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Abstract
We consider estimating a high-dimensional vec-
tor from non-linear measurements where the un-
known vector is represented by a generative model
G : Rk ! Rd with k ⌧ d. Such a model
poses structural priors on the unknown vector
without having a dedicated basis, and in particu-
lar allows new and efficient approaches solving
recovery problems with number of measurements
far less than the ambient dimension of the vec-
tor. While progresses have been made recently
regarding theoretical understandings on the lin-
ear Gaussian measurements, much less is known
when the model is possibly misspecified and the
measurements are non-Gaussian. In this paper,
we make a step towards such a direction by con-
sidering the scenario where the measurements
are non-Gaussian, subject to possibly unknown
nonlinear transformations and the responses are
heavy-tailed. We then propose new estimators
via score functions based on the first and second
order Stein’s identity, and prove the sample size
bound of m = O(k"�2

log(L/")) achieving an
" error in the form of exponential concentration
inequalities. Furthermore, for the special case
of multi-layer ReLU generative model, we im-
prove the sample bound by a logarithm factor to
m = O(k"�2

log(d)), matching the state-of-art
statistical rate in compressed sensing for estimat-
ing k-sparse vectors. On the technical side, we
develop new chaining methods bounding heavy-
tailed processes, which could be of independent
interest.
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1. Introduction
Consider a random pair (x, y) 2 Rd ⇥ R with the distribu-
tion satisfying the following semi-parametrized single index
model:

y = f
�hx, G(✓⇤)i, ⇠�, (1)

where ✓⇤ 2 Rk, the vector x 2 Rd is a random vector fol-
lowing a probability density p(x), ⇠ is a random noise vari-
able assumed to be independent of x, and y is the response
variable. The function G : Rk ! Rd is an L-Lipschitz
mapping generating a high-dimensional vector G(✓⇤) 2 Rd

from a low-dimensional signal ✓⇤ 2 Rk. Such a mapping
can be arbitrary but otherwise fixed generator, which implic-
itly captures the structural property of the high-dimensional
vector. For example, in neural nets based generative models
such as generative adversarial nets (GANs) (Goodfellow
et al., 2014), the generator is responsible for generating high
dimensional vectors in Rd that resemble the samples in the
training image dataset from a low dimensional represen-
tation space via a deep neural network. Since the image
samples are often distributed near a low-dimensional mani-
fold of Rd, a well-trained generative model is able to capture
such a manifold structure, which can be difficult to represent
in canonical basis otherwise.

The non-linear link function f : R2 ! R is unknown.
Throughout the paper, we make no specific assumption
on the form of f(·) apart from differentiability. Our goal
is to recover the high dimensional vector G(✓⇤) from a
sequence of i.i.d. copies {(xi, yi)}mi=1

of (x, y). Since
f
�hx, G(✓⇤)i, ⇠� = f

�

a�1hx, a ·G(✓⇤)i, ⇠� for any a >
0, one can only hope to recover G(✓⇤) up to constant scaling.
For simplicity of presentation, we assume that kG(✓⇤)k

2

=

1 throughout the paper.

Despite sharing some similarities with compressed sensing,
computing a consistent estimator of G(✓⇤) in such a sce-
nario is challenging mainly because of the coupling of two
aspects: First, in contrast to the classical structured signal
recovery (Hastie et al., 2015; Lecué & Mendelson, 2014;
Candes et al., 2006) which rely on the notion of sparsity
on some chosen basis, the structure of the unknown here
is inherited in the generative model G(·). The proposed
method is expected to capture a complexity measure of G(·)
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similar to sparsity level in the classical setting. Second, even
for the classical compressed sensing scenario, the unknown
distortion f(·) creates an additional source of ambiguity, re-
sulting in a non-diminishing bias for least square estimators
(Ai et al., 2014; Goldstein & Wei, 2016).

1.1. Related works

Deep generative models have been applied to a variety of
modern machine learning areas. Some notable applications
include synthesizing images that resemble the realistic ones
via generative adversarial nets (GANs) (Goodfellow et al.,
2014; Arjovsky et al., 2017) and sampling from high dimen-
sional posterior distributions using variational auto-encoder
(VAE) (Kingma & Welling, 2013; Rezende et al., 2014).
In both scenarios, a deep neural network takes Gaussian
random vectors as inputs and outputs generative samples
whose distribution is close to the target image/signal distri-
bution, when trained using a sufficiently large number of
target samples.

Another line of works, which is more related to this paper,
focuses on using deep generative models to solve inverse
problems, and has find extensive empirical successes in
image reconstructions such as super-resolution (Sønderby
et al., 2016; Ledig et al., 2017), image impainting (Yeh
et al., 2017) and medical imaging (Hammernik et al., 2018;
Yang et al., 2018). In particular, these generative model
based methods have been shown to produce comparable
results to the classical sparsity based methods with much
fewer (sometimes 5-10x fewer) measurements, which will
greatly benefit application areas such as magnetic resonance
imaging (MRI) and computed tomography (CT), where the
measurements are usually quite expensive to obtain. These
recent, yet impressive empirical results drive researchers to
look for theoretical justifications from various perspectives.

