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Abstract

We consider the problem of configuring general-
purpose solvers to run efficiently on problem in-
stances drawn from an unknown distribution, a
problem of major interest in solver autoconfigu-
ration. Following previous work, we focus on de-
signing algorithms that find a configuration with
near-optimal expected capped runtime while do-
ing the least amount of work, with the cap chosen
in a configuration-specific way so that most in-
stances are solved. In this paper we present a
new algorithm, CAPSANDRUNS, which finds a
near-optimal configuration while using time that
scales (in a problem dependent way) with the
optimal expected capped runtime, significantly
strengthening previous results which could only
guarantee a bound that scaled with the potentially
much larger optimal expected uncapped runtime.
The new algorithm is simpler and more intuitive
than the previous methods: first it estimates the
optimal runtime cap for each configuration, then
it uses a Bernstein race to find a near optimal
configuration given the caps. Experiments verify
that our method can significantly outperform its
competitors.

1. Introduction

For computational problems of major practical interest (sat-
isfiability, planning, etc.) the computing science community
has developed a large number of “solvers”, which tend to
have many configuration parameters. The plethora of solver
parameters is explained by the diversity of applications;
experience suggests that there is much to be gained by se-
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lecting the solver configuration in an application-specific
way. The problem of finding the right configuration can then
be treated as a learning problem, where one can sample
instances from the distribution underlying an application,
the learning algorithm can run any configuration on any
sampled instance until a timeout of its choice, and the goal
is to find a configuration with nearly optimal expected run-
time while using the least amount of time during the search.
(Related, but different problems are considered, e.g., by
Luby et al., 1993; Adam, 2001; Mnih et al., 2008; Audibert
& Bubeck, 2010; Gyorgy & Kocsis, 2011; Li et al., 2016).
There has been much practical success on designing such
black-box configuration search methods, especially in the
context of satisfiability problems. Although there is plenty
of empirical evidence “proving” the utility of methods such
as SMAC (Hutter et al., 2011; 2013), ParamILS (Hutter,
2007; Hutter et al., 2009), GGA (Ansétegui et al., 2009;
2015), and irace (Birattari et al., 2002; Lopez-Ibanez et al.,
2011), little effort went into creating a theory that would ex-
plain why and when one should expect one of these methods
to outperform another one.

In their recent paper, Kleinberg et al. (2017) initiated a
line of research with the goal to reach this understanding.
In their work, they suggest to take a step back and con-
sider an unstructured version of the problem which can be
thought to be at the heart of algorithm autoconfiguration.
For this setting, they presented a general-purpose configu-
ration optimizer called STRUCTURED PROCRASTINATION,
with guarantees both on how close to the optimal configura-
tion the algorithm’s result is, and how long it takes to find
such a configuration. They also demonstrated that the gap
between worst-case runtimes of existing algorithms (SMAC,
ParamILS, GGA, irace) and their solution can be arbitrar-
ily large; a vivid justification of the need for a theoretical
approach. Their algorithm, STRUCTURED PROCRASTI-
NATION, attempts to refine the runtime guarantee for the
empirically fastest solver and solves tasks in increasing or-
der of difficulty, postponing difficult tasks until all simpler
tasks have been solved.

Another key innovation of Kleinberg et al. (2017) is the
‘proper’ problem formulation. In particular, they suggest
that algorithms should aim to minimize the expected capped
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runtime where for each configuration, the cap is set to a
quantile of a fixed order. This objective expresses the view
of a user who faces problems when runtime distributions
are often heavy-tailed and, as such, is willing to skip a
fixed percentage of the instances to gain on the number of
instances that can be solved in a given unit time. The main
result of their paper is an upper bound on the total runtime of
their proposed autoconfiguration methods (which matches
their worst-case lower bound up to a logarithmic factor) as
a function of the expected uncapped runtime of the optimal
configuration.

In a recent paper (Weisz et al., 2018), we extended the results
of Kleinberg et al. (2017), by providing an arguably simpler
algorithm (LEAPSANDBOUNDS) with better runtime guar-
antees while considering a broader class of problems (we
removed their assumption on the finiteness of the maximum
runtime). We also presented instance-dependent runtime
bounds that showed that LEAPSANDBOUNDS finishes faster
if the runtime of the configurations over different problem
instances has small variance.

In this paper we improve this line of work in two ways: (i)
we present an algorithm that is simpler and more intuitive
than both STRUCTURED PROCRASTINATION and LEAP-
SANDBOUNDS, and (ii) we provide a problem-dependent
upper bound on the runtime of the algorithm that is sig-
nificantly better than the previous ones. In particular, the
runtime scales with the expected capped runtime of the best
configuration, rather than with the expected uncapped run-
time, making the algorithm the first that essentially matches
a previous lower bound. This also means that the algorithm
is essentially unimprovable in a strong sense. Experiments
on configuring the open-source minisat solver (Sorens-
son & Een, 2005) on a randomly generated set of SAT
problems (Weisz et al., 2018) demonstrate the advantages of
CAPSANDRUNS over STRUCTURED PROCRASTINATION
and LEAPSANDBOUNDS.

The rest of the paper is organized as follows: The problem
is introduced formally in Section 2. Our algorithm is pre-
sented in Section 3, together with its theoretical performance
guarantees. The proof of the latter is deferred to Section 4.
Experiments are presented in Section 5, while conclusions
are drawn and future work is discussed in Section 6.

