach is
motivated by three observations about how dropout results
in improved generalization performance for DNNs with
rectified linear unit (ReLU) activations, which covers a
frequently used class of DNNs.

Firstly, we note that any DNN with ReLU is a piecewise
linear function which applies different linear models to data
points from different polyhedra defined by the ReLU acti-
vation patterns (Montufar et al., 2014; Wang et al., 2019;
2016). Based on this observation, applying dropout to a
training sample randomly changes its ReLU activation pat-
terns and hence the underlying polyhedral structure and
corresponding linear models. This means that each linear
model is trained not only to produce correct predictions for
data points in its associated polyhedron, but also is trained
to work for data points in nearby polyhedra; what precisely
“nearby” means depends on the dropout rate used. This par-
tially explains why dropout improves generalization perfor-
mance. The problem, however, is that with a fixed dropout
rate, say p, and on a layer with n units, the typical number
of units dropped out is np as that is the mode of a Binomial
distribution with parameter p. It is relatively rare that either
very few (closer to zero) or very many (closer to n) units are
dropped out. Thus, with high probability, each linear model
is smoothed to work on data points in polyhedra at a typical
distance np away. The probability of smoothing over closer
distances is much smaller, thus failing to achieve the goal
of local smoothness.

In jumpout, by contrast, p rather than being fixed is itself
a random variable; we sample p from a distribution that
is monotone decreasing (e.g., a truncated half-Gaussian).
This achieves the property that Pr(i units dropping out ) ≥
Pr(i+1 units dropping out ) for all i ∈ {1, 2, . . . , n}. That
is, a smaller dropout rate has a higher probability of being
chosen. Hence, the probability of smoothing polyhedra to
other points decreases as the points move farther away.

Secondly, we notice that in dropout, the fraction of activated
neurons in different layers, for different samples and differ-
ent training stages, can be different. Although we are using
the same dropout rate, since dropping out neurons that are
already quiescent by ReLU changes nothing, the effective

costly and may introduce greater prediction variance.

dropout rate, i.e., the fraction of the activated neurons that
are dropped, can vary significantly. In jumpout, we adap-
tively normalize the dropout rate for each layer and each
training sample/batch, so the effective neural-deactivation
rate applied to the activated neurons are consistent over
different layers and different samples as training proceeds.

Lastly, we address the incompatibility problem between
dropout and BN by rescaling the outputs of jumpout in
order to keep the variance unchanged after the process of
neural deactivation. Therefore, the BN layers learned in
the training phase can be directly applied in the test phase
without an inconsistency, and we can reap the benefits of
both dropout and BN when training a DNN.

In our implementation, similar to dropout, jumpout also
randomly generates a 0/1 mask over the hidden neurons
to drop activations. It does not require any extra training,
can be easily implemented and incorporated into existing
architectures with only a minor modification to dropout
code. In our experiments on a broad range of benchmark
datasets including CIFAR10, CIFAR100, Fashion-MNIST,
SVHN, STL10 and ImageNet-1k, jumpout shows almost the
same memory and computation costs as the original dropout,
but significantly and consistently outperforms dropout.

1.2 Related Work

Jumpout is not the first approach to address the fixed dropout
rate problem. Indeed, recent work has proposed different
methods to generate adaptive dropout rates. (Ba & Frey,
2013) proposed “standout” to adaptively change the dropout
rates for various layers and training stages. They utilized a
binary belief network and trained it together with the origi-
nal network to control the dropout rates. (Zhuo et al., 2015)
further extend the model so that adaptive dropout rates can
be learned for different neurons or group of neurons. (Zhai
& Wang, 2018) showed that the Rademacher complexity of
a DNN is bounded by a function related to the dropout rate
vectors, and they proposed to adaptively change dropout
rates according to the Rademacher complexity of the
network. In contrast to the above methods, jumpout does
not rely on additional trained models: it adjusts the dropout
rate solely based on the ReLU activation patterns. Moreover,
jumpout introduces negligible computation and memory
overhead relative to the original dropout methods, and can
be easily incorporated into existing model architectures.