In a recent work (Bora et al., 2017), the authors consider a
linear model

y = AG(✓⇤) + ⌘,

where A is a Gaussian measurement matrix and ⌘ is a
bounded noise term. By showing that the Gaussian mea-
surement matrix satisfies a restricted eigenvalue condition
(REC) over the range of the generative model G(·), the
authors prove the L

2

empirical risk minimizer

ˆ✓ 2 argmin

✓2Rk

kAG(✓)� yk2
2

(2)

satisfies an estimation error bound k⌘k
2

+ " when the num-
ber of samples is of the order O(k log L

" ). They further
show that the " term in the error bound can be removed
when G(·) is a multilayer ReLU network. The works (Hand
& Voroninski, 2017; Huang et al., 2018) consider the same
linear model with the aforementioned L

2

empirical risk min-
imizer and a multilayer ReLU network G(·). They show

under the REC condition on the measurement matrix and
other suitable conditions on the weights of the ReLU func-
tion, the gradient descent algorithm essentially converges to
the global minimum of the the empirical risk objective. Fur-
thermore, the work (Hand et al., 2018) considers the phase
retrieval problem under an n-layer ReLU generator G(·) and
show that when the measurement matrix satisfies a range re-
stricted concentration, which is stronger than REC, and the
number of measurements is greater than O(kn log d), the
gradient descent algorithm on the empirical amplitude flow
risk converges to neighborhoods of the global minimum.

In the absence of generative models, the problem of re-
covering a vector ✓⇤ from the measurements of the form
y = f

�hx, ✓⇤i� + ⇠, which is usually referred to as the
single index model (SIM), has been studied in several
previous works. One of the most classical, yet surpris-
ing results dates back to (Brillinger, 1983), which states
that if the measurement vector x is Gaussian, then, one
can simply “ignore” the nonlinearity f(·) and estimate ✓⇤

up to scalar scaling by solving the ordinary least square:
argmin✓2Rd E

⇥

(y � hx, ✓i)2⇤. Later, (Li & Duan, 1989)
shows the same result holds for the class of elliptical sym-
metric measurements. More recently, the works (Plan et al.,
2017; Plan & Vershynin, 2016) study the SIM with Gaussian
measurements when the true vector ✓⇤ is high dimensional
but lies in a conic set, whose recovery error bound can then
be represented in terms of the Gaussian complexity measure
of the set. The works (Goldstein et al., 2018; Wei, 2018)
consider high-dimensional SIM with heavy-tailed ellipti-
cal symmetric measurements and propose thresholded least
square estimators with a similar performance guarantee as
the Gaussian case. As is discussed in (Ai et al., 2014; Gold-
stein & Wei, 2016), for SIM with general non-Gaussian
measurements, least square estimators can incur a fixed bias
term regardless of how many measurements being taken. To
obtain a consistent estimator for the general non-Gaussian
measurements, the works (Yang et al., 2017a;b) propose
thresholded score function estimators via Stein’s identity.
While treating heavy-tailed measurements, their methods
and analysis depend heavily on the chosen basis and thus
apply to estimation of sparse and low-rank signals only.

1.2. Our contributions

In this paper, we make a step towards understanding the
high-dimensional generative model G(·) by proposing new
estimation methods and proving recovery guarantees with-
out involving any REC type conditions, which allows the
measurements to be non-Gaussian and the responses to be
heavy-tailed. More specifically, under the assumption that
the distribution of the measurement x is known a priori and
the link function f : R2 ! R is differentiable on the first
argument,

• we propose a LASSO type estimator based on the first
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order Stein’s identity and show a sample size bound
of m = O �

k"�2

log(L/")
�

achieving an " estimation
error, which applies to the scenario when the link func-
tion satisfies E[f 0

(hx, G(✓⇤)i, ⇠)] 6= 0.1 In particular,
this error bound depends logarithmically on the Lips-
chitz constant L, matching the sample complexity of
the linear Gaussian scenario.

• we propose a PCA type estimator based on the sec-
ond order Stein’s identity and show the same m =

O �

k"�2

log(L/")
�

bound achieving " estimation er-
ror, allowing E[f 0

(hx, G(✓⇤)i, ⇠)] = 0 (and in partic-
ular the phase retrieval scenario) but at the cost of
solving a potentially more challenging optimization
problem.

• In the special case where the generative model G(·) is
an n-layer ReLU network with each layer having at
most d nodes, the Lipschitz constant can be bounded
by O(dn). We show that for each of the two methods
above, the sample bound can be improved by a loga-
rithm factor to m = O �

kn"�2

log(d)
�

. In particular,
this error bound depends logarithmically on the out-
put dimension d, matching state-of-art statistical rate
in compressed sensing for estimating k-sparse vectors
when the number of layers n is small.

On the technical side, our results are built upon new chaining
arguments bounding heavy-tailed processes over the range
of G(·) as well as piecewise linearity analysis of the ReLU
network, which could be of independent interests.

1.3. Notations

Throughout the paper, for any vector v 2 Rd, kvkp, p � 1

denotes the Euclidean vector p-norm. For any real ran-
dom variable X , the Lp norm (E[|X|p]1/p, p � 1) is
denoted as kXkLp . The Orlicz  

2

-norm is denoted as
kXk 2 := supp�1

p�1/2kXkLp . We use Sd�1 to denote
the unit sphere in Rd and use Bk

(r) to denote the ball
of radius r centered at the origin in Rk. For any matrix
A 2 Rd⇥d, kAkF := (

Pd
i=1

Pd
j=1

|Aij |2)1/2. For any
two matrices A, B 2 Rd⇥d, the matrix inner product
hA,Bi := Trace(AT

B). For any (twice) differentiable
function g : Rd ! R, rg and r2g denote the gradient and
Hessian of g, respectively. For a random variable X 2 R
with density p, we use p⌦d

: Rd ! R to denote the joint
density of X

1

, · · · , Xd, which are d identical copies of X .
Finally, the notations C, C

1

, C
2

, C 0, C 00 are all absolute
constants, and their values can be different per appearance.