2. The model

In this section we present the formal definition of the prob-
lem we consider, based on the work of Kleinberg et al.
(2017). The algorithm configuration problem is defined by
a triplet (M, T, R): Here, N\ is a family of configurations
and I is a distribution over the set J of input instances.!
For now, we consider the case when A is a finite set, and

"For randomized solvers, input instances can mean (input in-
stance, random seed) pairs.

enumerate the configurations as N = [n].2 For configura-
tion ¢ € N and instance j € J, R(4,5) € [0,00] is the
runtime of configuration ¢ on instance j. For simplicity, we
will assume that for any ¢ € N, R(i,J) has a continuous
distribution when J is drawn from I'; extending the results
to other distributions (e.g., discrete) are straightforward but
significantly complicates the notation.

We let R(i) = Ejr [R(i, J)] denote the average runtime
of configuration ¢ on instances distributed according to I',
and define OPT = min;{R(¢)} as the mean runtime of an
optimal configuration. The goal is defined to find such an
optimal, or at least a nearly optimal configuration while
spending as little time as possible—proportional to the run-
time of the optimal configuration—on this task. For this,
a search algorithm can (i) sample instances J at random
from T'; (ii) enumerate the configurations in N; (iii) run
a configuration ¢ on an instance j until it finishes, or the
execution time exceeds a fixed timeout 7 > 0, chosen by
the search algorithm. Practically, this means observing
R(i,j,7) = min(R(i,j), T) after time R(, j, 7), and also
whether the calculation has finished with a solution or it
timed out.

The main difficulty in organizing the search is that some
configurations may take a long, or even infinite time to exe-
cute on some instances. Since an algorithm that claims to
find a near-optimal configuration must verify that no other
configuration can finish significantly faster than the cho-
sen configuration, the total runtime is at least proportional
to n X OPT, where n = |N| is the number of configura-
tions to be tested. Since knowing the mean runtime up to
a multiplicative accuracy of (1 + ¢) requires 1/&2 samples
even when the runtime distributions are light-tailed, relax-
ing the requirement to find a configuration ¢ with runtime
R(i) < (14¢)OPT, we get that the total runtime is at least
Q(n x OPT/e?). The situation worsens for heavy-tailed
runtime distributions: If the runtime of an algorithmis b > 1
with probability 1/b and 0 otherwise, with b unknown, all
sampling methods need to see at least one positive runtime
to estimate the expected runtime up to any fixed accuracy.
Thus, any sampling method needs to use at least 2(b) time,
despite that the expected runtime is constant. This implies
that in the face of heavy-tailed runtime distributions, the run-
time of any sound configuration search algorithm would be
unbounded in the worst-case, regardless the value of OPT,
n and ¢. Since heavy tailed runtime distributions are quite
common in practice, rather than constraining the problem
by ruling these out, following Kleinberg et al. (2017), we
relax the search criterion to that of finding an (e, §)-optimal
configuration.

To this end, for any 7 > 0, we introduce the 7-capped
version of R(7) as R, (i) = Ejr [R(3, J, 7)]. Also, for any

2For any positive integer a, we define [a] = {1,...,a}.
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d € [0, 1], define the §-quantile of configuration ¢ as t5(i) =
infier{t : Pryor(R(i,J) > t) < §}. Note that since
R(i,J) has a continuous distribution, Prj.r(R(i,J) >
ts(i)) = 6.

We define the mean runtime below the §-quantile as R° (i) =
Rys(i) (i), and OPTs = min; R?(i). Kleinberg et al. (2017)
defined a configuration to be (g, d)-optimal if R (i*) <
(14 ¢)OPT, and Pryr (R(i*,J) > 7) < 4. Our goal
would be to change OPT to OPTy; however, one can show
that the resulting property would be impossible to verify
with high probability. However, allowing a slight slack
by using OPT,; instead for some 0 < o < 1 makes the
definition tractable. For simplicity, we choose o = 1/2,
which gives rise to the following definition:

Definition 1 ((, §)-optimality). A configuration i is (g, 9)-
optimal if R°(i) < (14 €)OPTjso. Otherwise, we say i is
(e, 6)-suboptimall.

In words, given (g, ), a sound configuration search algo-
rithm must find a configuration ¢ and a runtime cap 7 such
that the configuration’s 7-capped mean runtime is at most
(14+¢)OPTjs /5, with 7 at least as large as the §-quantile of
the runtime distribution of configuration .

3. The algorithm

In this section we describe our algorithm, CAPSANDRUNS,
to find an (e, §)-optimal configuration. CAPSANDRUNS
works in two phases: In the first phase, for each configura-
tion ¢ € N/, we estimate a runtime cap 7; that ensures that
i can solve at least 1 — § fraction of the instances within
time 7;. This is implemented in QUANTILEEST in Algo-
rithm 2: b random instances are solved in palrallel,3 and the
runtime cap is selected so that 1 — %5 fraction of the in-
stances are completed. This ensures (with the proper choice
of b), that with high probability, ¢5(i) < 7; < t5/5(i) and
hence R(i) < R, (i) < R%.

Once the caps are found, in the second phase of the al-
gorithm (RUNTIMEEST given in Algorithm 3) we solve
random instances one by one for each configuration ¢,
while continuously updating upper and lower estimates
on the expected runtime. In particular, with high proba-
bility, the difference of the average capped runtime )7J(z)
and the expected capped runtime R, (¢) can be bounded as
|R,, (i) — Y;(i)| < C;,; forall i and j where C; ; is defined
in Algorithm 3.