(Wang & Manning, 2013) showed that dropout has a Gaus-
sian approximation called Gaussian dropout and proposed to
optimize the Gaussian dropout directly to achieve faster con-
vergence. The Gaussian dropout was also extended and stud-
ied from the perspective of variational methods. (Kingma
et al., 2015) generalized Gaussian dropout and proposed
variational dropout, where they connected the global uncer-
tainty with the dropout rates so that dropout rates can be
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adaptive for every neuron. (Molchanov et al., 2017) fur-
ther extended variational dropout to reduce the variance of
the gradient estimator and achieved sparse dropout rates.
Our method is significantly different from the line of work
in variational dropout: 1) we do not assume any continu-
ous noise applied to inputs; 2) our goal is not the posterior
distribution of model weights; 3) we do not optimize any
variational objective or require any Bayesian inference.

Other recent variants of dropout include Swapout (Singh
et al., 2016), which combines dropout with random
skipping connections to generalize to different neural
network architectures, and Fraternal Dropout (Zolna et al.,
2018), which trains two identical DNNs using different
dropout masks to produce the same outputs and tries to
shrink the gap between the training and test phases of
dropout. Jumpout involves orthogonal and synergistic
contributions to most of the above methods, and targets
other dropout problems. Indeed, jumpout can be applied
along with most other previous variants of dropout.

2 ReLU Deep Neural Networks are
comprised of local linear models

We study a feed-forward deep neural networks of the form:

ŷ(x) = Wmψm−1(Wm−1ψm−2(. . . ψ1(W1x))), (1)

where Wj is the weight matrix for layer j, ψj is the
corresponding activation function (ReLU in this paper),
x ∈ X is an input data point of din dimensions and
ŷ(x) is the network’s output prediction of dout dimen-
sions, e.g., the logits before applying softmax. We de-
note the hidden nodes at layer j to be hj , i.e., hj =
Wjψj−1(Wj−1ψj−2(. . . ψ1(W1x))), whose dimensional-
ity is dj . We represent the nodes after applying the activa-
tion function as h̄j = ψ(hj).

The above DNN formalization can generalize many DNN
architectures used in practice. Clearly, Eqn. (1) can repre-
sent a fully-connected network of m layers. Note Eqn. (1)
covers the DNNs with bias terms at each layer since the bias
terms can be written in the matrix multiplication as well by
introducing dummy dimensions on the input data (append
m 1’s to input data). Moreover, the convolution operator is
essentially a matrix multiplication, where every row of the
matrix corresponds to applying a convolutional filter on a
certain part of the input, and therefore the resulting weight
matrix is very sparse and has tied parameters, and typically
has an enormous (compared to input size) number of rows.
The average-pooling is a linear operator and therefore repre-
sentable as a matrix multiplication, and max-pooling can be
treated as an activation function. Finally, we can represent
the residual network block by appending an identity matrix
at the bottom of a weight matrix so that we can retain the
input values, and add the retained input values later through

another matrix operation. Therefore, we can also write a
DNN with short-cut connections in the form of Eqn. (1).

Data point

Row of W

Monotone dropout rate

Constant dropout rate

Figure 1: DNNs with ReLU partitions the input space into mul-
tiple polyhedra (using the blue lines defined by the rows of weight
matrix W ), and applies a linear model to data points within each
polyhedron. Dropout means randomly applying the linear model
of a polyhedron to data points in some other polyhedra. When a
constant dropout rate is used, the center data point, for example,
will be assigned, with high probability, to the linear models of poly-
hedra at constant distance (the orange ◦). By contrast, a monotone
dropout rate probability assigns the data point to linear models of
closer polyhedra with higher probability than farther polyhedra.

For piecewise linear activation functions such as ReLU,
the DNN in Eqn. (1) can be written as a piecewise linear
function, i.e., the DNN in a region surrounding a given data
point x is a linear model having the following form:

ŷ(x) = WmW
x
m−1 . . .W

x
1 x =

∂ŷ(x)

∂x
x, (2)

where W x
j is the equivalent weight matrix after combining

the resultant activation pattern with Wj . For instance,
suppose we use ReLU activation ψReLU (z) = max(0, z);
at every layer, we have an activation pattern for the input
aj(x) ∈ {0, 1}dj , and aj(x)[p] = 0 indicates that ReLU
sets the unit p to 0 or otherwise preserves the unit value.
Then, ψReLU (W1x) = W x

1 x, where W x
1 is modified from

W1 by setting the rows, whose corresponding activation
patterns are 0, to be all zero vectors. We can continue
such a process to the deeper layers, and in the end we
can eliminate all the ReLU functions and produce a linear
model as shown in Eqn. (2).