2. Model definitions
We start by defining the score function of a distribution. Let
p : Rd ! R be a differentiable probability density function

1We use f

0
(x, y) to denote @f(x,y)

@x

.

on Rd. Define the score function Sp(x) as

Sp(x) = �r log p(x) = �rp(x)/p(x), x 2 Rd.

Moreover, a mapping G : Rk ! Rd is Lipschitz with a
constant L if it satisfies

kG(a)�G(b)k
2

 Lka� bk
2

, 8a,b 2 Rk.

2.1. First order link function and Stein’s identity

We first discuss the statistical model based on the first or-
der link function, which results from the first order Stein’s
identity. Recall the following Stein’s identity:
Proposition 2.1 ((Stein et al., 2004)). Let X 2 Rd be a
real valued random vector with density p. Assume that
p : Rd ! R is differentiable. In addition, let g : Rd ! R
be a continuous function such that E[rg(X)] exists. Then it
holds that E[g(X)Sp(X)] = E[rg(X)], where Sp(X) =

�rp(X)/p(X).

To see how Stein’s identity can help us estimate G(✓⇤) from
f
�hx, G(✓⇤)i, ⇠�, we consider the following correlation:

E[y · Sp(x)] =E
⇥

f
�hx, G(✓⇤)i, ⇠�Sp(x)

⇤

=E
⇥

E
⇥

f
�hx, G(✓⇤)i, ⇠� · Sp(x)

�

� ⇠
⇤⇤

=E
⇥

E
⇥r

x

f
�hx, G(✓⇤)i, ⇠� �� ⇠⇤⇤

=E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ ·G(✓⇤), (3)

where for f : R2 ! R, and we use f 0
(x, y) to denote

@f(x, y)/@x use r
x

to denote taking a gradient on x argu-
ment only, and the third equality follows from the Stein’s
identity. Thus, when E

⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ 6= 0, one can
estimate G(✓⇤) from the expectation E[y · Sp(x)], which
serves as our motivation for the following first order link
definition:
Assumption 2.1 (First order link). Consider the model (1).
The function f is differentiable on the first argument. The
entries of x are i.i.d. with differentiable density p

0

and � :=

E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ 6= 0, where f 0
(x, y) = @f(x, y)/@x.

Furthermore, there exists r > 0, such that ✓⇤ 2 Bk
(r) and

9✓ 2 Bk
(r) satisfying � ·G(✓⇤) = G(✓).

Remark 2.1. Note that under the first order link model, one
has Sp(x) = �rp(x)/p(x) = s

0

� (x), where s
0

� (x)

denotes the entry-wise application of the 1-d score function
s
0

= �p0
0

/p
0

to x. Furthermore, the condition � ·G(✓⇤) =
G(✓) is mild. For example, consider the case G is a multi-
layer ReLU network G(✓) = � � (Wn� � (Wn�1

· · ·� �
(W

1

✓))), where �(x) = max(x, 0). Suppose � � 0, then
we have �·G(✓⇤) = G(�·✓⇤). More generally, the condition
� · G(✓⇤) = G(✓) holds when G(Rk

) coincides with the
cone of G(Rk

) in Rd.2

2For any set ⇥ 2 Rd, the cone of ⇥ is the set {⌧h : ⌧ 2
R,h 2 ⇥}.
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2.2. Second order link function and Stein’s identity

The previous model requires E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ 6=
0, which is sometimes restrictive. For example, it ex-
cludes the phase retrieval link where f(hx, G(✓⇤)i, ⇠) =

|hx, G(✓⇤)i|2 + ⇠. In view of this limitation, we consider
the following second order Stein’s identity.
Proposition 2.2 ((Janzamin et al., 2014)). Let X 2 Rd be
a real valued random vector with density p. Assume that
p : Rd ! R is twice differentiable. Define the second order
score function T (X) := r2p(X)/p(X). Let g : Rd ! R
be a continuous function such that E[r2g(X)] exists. Then,
E[g(X)T (X)] = E[r2g(X)].

To see how one can extract G(✓⇤) from f
�hx, G(✓⇤)i, ⇠�

using this Stein’s identity, we consider

E[yT (x)] =E
⇥

f
�hx, G(✓⇤)i, ⇠�T (x)⇤

=E
⇥

E
⇥

f
�hx, G(✓⇤)i, ⇠�T (x) �� ⇠

⇤⇤

=E
⇥

E
⇥r2

x

f
�hx, G(✓⇤)i, ⇠� �� ⇠⇤⇤

=E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤G(✓⇤)G(✓⇤)T , (4)

where for f : R2 ! R, f 00
(x, y) = @2f(x, y)/@x2, r2

x

de-
notes taking Hessian on x argument only, and the third
equality follows from the Stein’s identity. Thus, when
E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0, one can estimate G(✓⇤) by
estimating the principle component of the matrix E[yT (x)],
which motivates the following definition.
Assumption 2.2 (Second order link). Consider the model
y = f

�hx, G(✓⇤)i, ⇠
�

. The function f is twice differen-
tiable on the first argument. The entries of x are i.i.d.
with twice differentiable density p

0

and the expectation
E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0.