The final ingredient of the algorithm is that we eliminate

*Emulating parallelization on a single CPU can be implemented
in a straightforward way if stopping and resuming jobs is possible.
If this is problematic (e.g., due to memory constraints), it can be
avoided by restarting from scratch every time while doubling the
maximum runtime, which only results in a factor of 2 slowdown.

Global variables

Set AV of n algorithm configurations

Precision parameter € € (0, 1)

Quantile parameter § € (0,1)

Failure probability parameter ¢ € (0, §)

Instance distribution I

b+ {4—58 log (%”ﬂ

T <+ o0 > Time limit, updated continuously by all
parallel processes

NV RRd

Algorithm 1 CAPSANDRUNS

LN« N > Pool of competing configurations
2: for configuration 7 € N/, in parallel, do

3: // Phase I:

4 Run 7; <~ QUANTILEEST (1)

5: // Phase II:

6: if QUANTILEEST (4) aborted then

7.

8

9

Remove i from AN/

else
: Run RUNTIMEEST (%, 7;), abort if [N/| =1
10 if RUNTIMEEST (i, 7;) rejected ¢ then
11: Remove i from N’
12: else
13: Y (i) « return value of RUNTIMEEST (7, 7;)
14: end if
15: end if
16: end for

17: return i* = argmin,c,» Y (¢) and 7;-.

configurations that are redundant (i.e., we can be certain that
there are other (g, 6)-optimal configurations): We maintain
a global upper estimate 7" of min; R, (4), which is continu-
ously updated by each estimation process and is used to (i)
stop searching for the cap in phase one if a configuration @
is too slow, and (ii) eliminate configurations in the second
phase if their average runtime estimate is too high. (i) en-
sures that if a cap is not found in O(bOPT; ) total work,
we can exclude that configuration, implying that the total
work in Phase I (QUANTILEEST) is at most O(bnOPTs/3).
Phase II (RUNTIMEEST) essentially implements a slightly
modified version of the Bernstein race of Mnih et al. (2008),
and our analysis is based on theirs.

In order to be able to state the resulting performance guar-
antees for CAPSANDRUNS, we need to introduce a few
definitions. Let N7 and N> denote the set of configura-
tions rejected by CAPSANDRUNS in Phase I (Line 3 of
QUANTILEEST) and Phase II (Line 8 of RUNTIMEEST),
respectively. Let i, = argmin;e x, £, (7); note that
i, 1s an essentially optimal configuration with high prob-
ability, as evidenced by Lemma 10. The performance
of CAPSANDRUNS depends on the individual behavior
of the different configurations. To quantify this depen-
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n log

o (OPTg

6 7¢

= max{e?, A2}

" 1S max { max{5>(i), 5 (i.)} mziii({?:g(j}*)} } (log2 " 4 log Y log meW)D )

¢ ¢ max{e, A7}

dence, for any i € N, define the suboptimality gap as

o OPTs /s
A =1-— IR
ance of R(i, J,7),J ~ T, and define the maximum relative

Furthermore, let 02 (i) denote the vari-

2,
variance as 6%(i) = SUD, ¢ (i) 1, 2(0)] ;5—((?) and relative
range as (i) = SUD ¢ (15 (i), 5 5(i)] o7y NOW We are ready
to present our main result (its proof is given in the next

section).

Theorem 1. For a failure parameter ¢ € (0,1/6), with
probability at least 1 — 6¢, CAPSANDRUNS finds an (g, )-
optimal configuration with total work given in Eq. (1) on
the top of the page.

Kleinberg et al. (2017) showed that in the worst-case the
total work to find an (e, §)-optimal solution (with OPT
instead of OPT5/5) must be Q("SZF(;T ). Our bound shows
that depending on the runtime distributions, one can have
much better guarantees. In particular, our bound scales with
the gaps A; instead of ¢. Furthermore, the 1/c? term is
multiplied with the relative variance, which can be quite
small, and only 1/ multiplies the much bigger range. Fur-
thermore, we separated the effects of € and J, avoiding the
appearance the very large (¢20)~!. Nevertheless, in the
worst case, 6°(i) < SUD ey (i) t,,0()] Ty < 30 match-
ing the worst-case lower bound up to logarithmic factors.

In this paper we assume that the number of configurations is
finite, which might seem like a big limitation since, in prac-
tice, parameter spaces are usually (uncountably) infinite. On
the other hand, we can simply adopt the random sampling
idea of Kleinberg et al. (2017) to overcome this difficulty:
Under mild assumptions on the set of configurations, one
can sample a large enough number n of configurations that
guarantees that at least one of the best v € (0, 1) fraction of
configurations is selected with high probability (depending
on n and 7). For example, if configurations can be sam-
pled uniformly at random, the aforementioned probability
is 1 — (1 —v)™. Then, running CAPSANDRUNS over this
set of configurations yields a configuration whose expected
capped runtime is guaranteed to be e-close to that of the top
~-fraction of the configurations.

4. Proof of the main theorem

In this section we present the proof of Theorem 1. This is
done through a sequence of several lemmas. First we ana-
lyze QUANTILEEST (Phase I), then RUNTIMEEST (Phase
ID). In both cases we use concentration inequalities to show
that our measurements lead to good estimates with high

probability, and we use these results to argue about their
correctness and the runtime of the algorithms.

