Supplementary Material for
AdaGrad Stepsizes: Sharp Convergence Over Nonconvex Landscapes

A. The Proof of Second Bound in Theorem 2.2

First, observe with probability 1 — ¢’ that
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That is equivalent to solve the following quadratic equation
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A. Tables

Table 1: Statistics of data sets. DIM is the dimension of a sample

DATASET TRAIN TEST  CLASSES Dim
MNIST 60,000 10,000 10 28x28
CIFAR-10 50,000 10,000 10 32x32

IMAGENET 1,281,167 50,000 1000 VARIOUS

Table 2: Architecture for five-layer neural network (LeNet)

LAYER TYPE CHANNELS OUT DIMENSION
5 X 5 CONV RELU 6 28
2 X 2 MAX POOL, STR.2 6 14
5 X 5 CONV RELU 16 10
2 X 2 MAX POOL, STR.2 6 5
FC RELU N/A 120
FC RELU N/A 84
FC RELU N/A 10

B. Implementing the Algorithm in a Neural Network

In this section, we give the details for implementing our algorithm in a neural network. In the standard neural network
architecture, the computation of each neuron consists of an elementwise nonlinearity of a linear transform of input features
or output of previous layer:

y = ¢((w,z) +b), (1)

where w is the d-dimensional weight vector, b is a scalar bias term, x,y are respectively a d-dimensional vector of input
features (or output of previous layer) and the output of current neuron, ¢(-) denotes an elementwise nonlinearity.

For fully connected layer, the stochastic gradient G in Algorithm 1 represents the gradient of the current neuron (see the
green curve, Figure[3). Thus, when implementing our algorithm in PyTorch, AdaGrad-Norm is one learning rate associated
to one neuron for fully connected layer, while SGD has one learning rate for all neurons.

For convolutional layer, the stochastic gradient G in Algorithms 1 represents the gradient of each channel in the neuron.
For instance, there are 6 learning rates for the first layer in the LeNet architecture (Table 1). Thus, AdaGrad Norm is one
learning rate associated to one channel for convolutional layer .

Input  Hidden Hidden Output
layer layer 1  layer 2 layer

Figure 5: An example of backproporgation of two hidden layers. Green edges represent the stochastic gradient GG in Algorithm 1
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C. Proof of Theorem [2.2]

We will use the following lemma to argue that after an initial number of steps N = f%] + 1, either we have already
reached a point z, such that ||V F (zy)||? < ¢, orelse by > nL.

Lemma C.1. Fixe € (0,1] and L > 0. For any non-negative ag, a1, . . . , the dynamical system

bo>0;  bi, =b]+a;

2 ;2 .
has the property that after N = f("L)fbo] + 1 iterations, either ming—g.n—1 ar, < €, or by > nL.

Proof. If by > nL, we are done. Else, let IV be the smallest integer such that N > (UL)i“ and suppose by < nL. Then
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The following Lemma guarantees that the sequence by, b1, ... converges to a finite limit b, > 0 and that b,,,, cannot
be much larger than 2L + C' where C' depends on initialization.

Lemma C.2. Suppose F € C} and F* = inf, F(x) > —o0. Denote by ko > 1 the first index such that by, > nL. Then
forall k > ko,

b, < bry—1 + 2(F(xgy-1) — F*)/n 12)

and moreover,
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Proof. Suppose kg > 1 is the first index such that by, > nL. Then b; > nL for all j > ko, and by Lemma for j >0,
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Taking j — oo,
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Since the AdaGrad update can be equivalently written as
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we find that
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As for the upper bound of F'(xy,_1), we invoke the Descent Lemma again, and have

7 ko2

VF(z;)|?
Fay) — Fay) < T3~ IVEEIE (16)
i=0 i+1
Fo—2
ST STV
T2 I Xo(IVE(m)ll/bo)? + 1
2 ko—2 2
n°L IVE(z)|
< —(1+1 1 _—
=5 ( + og( + Z 02
=0
2 2
n-L biy—1
< 1=
<5 <1+log< 02 >>
where third step uses Lemma [3.2] O

C.1. Proof of Theorem [2.2]

Proof. By Lemma | if ming—o.n_1 || VF(21)||? < € is not satisfied after N = [("Li] + 1 steps, then there is a first
index kg < N such that bk, > nL. By Lemma[C.2] for all k > ko,

b < b1 + 2(F (age—1) — F*) /1.

If ko = 1, it follows from (T4) that
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F(zy) < F(xo) — a7
2(bo + 2( (wo) — F*)/n)
and thus the stated result holds straightforwardly.
Otherwise, if kg > 1, then set
bmax - bkofl + Q(F(mkrgfl) - F*)/n (18)
By Lemma[3.1] for any M > 1,
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By Lemma|[C.2] we have
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