Remark 2.2. Note that when E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ <
0, we can replace y by �y and the above condition is
satisfied. Thus, the condition we require is essentially
E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ 6= 0. Furthermore, under the
second order link model, the joint density is p(x) :=

p⌦d
0

(x) =

Qd
i=1

p
0

(xi). Recall the 1-d score function
s
0

(x) = p0
0

(x)/p(x), and the second order score function
T (x) can be expressed by Sp(x) as

T (x) = Sp(x)Sp(x)
T � diag(s0

0

� (x)), (5)

where s0
0

� (x) denotes the entry-wise application of s0
0

=

�

(p0
0

)

2 � p00
0

p
0

��

p2
0

to x.

3. Main results on first order links
3.1. Theoretical results for Lipschitz generative models

In this section, we present theoretical results which hold
for any arbitrary but fixed L-Lipschitz function G(·). Ac-
cording to the derivation (3), one could estimate G(✓⇤) by

solving the following optimization problem:

✓
0

2 argmin

✓2Bk
(r)

kG(✓)k2
2

� 2E[yhSp(x), G(✓)i], (6)

for some radius r > 0 large enough. Indeed, by (3),

E[ySp(x)] = E[f(hx, G(✓⇤)i, ⇠)Sp(x)]

= E[f 0
(hx, G(✓⇤)i, ⇠)] ·G(✓⇤) = �G(✓⇤),

thus, ✓
0

2 argmin✓2Bk
(r) kG(✓) � �G(✓⇤)k2

2

, which im-
plies G(✓

0

) = �G(✓⇤). In the current scenario, we propose
to solve an empirical version of (6), i.e.

b✓ 2 argmin

✓2Bk
(r)

kG(✓)k2
2

� 2

m

m
X

i=1

yihSp(xi), G(✓)i. (7)

Remark 3.1. There is no guarantee that the solution to the
minimization problems (6) and (7) are unique. However,
since the objectives in these problems are quadratic on
G(✓), the solution is unique on the range of G(·). Thus our
estimator G(

b✓) of G(✓⇤) is uniquely defined.

Since the function f(hx, G(✓⇤)i, ⇠) is arbitrary and un-
known, it is unrealistic to assume that the responses {yi}mi=1

have nice statistical properties (i.e. higher order moments
exist). Throughout the paper, we make the following mo-
ment assumptions on the measurements:

Assumption 3.1. Each entry of the random vector Sp(x)

is subgaussian, i.e. k[Sp(x)]ik 2 < 1, i = 1, 2, · · · , d.
Furthermore, we assume y 2 Lq, i.e. E[|y|q]1/q < 1, for
some q > 4.

Remark 3.2. This assumption implies that the random vec-
tor Sp(x) is subgaussian, i.e. 8t 2 Sd�1, khSp(x), tik 2 
C

0

for some absolution constant C
0

. 3 For the rest of the
paper, let kSp(x)k 2 := supt2Bd

(1)

khSp(x), tik 2 .

Since the response y is heavy-tailed, it is not guaranteed
that the resulting estimator b✓ is well concentrated around
the ground truth. To this point, we propose a thresholded
version of the above empirical estimator. Let ỹi := sign(yi)·
|yi| ^ ⌧ be the truncated version of yi, with the truncation
level ⌧ to be determined below. We then consider learning
�G(✓⇤) via the following optimization problem:

b✓ 2 argmin

✓2Bk
(r)

kG(✓)k2
2

� 2

m

m
X

i=1

eyihSp(xi), G(✓)i. (8)

The following theorem characterizes the statistical rate of
the proposed estimator.

3For any u > 0, E[exp(uhS
p

(x), ti)] =Q
d

i=1 E[exp(u[Sp

(x)]

i

t

i

)] 
Q

d

i=1 exp(Cu

2k[S
p

(x)]

i

k
 2 t

2
i

)


Q

d

i=1 exp(Cu

2 · max

i

k[S
p

(x)]

i

k
 2), for some absolute

constant C > 0, , which implies the subgaussianity of the vector.
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Theorem 3.1. Let � 2 (0, r), ⌘,� � 2 be any con-
stants. Suppose ⌧ = m1/2(1+)�y, where �y � kykLq ,
 2 (0, q/4� 1) are any chosen constants, then, with prob-
ability at least 1� e�⌘ � e�� , the solution to (8) satisfies

kG(

b✓)� �G(✓⇤)k
2

 C

r

⌘ + k log(4Lr/�)

m

+

p

C�
⇣⌘ + k log(4Lr/�)

m

⌘

1/4

,

where C = CkSp(x)k 2�y

p

�(1 + )/, C > 0 is an
absolute constant and � = E

⇥

f 0�hx, G(✓⇤)i, ⇠�⇤. Further-
more, for any fixed accuracy level " 2 (0, 1], take � = "

and we have kG(

b✓) � �G(✓⇤)k
2

 " with a sample size
m = O �

k"�2

log(4Lr/")
�

.
Remark 3.3. Note that by Assumption (2.1), � 6= 0. The
previous theorem shows that one can estimate G(✓⇤) up to
constant scaling. Using the assumption that kG(✓⇤)k

2

= 1,
one can further estimate G(✓⇤) itself by a simple normaliza-
tion: Define the normalization estimator

G(✓) =

(

G(

b✓)
�

�

�G(

b✓)
�

�

2

,
�

�G(

b✓)
�

�

2

> 0,

0,
�

�G(

b✓)
�

�

2

= 0.

Then, by a similar argument as Corollary 1.1 of (Goldstein
& Wei, 2016), we can show that with probability at least
1 � e�⌘ � e�� , kG(✓) � G(✓⇤)k

2

 "/|�| with the same
sample size m = O(k"�2

log(4Lr/")).