In these lemmas we show that, with high probability, the
measurements concentrate around their expectations. This
is then used to show that QUANTILEEST is correct and
is aborted for slow configurations. Next we follow the
analysis of the Bernstein race, also based on concentration
of measure arguments (Mnih et al., 2008; Mnih, 2008; Loh
& Nowozin, 2013), to show that RUNTIMEEST returns an
(e, 6)-optimal configuration and to bound its total runtime.

We start by introducing some notation. Note that QUAN-
TILEEST either finishes normally and returns with 7; (for
configuration ¢), or it aborts and rejects 7. To be able to rea-
son about 7; even when QUANTILEEST aborts, we define
7; to be the value QUANTILEEST would return without the
abort option.

Recall that b = [45—8 log (‘%")-‘ is the number of instances

run by QUANTILEEST for each configuration. Let X (i, j)
denote the runtime, capped at 7, of executions started by
QUANTILEEST (i.e., in Phase I), where ¢ € [n] refers to the
configuration and j € [b] indexes the instances selected
by QUANTILEEST to be run with configuration i. Let
Xo(i) = § 2, X-(i,5) be the empirical average of
capped runtime measurements. Note that only X (4) for all
t < 7; are observed. Let X°(i, ) = Xy (i) (4, ).

Let Y (4, j) denote the 7;-capped runtime of the j** execu-
tion started by RUNTIMEEST (in Phase II), noting that these
are independent and identically distributed for all j. Let
Y;(i) = % >_tepj) Y (i, t) be their average up to the 7t mea-
surement. Let Y (i) denote Y; (i) for the final measurement
7 performed in Phase II before returning.

4.1. Analysis of QUANTILEEST

Our first result in this section shows that if QUANTILEEST
finishes then the estimated runtime cap 7; is reasonable.
Below, and in the rest of the paper, for any event A, A°¢
denotes its complement.

Lemma 2 (Correctness of QUANTILEEST). For any config-
uration i € N'\ N1, define B ; = {t5(i) < 1 <t5/2(i)}.
Then Pr(EY ;) < %

The proof of the lemma is based on standard concentration

results (in particular, the Chernoff bound), and is given in
Appendix A.

The result above depends on the specific choice of b. Taking
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Algorithm 2 QUANTILEEST

1: Inputs: 7

2: Initialize: m «+ [(1 — 36)b]

3: Run configuration ¢ on b instances, in parallel, until m
of these complete. Abort if total work > 27T'h.

4: T < runtime of m!* completed instance

5: return 7

Algorithm 3 RUNTIMEEST

1: Inputs: ¢, 7;

2. Initialize: j < 0

3. while True do

4:  Sample j*" instance J from T’

5: Y; ; < runtime of config ¢ on instance .J, with
timeout 7;

6:  Compute the sample mean Y} (i) and variance o7 ;
of {Y;1,...,Y; ;}, and the confidence-interval width

2 1og(737” (]H)) 37; log(i?’m(jﬂ))
Ci,j =0 - + -
J J

7: ifi?(?) — Oi,j > T then

8: return reject %

9: end if

10: if j=b then

11 T + min{T, 2Y;(i)}.

12: end if

13: T + min{T,Y;(i) + C; ;} > lowest upper
confidence

14: ifC;; < 2+2€Y (i) then

15: return accept ¢ with runtime estimate Y; (7).

16: end if

17: JjJ+1
18: end while

measurements on b instances in our problem also guaranties
that the expected runtime can be estimated up to constant
accuracy; this is described in the next lemma.* Below we
refer to measurements by Z (as introduced in the lemma),
and we will instantiate this result with measurements per-
formed both in Phase I and Phase II. The lemma is a simple
consequence of the more general Lemma 14 given in the
appendix.

Lemma 3. Let 7 be a constant satisfying 0 < 7 < t5/5(i),
and let Z,(i,7), j € [b], be b runtime measurements of
configuration i with timeout 7. Let Z.. (i) be their average
and R, (i) their expectation, and define the event S; =
{AR, (i) < Z,(i) < 2R, (i)}. Then Pr(Ss) < &.

For each configuration ¢, we instantiate the above lemma for
the b measurements in Phase I. We do this twice, both with
timeouts ¢5(7) and ¢5,5(7), calling the associated S; events

*Notice that both b and ¢ 2 (i) depend on 6.

S1,i and So ;. The measurements corresponding to #5,5(i)
are X 2 (i, 7), with average X % (i) and expectation R? (7).
The measurements corresponding to tg( /) are X (i, j), with
average X ° (i) and expectation R®(7).>

For each configuration, we also instantiate Lemma 3 for the
first b measurements in Phase II (with timeouts 7;). We call
the associated events S5 ;. The measurements are denoted
by Y (i, j), with average Y3 (i) and expectation R, (i).® Let
Ey = ml (Sl,i N 5271' n S37i) and £, = mz El,z- The next
lemma provides crude high-probability bounds on the above
defined estimates.

Lemma 4. P(El N EQ) Z 1-— 4C Under E1 n EQ,
3RO(1) < Xr(i) < 2R3(i) and 3R, (i) < Yi(i) <
2R, (i).

Proof. Using a union bound, P(E; N E3) > 1 — 4¢ by
Lemma 2 and Lemma 3. FE5 guarantees that %Rn (1) <
Yi(i) < 2R, (i), and also that JR3(i) < X3(i) <
2R (i), 1R%(i) < X°(i) < 2R%(i), and . Since E,
guarantees that ¢5(i) < 7;(i) < t5/2(i), we also have
X9(i) < X, (i) < X% (i), which completes the proof. [

Based on the above, we are ready to prove an upper bound
on the runtimes in Phase I (i.e., in QUANTILEEST).