In addition, the gradient ∂ŷ(x)
∂x is the weight vector of

the linear model. Note that the linear model in Eqn. 2
is specifically associated with the activation patterns
{aj(x)}mj=1 on all layers for a data input x, which is
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equal to a set of linear constraints that defines a convex
polyhedron containing x. In a DNN with ReLU activations,
for every dimension i in layer 1, if a1(x)[i] = 1, we have
a linear equation W1[i]x > 0 and otherwise we have
W1[i]x ≤ 0. As a result, we have d1 linear constraints for
layer 1. Similarly, we can follow the same procedure on
layer j with input changed to W x

j−1 . . .W
x
1 x, so we have

dj linear constraints for layer j. Therefore, a DNN with
piecewise linear activation functions is a piecewise linear
function defined by a number of local linear models (on
a set of input data points) and the corresponding convex
polyhedra, each represented by a set of linear constraints
(
∑m

j=1 dj constraints in specific). An analysis based on a
similar perspective can be found in (Raghu et al., 2017).

Although the above analysis can be easily extended to
DNNs with general piecewise linear activation functions,
we focus on DNNs with ReLU activations in the rest of
the paper for clarity. In addition to the piecewise linear
property, ReLU units are cheap to compute, as is their
gradient, and are widely applicable to many different
tasks while achieving good performance (He et al., 2016a;
Zagoruyko & Komodakis, 2016). In the following, we will
study how dropout improves the generalization performance
of a complicated DNN by considering how it generalizes
each local linear model to its nearby convex polyhedra.
This is easier to analyze and acts as the inspiration for
our modifications to the original dropout. We will further
elaborate the understandings of dropout based on the above
insights of local linear models in the next section.

3 Three Modifications to Dropout

3.1 Modification I: Monotone Dropout Rate for Local
Smoothness

There have been multiple explanations for how dropout im-
proves the performance of DNNs. Firstly, dropout prevents
the co-adaptation of the neurons in the network, or in other
words, encourages independence and diversity amongst the
neurons. Secondly, by randomly dropping a portion of neu-
rons during training, we effectively train a large number
of smaller networks, and during test/inference, the network
prediction can be treated as an ensemble of the outputs from
those smaller networks, and thus enjoys the advantages of
using an ensemble such as variance reduction.

Here we provide another perspective for understanding how
dropout improves generalization performance by inspecting
how it smooths each local linear model described in the
previous section. As mentioned above, for a DNN with
ReLUs, the input space is divided into convex polyhedra,
and for any data point in any convex polyhedron of the
final layer (a polyhedron that is not divided further into
smaller regions), the DNN behaves exactly as a linear

model. For large DNNs with thousands of neurons per layer,
the number of convex polyhedra can be exponential in the
number of neurons. Hence, there is a high chance that the
training samples will be haphazardly situated amongst the
different polyhedra, and every training data point is likely
to be given its own distinct local linear model. Moreover,
it is possible that two nearby polyhedra may correspond to
arbitrarily different linear models, since they are the results
of consecutively multiplying a series of weight matrices
WmW

x
m−1 . . .W

x
1 of different x (as shown in Eqn. (2)),

where each weight matrix W x
j is Wj with some rows

setting to be all-zero according to the activation pattern
aj(x) of a specific data point x. If the activation patterns
of two polyhedra differ on some critical rows of the weight
matrices, the resulting linear models may in fact differ
greatly. Therefore, it is possible for the linear model of one
polyhedron to work only for one or a few training points
strictly within the polyhedron, and it may fail when applied
to nearby test data points (i.e., a lack of smoothness). This
can make the DNN fragile and perform unstably on new
data, thus weakening its generalization performance.