3.2. Theoretical results for ReLU generative model

In this section, we show that if we make more assumptions
on the generative model, then, a slightly sharper result can
be obtained. Specifically, we will consider one of the most
widely used generative model, namely, the multilayer ReLU
network with n-layers and at most d nodes at each layer,

G(✓) = � � (Wn� � (Wn�1

· · ·� � (W
1

✓))), (9)

where �(x) = max(x, 0) and ��(x) denotes the entry-wise
application of �(·). One can easily show that in this scenario,
the Lipschitz constant of G(·) is bounded by O(dn). We
consider the following optimization:

b✓ 2 argmin

✓2Rk

kG(✓)k2
2

� 2

m

m
X

i=1

eyihSp(xi), G(✓)i. (10)

The following theorem provides the statistical rate:
Theorem 3.2. Let ⌘,� � 2 be any constants. Suppose
G(·) is a ReLU generative model with n-layers and at most
d nodes at each layer, ⌧ = m1/2(1+)�y, where �y �
kykLq ,  2 (0, q/4 � 1) are any chosen constants, then,
with probability at least 1� e�⌘ � e�� , the solution to (10)
satisfies

kG(

b✓)� �G(✓⇤)k
2

 C

r

⌘ + kn log(2d)

m
,

where C = CkSp(x)k 2�y

p
�
q

1+
 , C > 0 is an abso-

lute constant and � = E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ > 0. Further-
more, for any fixed accuracy level " 2 (0, 1], take � = "

and we have kG(

b✓)� �G(✓⇤)k
2

 " with a sample bound
m = O(kn"�2

log d).

Similar to Theorem 3.1, one can further normalize G(

b✓) and
estimate G(✓⇤) itself. Finally, we note that (10) is slightly
simpler than (8) in that we do not impose the constraint
✓ 2 Bk

(r) in the optimization (i.e. no prior knowledge on
the radius r is required), and the result in Theorem 3.2 is
tightened by a logarithm factor compared to that of The-
orem 3.1. The intuition is that ReLU generative model is
piecewise linear and within each single piece it is a linear
map. Thus, within each piece, we are essentially doing
optimization over a k-dimensional subspace of Rd, which
is relatively easy to understand. Hence, our result in this
section can actually be generalized to any piecewise lin-
ear function without too much overhead. Furthermore, our
bound matches the optimal statistical rate O(k"�2

log d)
for sparse recovery when the number of layers n is small
compared to the input dimension k.

Remark 3.4. From a computation point of view, both (8)
and (10) can be approximately solved via gradient de-
scent. In particular, the works (Huang et al., 2018; Hand
& Voroninski, 2017) show that under suitable conditions
on the weights of the ReLU function, gradient descent on
the L

2

empirical risk objective (2) converges to the global
minimum of that objective. Our objective (10) is arguably
simpler than (2) in the sense that the quadratic term does
not involve the measurement matrix. Thus, the same ar-
gument in (Huang et al., 2018) carries through with little
modification, showing that gradient descent also converges
to the global minimum of (10). We omitted the details for
brevity.

4. Main results on second order links
As is mentioned previously, the first order link assumes
E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤ 6= 0, which precludes the phase re-
trieval link function, and more generally misspecified phase
retrieval problems considered in a recent work (Yang et al.,
2017c). We now introduce new estimators which work for
these cases and establish their statistical rates of conver-
gence. Our method is of PCA type and works under the
second order link conditions.

4.1. Theoretical results for Lipschitz generative models

According to the derivation (4), our goal is to esti-
mate the principle eigenvector of E[yT (x)]. Let �

1

:=

E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0, then, using the fact that
kG(✓⇤)k

2

= 1, one can estimate G(✓⇤) by solving the
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following optimization:

✓
0

2 argmax

✓2Bk
(r): kG(✓)k2=1

G(✓)TE[yT (x)]G(✓)

Substituting the form of T (x) in (5), the above optimization
is equivalent to the following:

✓
0

2 argmax

✓2Bk
(r): kG(✓)k2=1

G(✓)TE
⇥

ySp(x)Sp(x)
T
⇤

G(✓).

Under Assumption 3.1, similar to the previous first order
links, we replace E[ySp(x)Sp(x)] by an empirical version
with y being thresholded, i.e.

ˆ✓ 2 argmax

✓2Bk
(r): kG(✓)k2=1

1

m

m
X

i=1

eyi|hG(✓), Sp(xi)i|2, (11)

where eyi := sign(yi) · |yi| ^ ⌧ . Note that by assumption
✓⇤ 2 Bk

(r) and kG(✓⇤)k
2

= 1, the above feasible set is not
empty. The following theorem characterizes the statistical
rate of the proposed estimator.

Theorem 4.1. Let � 2 (0, 1), ⌘,� � 2 be any con-
stants. Suppose m � k log(4Lr), the truncation level
⌧ = (k log(4Lr)/m)

�1/2(1+)�y, where �y � kykLq ,
 2 (0, q/4 � 1) are any chosen constants, and �

1

=

E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0, then, with probability at least
1� e�⌘ � e�� , the solution to (11) satisfies

kG(

b✓)G(

b✓)T �G(✓⇤)G(✓⇤)T kF 

C

r

⌘ + k log(4Lr/�)

m
+

p

C�
⇣⌘ + k log(4Lr/�)

m

⌘

1/4

,

where C = C 1+


(kSp(x)k 2+kSp(x)k2
 2

)�y
p
�

�1
and C > 0

is an absolute constant. Moreover, taking � = " for some
accuracy level " 2 (0, 1) and the number of samples m =

O �

k"�2

log(4Lr/")
�

gives kG(

b✓)�G(✓⇤)k
2

 ".