Lemma 5 (Runtime bounds for Phase I). If £1 N Ey holds,
each configuration performs up to 16bOPT;/5 work in
Phase I. For any configuration i that completes Phase 1

(ie.i €N\ N Ry, (i) = O (OPT5/2 log (%))

Proof. For any configuration ¢’ that completes Phase I and
b measurements of Phase II, X, (i') < X2(i') < 2R3 ()
and Yy (i) < 2R, (i) < 2R%(i') by Lemma 4. Let
w=X,,(i") + Y, (i'). After at most bw work, T is set to at
most QY(,( ") < 2w in Line 11 of RUNTIMEEST. If ¢’ com-
pletes this bw work first, w < min; 4R%(%) = 40PT5; /o
and therefore 71" is set to at most 8OP T, after at most
4bOPTs/o work. During this time, every other configu-
ration has been evaluated with the same amount of work.
Phase I is terminated in Line 3 of QUANTILEEST for any
configuration that reaches 16bOP T/, work.

To prove the second part of this Lemma, take any con-
figuration 4 that completes Phase I. To bound R, (7), no-
tice that R°(i) has at least a 1 — § fraction of the runs
included in the average, and the timeout 7; applies to
the rest of the runs. Therefore, R, (i) < R(i) + 07;.
Since each configuration performs up to 16b0P T/, work,
7; < 16bOPT; /2. Furthermore, from Lemma 4 and the
first part of the lemma (since we make exactly b mea-
surements), R (i) < 2X,,(i) < 320PT;/5. Combining

*Note that we do not actually observe t;,(4), t5(i) or the
related measurements.
SNote that the Y;,; are independent of 7;.
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these, Ry, (i) < 320PT} 5 + 16 - 48log (%ﬂ) OPT; ) =
o (OPT5/2 log (%ﬂ)) 0

4.2. Analysis of RUNTIMEEST

Next we analyze the behavior of RUNTIMEEST and the total
runtime in Phase IL Let 57, = 1 37, (Y(i,5) — ¥;())”
denote the empirical variance of {Y'(4, j)} j[; after j mea-
surements in Phase II. We will use C; ; defined in Algo-
rithm 3 to create confidence intervals for our estimates (the
nand j(j+ 1) factors in the logarithmic term in C; ; enable
taking union bounds over configurations and instances).

The next result shows that C; ; is a valid confidence width,
as well as some of its properties. Its proof follows from the
analysis of the Bernstein race by Mnih (2008) (Theorem 2
in their paper), and is given in Appendix A.3.

Lemma 6. There exists an event Es with Pr(E3) > 1 —2¢
and a universal constant C such that under E1 N Ej3,

(a) foralli,j,

R (i) = Y;(0)| < Ciy s 2)

(b) for all configurations i and for all

j=>C- max<&i(;), TE?) <log 2?71 + log 7”(;))7

Cij < a¥j(i) ; 3)

(c) for all configurations i such that A; > 0 and for all

) 2(i) _r(i) 2n 5r(4)
>(C- 2 log — +1
j>C max<5 A? ,5Ai)<0g c +log A, ),
A;
Civj < IR‘G (l)7 (4)
and for all
~9D .* .* 2 5 ,*
j> C’-max<25UA(22 ),57“2.)) <log<n +log TA(’ )>,
A; ‘
Ci*,j < IRT“‘ (’L*) (5)

Let E = E; N Ey N E3 be the intersection of all “good”
events; note that F/ guarantees that our average runtime
estimates are close to their expectations. Furthermore, from
Lemma 4 and Lemma 6, Pr(E°) < 6¢.

The next lemma shows that if £ holds, the time limit 7" is
an upper bound on the smallest expected capped runtime.

Lemma 7 (Consistency of T'). If E holds throughout the
execution of the algorithm, T' is always an upper bound on
the minimum T;-capped expected runtime of configurations
i not rejected in Phase I. In other words, at every time there
exists ani € N'\ Ny such that R,,(i) < T.

Proof. T is only updated during RUNTIMEEST evaluations
of configurations that were not rejected in Phase 1. Ev-
ery time after 7' is updated, in Line 13 and Line 11 of
RUNTIMEEST, during the evaluation of configuration ¢,
R,, (i) < T. This is because under F, Lemma 6 ensures
R, (i) < Y;(i) + C; ; for C; ; defined in Algorithm 3, and
R, (i) < 2Y;(i) according to Lemma 4. O

The next result shows that a configuration is only rejected
in QUANTILEEST if there is a good enough configuration
which is not rejected.

Lemma 8. If E holds, for any configuration i rejected in
Phase I (Line 3 in QUANTILEEST), there exists an i’ €
N\ N1 such that R, (i) < R3 (i).

Proof. If configuration ¢ is rejected in Phase I, then for the
actual T, X, (i) > 2T. By Lemma 4, X, (i) < 2R3 (i),
soT < R3(i). By Lemma 7, there exists an i’ € N\ N}
such that R,., (i) < T < R (4). O

The following two lemmas show that ¢, is “good enough”
and it is not rejected in RUNTIMEEST.

Lemma 9 (Consistency of_RUNTIMEEST). If E holds, i,
will not be rejected: i, & N.