Given the problems of dropout mentioned in Section 1.1,
we propose to sample a dropout rate from a truncated half-
normal distribution (to get a positive value), which is the
positive part of an ordinary Gaussian distribution with mean
zero. In particular, we firstly sample p ∼ N (0, σ) from a
Gaussian distribution, and then take the absolute value |p|
as the dropout rate. We further truncate |p| so that |p| ∈
[pmin, pmax], where 0 ≤ pmin < pmax ≤ 1. These determine
the lower and upper limits of the dropout rate and are used
to ensure the sampled probability is neither too small, which
makes jumpout ineffective, nor too large, which may yield
poor performance. Overall, this achieves monotone decreas-
ing probability of a given dropout rate as mentioned above.
Other distributions (such as a Beta distribution) could also
be used for this purpose, but we leave that to future work.

We utilize the standard deviation σ as the hyper-parameter
to control the amount of generalization enforcement. By
using the above method, smaller dropout rates are sampled
with higher probabilities so that a training sample will be
more likely to contribute to the linear models of closer poly-
hedra. In Figure 1, we compare a constant dropout rate and
a monotone dropout rate. A Gaussian-based dropout rate
distribution encourages greater smoothness between local
linear models for close polyhedra, but this encouragement
diminishes between polyhedra farther away from each other.

3.2 Modification II: Dropout Rate adapted to the
number of Activated Neurons

The dropout rate for each layer is a hyper-parameter, and
as stated above, it controls a form of smoothness amongst
nearby local linear models. Ideally, the dropout rates of dif-
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ferent layers should be tuned separately to improve network
performance. In practice, it is computationally expensive or
infeasible to tune so many hyper-parameters. One widely
adopted approach is therefore to set the same drop rate for
all layers and to tune one global dropout rate.

Using a single global dropout rate is suboptimal because
the proportion of active neurons (i.e., neurons with
positive values) of each layer at each training stage and
for each sample can be dramatically different (see Fig. 2).
When applying the same dropout rate to different layers,
different fractions of active neurons get deactivated, so the
effective dropout rate applied to the active neurons varies
significantly. Suppose the fraction of active neurons in
layer j is q+j = (

∑
i=1:d 1hj [i]>0)/|hj |. Since dropping

the inactive neurons has no effect (neurons with values ≤ 0
have already been set to 0 by ReLU), the effective dropout
rate of every layer is pjq+j , where pj is the dropout rate
of layer j. Thus, to better control the behavior of dropout
for different layers and across various training stages, we
normalize the dropout rate by q+j and use an actual dropout
rate of p′j = pj/q

+
j . By doing so, the hamming distance

between the changed activation pattern and the original
pattern is more consistent, and we can more precisely
achieve the desirable level of smoothing encouragement
by tuning the dropout rate as a single hyper-parameter.
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Figure 2: Portion of activate neurons on different layers through-
out the training process. The network is “CIFAR10(s)” (see Sec. 4).

3.3 Modification III: Rescale Outputs to work with
Batch Normalization

In standard dropout, if the dropout rate is p, we scale
the neurons by 1/p during training and keeps the neuron
values unchanged during the test/inference phase. The
scaling factor 1/p keeps the mean of the neurons the
same between training and test; this constitutes a primary
reason for the incompatibility between dropout and batch
normalization (BN) (Ioffe & Szegedy, 2015). Specifically,
though the mean of neurons is consistent, the variance
can be dramatically different between the training and test
phases, in which case the DNN might have unpredictable
behavior as the BN layers cannot adapt to the change of

variance from training to test condition.

Figure 3: Comparison of the original dropout, dropout with our
rescaling and jumpout, on their performance (after 150 training
epochs) when used with or without batch normalization (BN) in
“CIFAR10(s)” network (see Sec. 4). Jumpout will be formally
introduced in Sec. 3.4.
We consider one possible setting of combining dropout
layers with BN layers where one linear computational layer
(e.g., a fully-connected or a convolutional layer without
activation function) is followed by a BN layer, then a ReLU
activation layer, and then followed by a dropout layer. For
layer j, without loss of generality, we may treat the value
of a neuron i after ReLU, i.e., h̄j [i] as a random variable
with q+j probability of being 1 and 1 − q+j probability of
being 0. If dropout is not applied, h̄j [i] then gets multiplied
by certain entry in the weight matrix Wj+1[i′, i], and
contributes to the value of the i′ neuron of layer j + 1.
Since we consider any index i and i′, we rename the
following terms for simplicity: xj := h̄j , wj := Wj+1[i′, :],
yj := hj+1[i′]. As neuron i′ of layer j + 1 (before ReLU)
then gets fed into a BN layer, we will focus on the change
of mean and variance as we add the dropout layer.