4.2. Theoretical results for ReLU generative model

In this section, we consider the special case when G(·) is
a multilayer ReLU function (9). We propose to estimate
G(✓⇤) from the following optimization problem:

ˆ✓ 2 argmax

kG(✓)k2=1

1

m

m
X

i=1

eyi|hG(✓), Sp(xi)i|2, (12)

which is the same as (11) except that we drop the constraint
✓ 2 Bk

(r). The following theorem provides the statistical
convergence rate.

Theorem 4.2. Let ⌘,� � 2 be any constants. Sup-
pose m � kn log(2d), the truncation level ⌧ =

(kn log(2d)/m)

�1/2(1+)�y, where �y � kykLq ,
 2 (0, q/4 � 1) are chosen constants, and �

1

=

E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0, then, with probability at least
1� e�⌘ � e�� , the solution to (12) satisfies

kG(

b✓)G(

b✓)T �G(✓⇤)G(✓⇤)T kF  C

r

⌘ + kn log(2d)

m

where C = C 1+


(kSp(x)k 2+kSp(x)k2
 2

)�y
p
�

�1
and C > 0

is absolute constant. In particular, taking the number of
samples m = O(kn"�2

log d) for some accuracy level " 2
(0, 1) gives kG(

b✓)�G(✓⇤)k
2

 ".

Remark 4.1. Note that by a change of variable
b = G(✓), the method (11) can be rewritten as
max

b2G(Bk
(r))\Sd�1 m�1

Pm
i=1

eyi|hb, Sp(xi)i|2. This is
related to the sparse PCA over `q-norm ball (q  1) consid-
ered in earlier works, e.g. (Jolliffe et al., 2003; Witten et al.,
2009; Vu & Lei, 2012). More specifically, given a random
vector X 2 Rd with zero mean and covariance matrix ⌃ :=

E
⇥

XXT
⇤

, the sparse PCA problem focuses on estimating
the principle eigenvector of ⌃, under the assumption that
it is approximately sparse and stays in an `q ball (q  1):
Bd
q (r) := {b 2 Rd

:

Pd
i=1

|bi|q  r}. Then, the afore-
mentioned works propose to estimate the principle eigen-
vector from m samples X

1

, · · · , Xm by solving the fol-
lowing problem: max

b2Bd
q (r)\Sd�1 m�1

Pm
i=1

|hb, Xii|2.
In particular, it is known that the solution to the non-
convex q = 0 case achieves the min-max optimal statistical
rate m = O(k"�2

log d) for sparse PCA. Our method re-
places the sparse inducing `q-ball with a generative model
G(Bk

(r)), matching the aforementioned statistical rate
when G(·) is a ReLU generative function.

Remark 4.2. Note that computing (11) or (12) is chal-
lenging mainly because of the constraint kG(✓)k

2

= 1.
A somewhat promising way of solving (12) for G(✓⇤) di-
rectly is the Rayleigh flow method (Tan et al., 2018),
which avoids explicitly treating the constraint and has
been shown to converge for sparse PCA under a proper
initialization. Adapting it to our scenario, one could it-
eratively take the gradient ascent step on the “Rayleigh
quotient” m�1

Pm
i=1

eyi|hG(✓), Sp(xi)i|2/kG(✓)k2
2

, push
forward the update through G and then normalize it. It is
interesting to see if such a method can still converge in the
presence of generative models. We leave it for future works.

5. Proofs of main results
In this section, we provide details on the proofs of Theorem
3.1 and 4.1. The proofs of Theorem 3.2 and 4.2 build upon
the previous two results by further taking into account the
piecewise linearity of the ReLU function. For simplicity of
presentation, we delay the proofs of them as well as other
concentration results to the supplementary.
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5.1. Proof of Theorem 3.1

We start by defining the following empirical average
Em[ỹhSp(x), ✓i] := m�1

Pm
i=1

ỹihSp(xi), ✓i, and letting

eL(G(✓)) := kG(✓)k2
2

� 2Em[eyhSp(x), G(✓)i],
eL0

(G(✓)) := kG(✓)k2
2

� 2E[eyhSp(x), G(✓)i].
L0

(G(✓)) := kG(✓)k2
2

� 2E[yhSp(x), G(✓)i].
By the first order Stein’s identity (3), we have
E[yhSp(x), G(✓)i] = �hG(✓⇤), G(✓)i, where � =

E
⇥

f 0�hx, G(✓⇤)i, ⇠�⇤. Thus, we have for any ✓ 2 Bk
(r),

L0

(G(✓))� L0

(�G(✓⇤))

=kG(✓)k2
2

� 2E[yhSp(x), G(✓)� �G(✓⇤)i]� �2kG(✓⇤)k2
2

=kG(✓)k2
2

� �2kG(✓⇤)k2
2

� 2�hG(✓⇤), G(✓)� �G(✓⇤)i
=kG(✓)� �G(✓⇤)k2

2

.