Proof. If a configuration ¢ is rejected in Phase II (Line 8
in RUNTIMEEST), then Y (i) — C; ; > T Since E holds,
Lemma 6 implies R, (i) > Y;(i) — C; j. Combining these
gives R, (i) > T. Combining with Lemma 7 implies that
there exists an i’ € N'\N; suchthat R, (i') < T < R-,(i).

Since this cannot hold for ¢ = ., we obtain i # i,. O
Lemma 10 (i, is good enough). If E holds, R, (i.) <
OPT5 s

Proof. Letis/; = argmin,c R (i). We prove that there
exists an ¢/ € N\ Nj such that R, (i) < R%(ig/Q). If
is/2 € N\ N1 (i.e., it is not rejected), choosing i’ = 75,5
gives the result. If i5/5 is rejected in Phase I, then the
statement immediately follows from Lemma 8 by substi-

tuting i = i4 /2- Then, from the definition of 7., we have
R;, (i) < R, (i) < OPTs /5. O

The next result bounds the total runtime of any configuration
in Phase II.

Lemma 11 (Runtime in Phase I). If E holds, the evaluation
of a configuration i in Phase II stops (is either rejected

or accepted) after at most O (OPT5/2 (j" +b)log (%”))
work where
max{62(i),62(i,)} max{r(i),r(i.)}

Az Y A
w3

. <log %n + g ML) r(i*)}> |

j' = C - max

£ Ay
max{ Pt
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Ifi is accepted, then |R., (i) — Y;(i)| < oz ().

Proof. Due to the definition of j and Lemma 6, either (3)

holds for any 7 > j’ with o = ﬁ, or both (4) and (5) hold
for any j > j'. We investigate these two cases separately.

If (3) holds, RUNTIMEEST returns in Line 14, accepting
the configuration after j' samples, and we have C;; <
aY;(i) = 2+2EY]( i). Combining with (2), we have

aR. (i) > a(Yj(i) = Cij) > Ci (1 - a)

implying

| R (i)—

(07 X 3

Yj(i)] < Ciy < ﬁRn(Z) =5

Re(i). (6)
To finish the first case, we need to bound the to-
tal amount of work Yj/(7)j’ (since the algorithm eval-
uates 7 on at most j' instances). Since by (6) and

Lemma 5, ¥j (i) < (1 + 2+€) R..(i) = O(R,, (i) =
O (OPT5/2 log (%")), the total work in the this case is
] (OPT(;/zj’ log (%")), as desired.

Next we analyze the second case, where both (4) and (5)
hold for any j > j’. We first bound from above the time
taken by RUNTIMEEST to reject configuration ¢ in Line 8.
Let j; and j;, be the number of instances ran in Phase II,
with configurations ¢ and 7., respectively, and consider the
first time when both j; > j’ and j;, > j'. R, (i.) <
OPTs/9 (by Lemma 10), and A; Ry, (i) < AR, (i) <
R.. (i) — OPTs/2 < R, (i) — Rr,_(is) as R°(i) < Ry, (i)
under F. Thus,

T<Yj

)+, g, < Ry, (ik) + 205, 4,

A; A,

< Re (1) + SR (12) < R (i) + SR (1)
- Rﬂ* (Z*)

Ry, (i)
* 2

7i, ()

RT{, (Z) —

< Ro(i) = 22R,(0)

- Civji

So ¢ is rejected by RUNTIMEEST in Line 8, as soon
as both configuration ¢ and ¢, have been run on
at least j' instances. Since A; < 1, Yy(i) <

$R-,(i) = O (OPTs /5108 (%)) by (4) and Lemma 5,

and Yy (i,) < 3R, (i.) = O (OPT5/2 log (37“)) by
(5) and Lemma 10. Thus, configuration ¢ will have been
run on at least j' instances after at most Yj/(i)j’ =
O (OPT(; /2 log (37") j ) Phase II work, and configuration

1, will have been run on at least j’ instances af_ter at most
16bOPT;,5 Phase I work (by Lemma 5), and Y} (i,)j" <

§OPT5 /2 4’ Phase II work. Configurations 7 and 7, are eval-

uated in parallel, so at most O (OPT(;/Q(j +b) log (3”))

work is performed for configuration ¢ in Phase II, before the
configuration is rejected. O

Our last two lemmas show the correctness of CAPSAN-
DRUNS and bound its runtime, proving Theorem 1.

Lemma 12 (Correctness of CAPSANDRUNS). If E holds
and CAPSANDRUNS returns with a configuration I, then I
is (,9)-optimal.

Proof. We wish to show that R°(I) < (14 ¢)OPTs/s.

By Lemma 9, i, is not rejected. Furthermore, by defini-
tion, I is not rejected either. So when the algorithm stops,
by Lemma 11, |R;, (ix) — Y (is)| < 35:Rs,, (ix) and
|R:, (1) = Y(I)| < g5z Ry, (I). Since I was returned by
CAPSANDRUNS, Y (I) < Y (i.). For any configuration 7,

( 2+€> (1 < (1_2i5
<

_ . £
Y (iy) < (1 + 2_|_>Rn*(l*) < (1 + 2_|_€>OPT6/2 )

)&msﬂn

where the last inequality comes from by Lemma 10. Thus,

1+
RY(I) < — 2+E OPTs/5 = (1 +¢)OPTso,
2+5

finishing the proof. O

Lemma 13 (Runtime of CAPSANDRUNS). If E holds, the
total work done by CAPSANDRUNS is bounded by (1).