Suppose we apply a dropout rate of pj , then

E[yj ] = [wj ](1− pj)q+j (3)

V ar[yj ] = E[y2j ]− E[yj ]
2

= (1− pj)E[(wjxj)
2]− (E[wj ](1− pj)q+j )2, (4)

where the expectation is taken over all neurons in the same
layer. Hence, dropout changes both the scales of the mean
and variance of neurons during training. Since the following
BN’s parameters are trained based on the scaled mean and
variance, which however are not scaled by dropout during
test/inference (because dropout is not used during testing),
the trained BN is not consistent with the test phase. An
easy fix of the inconsistency is to rescale the output yj to
counteract dropout’s on the scales of mean and variance. In
order to recover the original scale of the mean, we should
rescale the dropped neurons by (1− pj)−1. However, the
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Figure 4: Comparison of mean/variance drift when using (1−p)−1, (1−p)−0.5 and (1−p)−0.75 as the dropout rescaling factor applied
to y, when p = 0.1 and p = 0.2. The network is “CIFAR10(s)” (see Sec. 4). The left plot shows the empirical mean of y with dropout
divided by the case without dropout (averaged over all layers), and the second plot shows the similar ratio for the variance. Ideally, both
ratios should be close to 1. As shown in the plots, (1− p)−0.75 gives nice trade-offs between the mean and variance rescaling.

rescaling factor should be (1−pj)−0.5 instead for recovering
the scale of the variance if E(yj) is small and thus the second
term of the variance can be ignored.

Ideally, we can also take into account the value of E[wj ],
and scale the un-dropped neurons by√√√√ E[(wjxj)2]− (E[wj ]q

+
j )2

(1− pj)E[(wjxj)2]− (E[wj ](1− pj)q+j )2
. (5)

However, computing information about Wj , which is the
weight matrix of layer-j, requires additional computational
and memory costs. In addition, such a scaling factor is
only correct for the variance of yj . To make the mean
consistent, we should instead use (1− pj)−1 (the original
dropout scaling factor). No simple scaling method can
resolve the shift in both mean and variance, as the mean
rescaling (1− pj)−1 does not solve the variance shift.

When the mean E(yj) is large in magnitude, so that the sec-
ond term in the variance is comparable with the first term, in
which case the variance is small, we should use the rescaling
factor close to (1− pj)−1, which makes the mean exactly
unchanged for training and test. In contrast, when the mean
E(yj) is small in magnitude and close to 0, the second term
in the variance is ignorable, and we should use (1− pj)−0.5
as the rescaling factor, to make the variance unchanged. In
practice, it is not efficient to compute E(yj) during training,

so we propose to use a trade-off point (1 − pj)
−0.75

between (1 − pj)
−1 and (1 − pj)

−0.5. In Figure 4, we
show that (1− pj)−0.75 makes both the mean and variance
sufficiently consistent for the cases of using dropout and not
using dropout. In Figure 3, we compare the performance of
the original dropout and dropout using our rescaling factor
(1− pj)−0.75, when they are used with and without BN in
a convolutional networks. It shows that using dropout with
BN can potentially improve the performance, and larger
dropout might result in more improvement. However, using
the original dropout with BN leads to a significant decrease
in the accuracy once increasing the dropout rate over 0.15.
In contrast, the performance of dropout using our rescaling
keeps improving with increasing dropout rate (until reaching
0.25), and is the best among the four configurations.

3.4 Jumpout Layer
We combine the three modifications specifically designed
to overcome the drawbacks of the original dropout in our
proposed improved dropout, which we call “jumpout” as
shown in Alg. 1. Similar to the original dropout, jumpout es-
sentially generates a 0/1 mask for the input neurons, and ran-
domly drop a portion of the neurons based on the mask. We
sample a dropout rate for each layer on each training batch.