In particular, for an empirical minimizer b✓ 2 Bk
(r),

kG(

b✓)� �G(✓⇤)k2
2

=L0

(G(

b✓))� L0

(�G(✓⇤))

=L0

(G(

b✓))� eL0

(G(

b✓)) + eL0

(G(

b✓))� eL0

(�G(✓⇤))

+

eL0

(�G(✓⇤))� L0

(�G(✓⇤))

|L0

�

G(

b✓)� �G(✓⇤)
�� eL0

�

G(

b✓)� �G(✓⇤)
�|

+ |eL0

(G(

b✓))� eL0

(�G(✓⇤))|.
Note that the bias term

|L0

�

G(

b✓)� �G(✓⇤)
�� eL0

�

G(

b✓)� �G(✓⇤)
�|

=

�

�

�

E
h

(y � ey) · hSp(x), G(

b✓)� �G(✓⇤)i
i

�

�

�

.

Thus, we have the following bias-variance decomposition:

kG(

b✓)� �G(✓⇤)k2
2


�

�

�

E
h

(y � ey) · hSp(x), G(

b✓)� �G(✓⇤)i
i

�

�

�

+ |eL0

(G(

b✓))� eL0

(�G(✓⇤))|. (13)

The following lemma, whose proof can be found in Section
9 of the supplementary, gives a bound for the first term in
(13) under a certain truncation level ⌧ :
Lemma 5.1. Suppose ⌧ = m1/2(1+)�y, where �y �
kykLq ,  2 (0, q/4�1) are chosen constants. Let CS,�, =

�ykSp(x)k 2

p

(1 + )/. Then, for any t 2 Rd,

|E[yhSp(x), ti � eyhSp(x), ti]|  CS,�,m
�1/2ktk

2

.

In view of (13), it remains to bound the term |eL0

(G(

b✓))�
eL0

(�G(✓⇤))|. First of all, we can further decompose the

term into differences of empirical averages:

eL0

(G(

b✓))� eL0

(�G(✓⇤)) = eL0

(G(

b✓))� eL(G(

b✓))
| {z }

(I)

+

eL(G(

b✓))� eL(�G(✓⇤))
| {z }

(II)

+

eL(�G(✓⇤))� eL0

(�G(✓⇤))
| {z }

(III)

Note that by the first order link condition, 9✓ 2 Bk
(r) such

that �G(✓⇤) = G(✓). Since b✓ minimizes the empirical risk
eL(G(✓)) over all ✓ 2 Bk

(r), we have (II)  0. Substitut-
ing the definitions of eL(·) and eL0

(·) gives

|eL0

(G(

b✓))� eL0

(�G(✓⇤))|

�

�

�

hE[eySp(x)]� Em[eySp(x)], G(

b✓)� �G(✓⇤)i
�

�

�

=

�

�

�

hE[eySp(x)]� Em[eySp(x)], G(

b✓)�G(✓)i
�

�

�

, (14)

where the last equality follows again from the first order
link condition 9✓ 2 Bk

(r) such that �G(✓⇤) = G(✓).

Using the Lipschitz structure of G(Bk
(r)), we establish the

following key uniform concentration lemma in Section 9
of the supplementary regarding the above term via a new
chaining argument on a heavy-tailed multiplier process.

Lemma 5.2. Let � 2 (0, r), ⌘,� � 2 be constants. Suppose
⌧ = m1/2(1+)�y, where �y � kykLq ,  2 (0, q/4 � 1)

are any chosen constants. Then, with probability at least
1� e�⌘ � e�� , for any t, t0 2 G(Bk

(r)), we have

�

�

�

�

�

1

m

m
X

i=1

eyihSp(xi), t� t0i � E[eyhSp(x), t� t0i]
�

�

�

�

�

 C
0
S,�,�,

r

⌘ + k log(4Lr/�)

m
(kt� t0k

2

+ �) ,

where C
0
S,�,�, = CkSp(x)k 2�y

p

�(1 + )/ and C >
0 is an absolute constant.

Substituting Lemma 5.1 with t = G(

ˆ✓) � �G(✓⇤) and
Lemma 5.2 with t = G(

ˆ✓), t0 = �G(✓⇤) = G(✓) into
(13) gives with probability at least 1� e�� � e�⌘ ,

kG(

b✓)� �G(✓⇤)k2
2

 (C
0
S,�,�, + CS,�,)

·
r

⌘ + k log(4Lr/�)

m

⇣

kG(

b✓)� �G(✓⇤)k
2

+ �
⌘

.

Define am = C
p

(⌘ + k log(4Lr/�))/m, and bm =

C�
p

(⌘ + k log(4Lr/�))/m, where C = (C
0
S,�,�, +

CS,�,). Then, we have

kG(

b✓)� �G(✓⇤)k2
2

 amkG(

b✓)� �G(✓⇤)k
2

+ bm.
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Solving this quadratic inequality gives

kG(

b✓)� �G(✓⇤)k
2

 am +

p

a2m + 4bm
2

 am +

p

bm,

which implies the claim.

5.2. Proof of Theorem 4.1

By Stein’s identity (4), we have

⌃ := E[yT (x)] = E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤G(✓⇤)G(✓⇤)T ,

where �
1

:= E
⇥

f 00�hx, G(✓⇤)i, ⇠�⇤ > 0 by the second
order link condition. Next, recall that T (x) can be written
as (5). Thus, we define

S =

1

m

m
X

i=1

ỹiSp(xi)Sp(xi)
T � E[y · diag(s0

0

� (x))],

(15)

S

0

= E
⇥

ỹSp(x)Sp(x)
T
⇤� E[y · diag(s0

0

� (x))]. (16)

To proceed, we need the following bound:

Lemma 5.3 (Lemma 3.2.1 of (Vu & Lei, 2012)). Let
v 2 Sd�1. If the matrix ⌃ is positive semi-definite and
has a unique largest eigenvalue �

1

with the corresponding
eigenvector v

1

, then,

1

2

(�
1

� �
2

)kvvT � v

1

v

T
1

k2F  h⌃,v
1

v

T
1

� vv

T i.