Proof. Combining the upper bound on the Phase II work for
each configuration from Lemma 11 with the Phase I work
from Lemma 5, it follows that the total work performed
by CAPSANDRUNS for all configurations is bounded by
(1). O

5. Experiments

In the experiments we used the same benchmark dataset as
in our previous paper (Weisz et al., 2018). The dataset con-
tains runtimes of 972 different configurations of minisat
on a set of 20118 SAT problems generated using CNFuz-
zDD,” with a timeout of 15 CPU minutes. We simulated
runs of STRUCTURED PROCRASTINATION (Kleinberg et al.,
2017), LEAPSANDBOUNDS (Weisz et al., 2018),% and CAP-
SANDRUNS (this work), with parameters ¢ = 0.05, § = 0.2,

http://fmv.jku.at/cnfuzzdd/

8There is a slight mistake in the derivation of LEAPSAND-
BOUNDS, affecting the stopping criterion in Line 15 of Algo-
rithm 3 in their paper: specifically, instead of ¢ < £ (Q +LB),
the criterion should be ¢ < ﬁ@ The same criterion appears
in Line 14 of RUNTIMEEST. We ran the experiments with this
correction.
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107 —— CapsAndRuns
——— LeapsAndBounds

—— Structured Procrastination
10°

10°

10*

Total time spent running configuration (s)

0 200 400 600 800 1000
Configurations (sorted according to mean below R%? quantile)

Figure 1: Amount of time the three methods run each con-
figuration, on a logarithmic scale, in an environment that
supports resuming runs.

STRUCTURED PROCRASTINATION | 20643 (£5)
LEAPSANDBOUNDS 1451 (£83)
CAPSANDRUNS 586 (£7)

Table 1: Total CPU time (in days) for the three methods to
find an (g, 6)-optimal configuration. 95% confidence inter-
vals for LEAPSANDBOUNDS and CAPSANDRUNS were
calculated from 10 measurements.

and error probability 0.1 (¢ = g5), which are the only al-
gorithms we know of that can guarantee finding an (¢, ¢)-
optimal solution for a given (e, J, () triple. In particular,
the earlier mentioned heuristic methods (such as SMAC,
ParamILS, GGA or irace) do not have such a guarantee and
they also need a distance function whose ‘proper’ selection
heavily influences their efficiency, and thus comparing to
them would be quite complicated and is outside of the scope
of the present paper.

All algorithms returned the same configuration in our simu-
lation, but after a varying amount of computation. Table 1
lists the total CPU runtimes in a simulated environment. Fig-
ure 1 shows that both LEAPSANDBOUNDS and CAPSAN-
DRUNS run every configuration for a significantly shorter
amount of time than STRUCTURED PROCRASTINATION.
Although CAPSANDRUNS runs bad configurations signifi-
cantly longer than LEAPSANDBOUNDS (because of estimat-
ing the caps), it needs to run the hardest configurations for
significantly shorter time (observe the logarithmic scale in
Figure 1), achieving the shortest total runtime. Fig. 2 shows
that CAPSANDRUNS is faster than LEAPSANDBOUNDS for
most settings of € and 6, particularly so for small € and § val-
ues. Also note that in the cases when LEAPSANDBOUNDS
is better, the difference is of the same order as the measure-
ment error, while the advantages of CAPSANDRUNS are
much more pronounced, especially when € and J are small.

0.10 -

0.08 -

0.06 -

-28.00

0.04+ -21.00

-14.00

0.02 - o _7.00

- 3.00
- 0.75

Figure 2: The ratio of the total runtime of LEAPSAND-
BOUNDS and CAPSANDRUNS for various values of € and
0. Ratios greater than 1 mean CAPSANDRUNS is faster;
values lower than 1 are shown in greyscale.

6. Conclusion and future work

We considered the algorithm configuration problem for a
finite number of configurations and a possibly infinite set of
random instances with the goal of finding a configuration
that can solve a large (1 — J) fraction of problem instances
with near-optimal capped runtime. We presented an algo-
rithm, CAPSANDRUNS, that finds a near-optimal configura-
tion with high probability. CAPSANDRUNS first estimates
the runtime cap for each configuration then performs a Bern-
stein race over the configurations to find the best one. On
the theoretical side, an upper bound is presented on the total
work of the algorithm, which significantly improves upon
existing runtime bounds (Kleinberg et al., 2017; Weisz et al.,
2018), in particular, by improving the dependence on the
problem parameters ¢ and J, and also matches the worst-
case lower bound of Kleinberg et al. (2017). Comparing to
existing algorithm configuration methods with theoretical
guarantees, our method achieved significant speedup in a
recent benchmark problem concerned with configuring SAT
solvers.

Potential future work includes modifying our algorithm to
incorporate some smoothness assumption on the runtime
with respect to some parametrization of the space of config-
urations, as used in most existing heuristic methods. One
idea here is to use ideas borrowed from the bandit litera-
ture where similar generalizations have been done. After
such an extension, it will be interesting to compare to the
existing heuristic methods on existing benchmark problems.
Another interesting line of direction is to extend the method
to compete with combinations of configurations.
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A. Technical results
A.1. Proof of Lemma 2

For any p € [0, 1], Let By ; be the Bernoulli random variable indicating whether X, (j) > ¢,(4) (value 1) or not (value 0).
BY is the average of Bf)j. Then, E(B?) = 6.

ts(i) > 7; means that the runtime of the m'" longest run on configuration i, where = [(1 — 26)b], is less than ¢(3), so
at most b — m of the B;S variables are 1. Thus,
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By Chernoff’s bound, because the B;?; are i.i.d. Bernoulli random variables,
3 23 -8 1
Pr <BZ-2 > 1IE(B?)> < exp (—b(5> < < .