Summarizing the novelty of jumpout, instead of using a
fixed dropout rate as in the original dropout, jumpout sam-
ples from a monotone decreasing distribution as mentioned
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Algorithm 1: Jumpout Layer with ReLU
input : hj , σ, pmax, pmin

1 q+j := (
∑

i=1:dj
1hj [i]>0)/|hj | ; // Compute the fraction of activated neurons

2 p ∼ N (0, σ), pj := min(pmin + |p|, pmax); // Sample a Gaussian dropout rate

3 p′j := pj/q
+
j ; // Normalize the dropout rate according to the fraction of activated neurons

4 Randomly generate a 0/1 mask zj for hj , with probability p′j to be 0; // Sample the dropout mask

5 sj := (1− p′)−0.75; // Compute the rescaling factor

6 h′j := sj ∗ diag(zj)hj ; // Rescale the outputs

7 return h′j

above to get a random dropout rate. Also, jumpout nor-
malizes the dropout rate adaptively based on the number of
active neurons, which enforces consistent regularization and
generalization effects on different layers, across different
training stages, and on different samples. Finally, jumpout
further scales the outputs by (1−p)−0.75, as opposed to (1−
p)−1 during training, in order to trade-off the mean and vari-
ance shifts and synergize well with batchnorm operations.

Jumpout requires one main hyper-parameter σ to control the
standard deviation of the half-normal distribution, and two
auxiliary truncation hyperparameters (pmin, pmax). Though
(pmin, pmax) can also be tuned, they serve to bound the sam-
ples from the half-normal distribution; in practice, we set
pmin = 0.01 and pmax = 0.6, which work consistently well
over all datasets and models we tried. Hence, jumpout
has three hyperparameters, although we only tuned σ and
achieved good performance, as can be seen below.

Also, note that here we consider the input hj to be the
features of layer j corresponding to one data point. For a
mini-batch of data points, we can either estimate q+j sepa-
rately for each single data point in the mini-batch or apply
the average q+j over data points as the estimate for the mini-
batch. In practice, we utilize the latter option as we find that
it gives comparable performance to the first while using less
computation and memory.

Table 1: Ablation study (test accuracy in %) of all the possible
combinations of the three modifications (I, II and III) in jumpout,
“CIFAR10(s)” refers to the small CNN applied to CIFAR10.

Dataset CIFAR10(s) CIFAR10 CIFAR100 STL10
Dropout 86.50 95.23 79.41 81.37
Dropout+I 87.56 96.06 79.89 81.76
Dropout+I+II 90.06 96.35 81.70 82.09
Dropout+II 87.14 95.67 80.24 81.94
Dropout+II+III 89.64 96.74 80.61 82.22
Dropout+III 87.70 96.20 80.59 81.69
Dropout+I+III 87.36 96.45 81.20 82.18
Jumpout 90.24 96.82 82.48 84.02

Jumpout has almost the same memory cost as the original
dropout, which is the additional 0/1 drop mask. For

computation, jumpout requires counting the number of
active neurons, which is insignificant compared to the
other layers of a deep model, and sampling from the
distribution, which is also insignificant compared to the
other computation in DNN training.

4 Experiments
In this section, we apply dropout and jumpout to different
popular DNN architectures and compare their performance
on six benchmark datasets at different scales. In particular,
these DNN architectures include a small CNN with four con-
volutional layers2 applied to CIFAR10 (Krizhevsky & Hin-
ton, 2009), WideResNet-28-10 (Zagoruyko & Komodakis,
2016) applied to CIFAR10 and CIFAR100 (Krizhevsky &
Hinton, 2009), “pre-activation” version of ResNet-20 (He
et al., 2016b) applied to Fashion-MNIST (“Fashion” in all
tables) (Xiao et al., 2017), WideResNet-16-8 applied to
SVHN (Netzer et al., 2011) and STL10 (Coates et al., 2011),
and ResNet-18 (He et al., 2016a) applied to ImageNet (Deng
et al., 2009; Russakovsky et al., 2015).
For all the experiments about CIFAR and Fashion-MNIST,
we follow the standard settings, data preprocessing,
augmentation, and hyperparameters used in an existing
GitHub repository 3. On each dataset, we tune the dropout
rate and σ in jumpout between [0.05, 0.60] with a step
size of 0.05 on a validation set that is 20% of the original
training set. On ImageNet, we starts from a pre-trained
ResNet18 model4, and train two copies of it with dropout
and jumpout respectively for the same number of epochs.
The reason for not starting from random initialized model
weights is that training DNNs on ImageNet usually does not
have overfitting problem if one follows the standard data
augmentation methods used to train most modern models,
but both dropout and jumpout are most effective in the case
of overfitting. Therefore, we choose to start from the pre-

