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A. The Proof of Second Bound in Theorem 2.2
First, observe with probability 1− δ′ that

N−1∑
i=0

‖∇Fi −Gi‖2 ≤
Nσ

δ′
.

Let Z =
∑N−1
k=0 ‖∇Fk‖2, then

b2N−1 + ‖∇FN−1‖2 + σ2

=b20 +

N−2∑
i=0

‖Gi‖2 + ‖∇FN−1‖2 + σ2

≤b20 + 2

N−1∑
i=0

‖∇Fi‖2 + 2

N−2∑
i=0

‖∇Fi −Gi‖2 + σ2

≤b20 + 2Z + 2N
σ2

δ′

In addition, from equality (10), i,e,

E

 ∑N−1
k=0 ‖∇Fk‖2

2
√
b2N−1 + ‖∇FN−1‖2 + σ2

 ≤ F0 − F ∗

η
+

4σ + ηL

2
log

(
10 +

20N
(
σ2 + γ2

)
b20

)
, Q

we have with probability 1− δ̂ − δ′ that

Q
δ̂
≥

∑N−1
k=0 ‖∇Fk‖2

2
√
b2N−1 + ‖∇FN−1‖2 + σ2

≥ Z

2
√
b20 + 2Z + 2Nσ2/δ′

That is equivalent to solve the following quadratic equation
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A. Tables

Table 1: Statistics of data sets. DIM is the dimension of a sample

DATASET TRAIN TEST CLASSES DIM

MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32
IMAGENET 1,281,167 50,000 1000 VARIOUS

Table 2: Architecture for five-layer neural network (LeNet)

LAYER TYPE CHANNELS OUT DIMENSION
5× 5 CONV RELU 6 28

2× 2 MAX POOL, STR.2 6 14
5× 5 CONV RELU 16 10

2× 2 MAX POOL, STR.2 6 5
FC RELU N/A 120
FC RELU N/A 84
FC RELU N/A 10

B. Implementing the Algorithm in a Neural Network
In this section, we give the details for implementing our algorithm in a neural network. In the standard neural network
architecture, the computation of each neuron consists of an elementwise nonlinearity of a linear transform of input features
or output of previous layer:

y = φ(〈w, x〉+ b), (11)

where w is the d-dimensional weight vector, b is a scalar bias term, x,y are respectively a d-dimensional vector of input
features (or output of previous layer) and the output of current neuron, φ(·) denotes an elementwise nonlinearity.

For fully connected layer, the stochastic gradient G in Algorithm 1 represents the gradient of the current neuron (see the
green curve, Figure 5). Thus, when implementing our algorithm in PyTorch, AdaGrad-Norm is one learning rate associated
to one neuron for fully connected layer, while SGD has one learning rate for all neurons.

For convolutional layer, the stochastic gradient G in Algorithms 1 represents the gradient of each channel in the neuron.
For instance, there are 6 learning rates for the first layer in the LeNet architecture (Table 1). Thus, AdaGrad Norm is one
learning rate associated to one channel for convolutional layer .
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Figure 5: An example of backproporgation of two hidden layers. Green edges represent the stochastic gradient G in Algorithm 1
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C. Proof of Theorem 2.2
We will use the following lemma to argue that after an initial number of steps N = d (ηL)

2−b20
ε e+ 1, either we have already

reached a point xk such that ‖∇F (xk)‖2 ≤ ε, or else bN ≥ ηL.

Lemma C.1. Fix ε ∈ (0, 1] and L > 0. For any non-negative a0, a1, . . . , the dynamical system

b0 > 0; b2j+1 = b2j + aj

has the property that after N = d (ηL)
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The following Lemma C.2 guarantees that the sequence b0, b1, . . . converges to a finite limit bmax > 0 and that bmax cannot
be much larger than 2L+ C where C depends on initialization.

Lemma C.2. Suppose F ∈ C1
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Proof. Suppose k0 ≥ 1 is the first index such that bk0 ≥ ηL. Then bj ≥ ηL for all j ≥ k0, and by Lemma 3.1, for j ≥ 0,
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we find that
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where third step uses Lemma 3.2.

C.1. Proof of Theorem 2.2

Proof. By Lemma C.1, if mink=0:N−1 ‖∇F (xk)‖2 ≤ ε is not satisfied after N = d (ηL)
2−b20
ε e+ 1 steps, then there is a first

index k0 ≤ N such that bk0 > ηL. By Lemma C.2, for all k ≥ k0,
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and thus the stated result holds straightforwardly.
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By Lemma C.2, we have
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