Then, we have the following chain of inequalities:

1

2

�
1

kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T k2F
h⌃, G(✓⇤)G(✓⇤)T �G(

ˆ✓)G(

ˆ✓)T i
=hS, G(✓⇤)G(✓⇤)T i � h⌃, G(

ˆ✓)G(

ˆ✓)T i
� hS�⌃, G(✓⇤)G(✓⇤)T i

hS�⌃, G(

ˆ✓)G(

ˆ✓)T i � hS�⌃, G(✓⇤)G(✓⇤)T i
=hS�⌃, G(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T i,

where the first inequality follows from Lemma 5.3 and the
second inequality follows from the fact that G(

ˆ✓) is the
solution to (11) and thus, it is also the eigenvector corre-
sponding to the largest eigenvalue of S. Now, we decompose
the above error into bias and variance:

1

2

�
1

kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T k2F
|hS�⌃, G(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T i|
|hS� S

0

, G(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T i|
+ |hS

0

�⌃, G(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T i| (17)

Note that the second term, which is the bias, is equal to
�

�

�

E
h

(ỹ � y)
⇣

|hG(

ˆ✓), Sp(x)i|2 � |hG(✓⇤), Sp(x)i|2
⌘i

�

�

�

.

The following lemma bounds this term, whose proof can be
found in Section 10 of the supplementary.

Lemma 5.4. Suppose ⌧ =

�

k log(Lr)/m
��1/2(1+)

�y,
where �y � kykLq ,  2 (0, q/4 � 1) are any chosen con-
stants. Then, for any t, t0 2 Sd�1,

�

�E
⇥

(ỹ � y)
�|ht, Sp(x)i|2 � |ht0, Sp(x)i|2

�⇤

�

� 

CS,�,

r

k log(Lr)

m
kt� t0k

2

.

where CS,�, = �ykSp(x)k2 2

p

4(1 + )/ and C is an
absolute constant.

Now, for any t, t0 2 Rd, we define

D(t, t0) =
�

�

�

1

m

m
X

i=1

ỹi
�|ht, Sp(xi)i|2 � |ht0, Sp(xi)i|2

�

� E
⇥

ỹ
�|ht, Sp(x)i|2 � |ht0, Sp(x)i|2

�⇤

�

�

�

.

Then, for the first term in (17), we have

|hS� S

0

, G(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T i|
= D(G(

ˆ✓), G(✓⇤)),

We establish the following key uniform concentration
lemma in Section 10 of the supplementary regarding the
above term via a new chaining argument on a heavy-tailed
quadratic process:

Lemma 5.5. Let � 2 (0, 1), ⌘,� � 2 be constants. Suppose
⌧ =

�

k log(Lr)/m
��1/2(1+)

�y, where �y � kykLq ,  2
(0, q/4�1) are any chosen constants. Then, with probability
at least 1� e�⌘ � e�� , for any t, t0 2 G(Bk

(r)) \ Sd�1,

D(t, t0)  C
0
S,�,�,

r

⌘ + k log(4Lr/�)

m
(kt� t0k

2

+ �) ,

where C
0
S,�,�, = C(kSp(x)k 2 + kSp(x)k2 2

)�y

p
�(1 +

)/ and C is an absolute constant.

Substituting the previous two lemmas into (17), we have

1

2

�
1

kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T k2F

 (C
0
S,�,�, + CS,�,) ·

r

⌘ + k log(4Lr/�)

m

·
⇣

kG(

ˆ✓)� �G(✓⇤)k
2

+ �
⌘

. (18)
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Finally, note that since G(

ˆ✓), G(✓⇤) 2 Sd�1, it follows
from a linear algebraic fact (Lemma 11.7 in the Supplemen-
tary) that

kG(

ˆ✓)�G(✓⇤)k
2

 kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T kF .
(19)

Define am = C
p

(⌘ + k log(4Lr/�))/m, and bm =

C�
p

(⌘ + k log(4Lr/�))/m, where C = (C
0
S,�,�, +

CS,�,). Then, (18), together with (19), implies

1

2

�
1

kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T k2F
 amkG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T kF + bm.

Solving this quadratic inequality gives

kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T kF
 2

�

am+

p

a2m + 2�
1

bm
�

/�
1

 4am/�
1

+2

p

2bm/�
1

,

which proves the first part of the Theorem. Furthermore,
when m is large enough such that m = O(

k log(Lr/")
"2 ) for

some " < 1, we have kG(

ˆ✓)G(

ˆ✓)T �G(✓⇤)G(✓⇤)T kF  ",
and by Lemma 11.7 again, kG(

ˆ✓)�G(✓⇤)k
2

 ".

6. Conclusions
In this paper, we propose and analyze two types of new
estimators for nonlinear recovery with a generative model
when the measurements are non-Gaussian and the responses
are heavy-tailed. The estimators are constructed via first
and second order Stein’s identity, respectively, and shown
theoretically to achieve an " estimation error with a sample
size bound m = O �

k"�2

log(L/")
�

. Furthermore, when
the generative model is a multilayer ReLU function, the
sample bound of the aforementioned two estimators can be
improved to m = O �

k"�2

log(d)
�

, matching the state-of-
art statistical rates of sparse recovery and sparse PCA.
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