2The “v3” network from https://github.com/
jseppanen/cifar_lasagne.

3https://github.com/hysts/pytorch_image_
classification

4https://gluon-cv.mxnet.io/api/model_zoo.
html#gluoncv.model_zoo.resnet18_v1b

https://github.com/jseppanen/cifar_lasagne
https://github.com/jseppanen/cifar_lasagne
https://github.com/hysts/pytorch_image_classification
https://github.com/hysts/pytorch_image_classification
https://gluon-cv.mxnet.io/api/model_zoo.html#gluoncv.model_zoo.resnet18_v1b
https://gluon-cv.mxnet.io/api/model_zoo.html#gluoncv.model_zoo.resnet18_v1b
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Figure 5: Top Left: WideResNet-28-10+Dropout and WideResNet-28-10+Jumpout on CIFAR10; Top Right: WideResNet-28-
10+Dropout and WideResNet-28-10+Jumpout on CIFAR100; Bottom Left: WideResNet-16-8+Dropout and WideResNet-16-8+Jumpout
on SVHN; Bottom Right: WideResNet-16-8+Dropout and WideResNet-16-8+Jumpout on STL10.

Table 2: Test accuracy (%) of different DNNs trained without dropout/jumpout, with dropout, and with jumpout (10 random trials).

Dataset CIFAR10(s) CIFAR10 CIFAR100 Fashion STL10 SVHN ImageNet
Original 82.47 94.07 77.98 95.85 75.21 97.39 71.04
Dropout 86.43± 0.11 95.21± 0.10 79.34± 0.07 95.85± 0.14 81.09± 0.27 98.15± 0.05 71.09± 0.08
Jumpout 90.18± 0.13 96.69± 0.08 82.22± 0.09 97.13± 0.12 83.87± 0.24 98.36± 0.04 71.43± 0.06

trained model, on which training accuracy is relatively high
(but still not overfit and very close to the test accuracy)5.

We summarize the experimental results in Table 2 which
shows that jumpout consistently (i.e., always) outperforms
dropout on all datasets and all the DNNs we tested. More-
over, for Fashion-MNIST and CIFAR10 on which the test
accuracy is already> 95%, jumpout can still bring apprecia-
ble improvements. In addition, on CIFAR100 and ImageNet
(on which a great number of DNNs and training methods
are heavily tuned), jumpout achieves the improvement that
can only be obtained by significantly increasing the model
size in the past. These verify the effectiveness of jumpout
and its advantage comparing to the original dropout.

In addition, we conduct a thorough ablation study of all the
possible combinations of the three proposed modifications,

5In fact, ImageNet is less of an appropriate benchmark to test
the performance of dropout, and almost all the modern DNNs for
ImageNet do not use dropout, because the training accuracy is
always close to the test accuracy during the training process, and
there is no overfitting problem needed to be tackled by dropout.
We include ImageNet in experiments because of its large size
compared to the other datasets used.

with results reported in Table 1. It further verifies the
effectiveness of each modification: 1) each modification
improves the vanilla dropout; 2) adding any modification
to another brings further improvements; and 3) applying the
three modifications together achieves the best performance.

We also provide the learning curves and convergence plots
of dropout and jumpout equipped DNNs during training
in Figure 5. In all the figures, “jumpout” applies adaptive
dropout rate per mini-batch. Jumpout exhibits substantial ad-
vantages over dropout in early learning stages, and reaches
reasonably good accuracy much sooner. In the future, it may
be possible to find a better learning rate schedule method
specifically for jumpout, so it can reach the final perfor-
mance earlier than dropout.
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