A union bound completes the proof.

A.2. Generalization of Lemma 3

Lemma 14. Let 7 be a constant satisfying 0 < 7 < t55(i), and let Z.(i,j), j € [b], be b runtime measurements
of configuration i with timeout T. Let Z,(i) be their average and R, (i) their expectation, and define the event S; =

Z . R.(i)] < a h 6 _ = \/@ STIOg(STn) d —2 1 7 (i i Z A\ 2 . h irical
{1Z+(i) = R, (i)| < Ci} where i =0 — p o ando; =3 Zje[b]_( +(i,j) — Z;(i))" is the empirica
variance of (Z-(i, j)) ;. Then Pr(Sf) < %.Furthermore, if S; holds then LR, (i) < Z,(i) < 2R (7).

The lemma follows from Lemma 15 and Lemma 18 below.
Lemma 15. Pr(gf) <&,

Proof. The samples (Z; (i, j)), are independent and identically distributed with mean Z.(i), expectation R (i) and range
[0, 7]. Thus, the lemma holds by the empirical Bernstein bound (cf. Audibert et al., 2009, Theorem 1 and Appendix B). [J

Lemma 16. 57 < 3(Z.(i) + R-(i))%

Proof. First we show that for any ¢ > 0,
2
(200 + 51 0) @

Notice that

IN
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because Z (i, j) < 7 by definition. Now (7) follows from the obvious 7 Z, (i) < ¢ (Z- (i) + iT)Q.

Since 7 < t5/2(7), more than g fraction of the instances time out at 7, so we have gT < R, (i). Setting ¢ = %, we get
_ . 22

o2 <+ (Z-(i) + R, (i))". O
Lemma 17. C; < 1 (Z;(i) + R-(q)).

Proof. Using Lemma 16 and that %T < R.(3),

log (32 log (32
Forb = [4110g (%) ./ 2550 + 250 < 0

Lemma 18. Under S;, 1R, (i) < Z,(i) < 2R, (3).

Proof. We have from Lemma 15 and Lemma 17, that |Z(i) — R, (i)| < % (Z-(i) + R.(i)). Thus, Z-(i) > R, (i) —
2 (Z:(i) + R.(i)) and Z-(i) < R-(i) + 5 (Z-(i) + R-(i)). Reordering the inequalities gives the result. O
A.3. Proof of Lemma 6

We first define a good event E'3 (in Lemma 19) that guarantees the accuracy of mean and variance estimates of runtimes.
Properties of this event are given in Lemma 19 and Lemma 20. Finally, we prove Lemma 6.

Lemma 19. Ler E3 be the intersection of the events

|Rr, (i) = Y;(i)| < Cij , and (®)

9 log(nj(2+1)) . log(nj(?_l))

o7 < 07 (i) + o, (i) ; 5 ©)
for all configurations i and j = 1,2,.... Then Pr(E3) > 1 — 2(.
Lemma 20. If (8) and (9) hold for all i, j, then there exists a universal constant C such that for any o > 0,
Cij < a¥j(i) (10)
holds for all i and all
o2 (i) T 2n T
> C - = L log = +log ———— | . 11
2 0ome( 2 ) (s s ) v

The proofs of these lemmas are based on Bernstein’s inequality and can be extracted from the analysis of the Bernstein
race by Mnih (2008) (Part 1 of Theorem 2 in their paper). Indeed, Lemma 19 is essentially the same as showing that the
events (3.18) and (3.20) in their paper hold with high probability. Condition (10) is a slight variation of the stopping rule of
algorithm EBStop of Mnih (2008) (our « is essentially the same as their ), and the main difference between Lemma 20 and
Part 1 of their Theorem 2 is that they only state that the stopping condition holds for the smallest j satisfying (11), but a
thorough inspection of their proof shows that the statement also holds for all larger j values. Also note that in our case the
range of the runtimes corresponding to configuration i is [0, 7], which is a slight change compared to the range [0, 1] used
by Mnih (2008).
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Proof of Lemma 6. Let E5 be defined as in Lemma 19. Then Pr(Fs3) > 1 — 2¢ and (2) follows directly from the lemma

Or; (1)

(and the definition of E3). Also, the conditions of Lemma 20 hold under E3, implying (3) for all ¢ since 5 (i) > ()

and r() > 7y under £y by Lemma 2. If A; > 0, then with o = A5", Lemma 19 and Lemma 20 also imply that for

i

_ Ay
all j satisfying the conditions in part (c), C; ; < 2:Y;(i) < 24(R,, (i) + C; ;), which then gives C; ; < ngﬂ. (1) <

A4i R, (1) (as A; < 1 by definition), giving (4) and, similarly, (5). O

B. Empirical Bernstein Bound

Let Xy,... Xy be L.i.d. random variables with range I and mean 1. Let the empirical mean be X and the empirical variance
be 52 = % EE:1(X1‘ — X)2. Applying Bernstein’s inequality to the sum and the sum of the squares of these random
variables, we get the empirical Bernstein bound (Audibert et al., 2009), which states that with probability at least 1 — ¢,

X -l < 252 10;g(3/§) n 3Rlo§(3/(j).




