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Learning Deep Kernels for Exponential Family Densities:
Supplementary material

A. DKEFs can be normalized

Proposition 2. Consider the kernel k(z,y) = r(¢(x), d(y)), where k is a kernel such that k(a,a) < L,||a||* + C, and
¢ a function such that ||¢(z)| < Leg||z|| + Cy. Let go(x) = Qro(V " (x — p)), where Q > 0 is any scalar and 1y is a
product of independent generalized Gaussian densities, with each 53 > 1:

D

ro(2z) = H B(d1> exp (*|Zd|ﬁd) :

a=121'{ z;

(For example, N'(u, X2) for strictly positive definite 3. could be achieved with 3; = 2 and V' the Cholesky factorization of
3..) Then, for any function f in the RKHS H corresponding to k,

/ exp(f(@)) qo(e) da < .

Proof. First, we have that f(x) = (f, k(z, )} < || fllxk(x,x), and
k(z,2) = w((@), ¢(x)) < Lol p(@)]|* + C < Lu(Lo|zl|* + Cp) + Ch.
Combining these two yields

F(@) < 1flsy/IuLallll? + LuC + Co < 1flsv/TnLealill + | fllnr/ZnCo + Cn < Co+ Cale
defining Cy := || flls\/LiLe. Co := || fll2r/LiCg + Ck.

Let z = V~!(x — p), and let C,. be the normalizing constant of 7, C Hd 150 ﬁ”(’ o Then

/ exp(f(2)) qol() de < / exp (Co + C1 |])) gol)dz

= Qexp(Co) Ezrry [exp (C1[|[Vz + )]
< Qexp(Co + Cu|pl]) Ezrur, [exp (CLl[ V][ 2]])]

D
< Qexp(Co + Ch|pl)) Bz [GXP (CllVll ZIZdI)]

d=1
D
= Qexp(Co + Cillp])) T ] Ezry lexo (C1|[ V]| |2a])] -
d=1
We can now show that each of these expectations is finite: letting C = C1 ||V ||,

B, lexp (Claal) = [ exp (C12D) - 5 e (<1617)

N (1/8)
= 22”:%/0 exp (C’z—zﬁ) dz
22F(§/5) (/Osexp (C’zfzﬁ) dz+/:oexp (C’zfzﬁ) dz)

for any s € (0, 00). The first integral is clearly finite. Picking s = (2|C|)#=T, so that |Cz| < 327 for z > s, gives that

/ exp (Cz = 27) dz < / exp (—327) dz < %ﬁr (é) < 0,

so that [exp(f(x))go(x)dx < oo as desired. O
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The condition on ¢ holds for any ¢ given by a deep network with Lipschitz activation functions, such as the softplus function
we use in this work. The condition on « also holds for a linear kernel (where L, = 1, C,; = 0), any translation-invariant
kernel (L, = 0, C,; = k(0,0)), or mixtures thereof. If « is bounded, the integral is finite for any function ¢.

The given proof would not hold for a quadratic «, which has been used previously in the literature; indeed, it is clearly
possible for such an f to be unnormalizable.

B. Finding the optimal «

We will show a slightly more general result than we need, also allowing for an || f ||§{ penalty. This result is related to Lemma
4 of [Sutherland et al.|(2018), but is more elementary and specialized to our particular needs while also allowing for more
types of regularizers.

Proposition 3. Consider the loss

j( az7AD) j(paz7 )
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For fixed k, z, and A\, as long as A\ > 0 then the optimal o is
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The \¢ term is of the same form, but with second derivatives:

N D N D
% Z Z (03 log}i’;’z(af:n))2 = %aTUa +al %Z Z@g log qo (24, ) 02k (xy, 2m) | + const.

n=1d=1 n=1d=1

‘We also have as usual

M M 1
>3 anlk(zms )bz, )wam = ja" Ka

m=1m’'=1

DN | =

1

Thus the overall optimization problem is

a(A k,z, D) = arg min j(fgz, A D)

1
= arg min §aT (G4 Aol + My K +AcU)a+a'b.

(o3

Because A\, > 0 and G, K, U are all positive semidefinite, the matrix in parentheses is strictly positive definite, and the
claimed result follows directly from standard vector calculus. O
C. Behavior on mixtures

Proposition 4. Let D = Ule D;, where D; C X;, |D;| = mN, Zle m; = 1. Also suppose that the inducing points
are partitioned as Z = [Zy;...; Z1), with Z; C X;. Further let the kernel k be such that k(x1,x2) = 0 when ¢ € X,
x2 € X fori # j, with its first and second derivatives also zero. Then the kernel exponential family solution of Proposition

is
o ((ﬂ = Ac) ,k,Zl,Dl)

a(Ak,z,D) =

o ((jr A /\C> k, Z,,D,)

Proof. Let G;, b; be the G, b of Propositionwhen using only Z; and D;. Then, because the kernel values and derivatives
are zero across components, if m and m’ are from separate components then

Gm m! = Z 8dk mnvzm)adk(mnyzm ) =0,
n=1d=1

as at least one of the kernel derivatives will be zero for each term of the sum. When m and m/ are from the same component,
the total will be the same except that N is bigger, giving

7T1G1 0 0

0 7T2G2 0

G=| . ) ) :
0 0 7T]GI

U is of the same form and factorizes in the same way. K does not scale:

K, ... 0
K=|: .o
0 - K;

Recall that b is given as

N D
1
b N Z Z :En, zm + ad 10g q0 (xn) 8dk(mn7 zm) + /\Cad log q0 ($7L) ad (mn, zm)-
n=1d=1
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Each term in the sum for which x,, is in a different component than z,,, will be zero, giving b = (71 b1, -+ ,wrbs). Thus
a(A, k, z, D) becomes

a=—(G+ AT+ Iy K+AU)'b
m1G1+ A + Ay Ky + Aem Uy -+ 0 -1 m1by

0 oo G+ A + Ay K+ Ao Up wrby
—(G1+ 22T+ 22K, + \cUy)7'by

1

|
U

—(Gr+ 22T+ 22K + A\cUr) " 'by

us

Thus the fits for the components are essentially added together, except that each component uses a different A, and Ay ;
smaller components are regularized more. \¢, interestingly, is unscaled.

It is difficult in general to tell how two components will be weighted relative to one another; the problem is essentially
equivalent to computing the overall normalizing constant of a fit. However, we can gain some insight by analyzing a greatly
simplified case, in Appendix[C.1]

C.1. Small Gaussian components with a large Gaussian kernel

Consider, for the sake of our study of mixture fits, one of the simplest possible situations for a kernel exponential family:
po = N(0,I), with a kernel k(z,y) = exp (— ||z — y||?) for o > VD, so that k(z,y) ~ 1 for all .,y sampled from
po. Let gy be approximately uniform, go = N (0, ¢I) for ¢ >> o2, so that Vlog qo(x) = ;—21:1: ~ (. Also assume that

N — oo, but M is fixed. Assume that Ayy = Ao = 0, and refer to A\, as simply A. Then we have

N D
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= N Z Z <0_2k($n, Zm)) <0_2k(ﬂjn, Zm/)>
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(Xd — Zm,d)2 1
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e e
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1 . D(o? - 1)
b~ ;dmg(ZZT) - o 1.

Because k(z,x) =~ k(z', x) for any z, z’ near the data in this setup, it’s sufficient to just consider a single z = 0. In that
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case,
a=—(G+X)"'b
1 .+ (D o . D(?-1)
z_<0422 +<U4+)\) I) <U4dlag(ZZ )—Tl
D '/ D(c%*-1)
(B (25
B 1 D(02—1)1
 Do—44+ ) ot
- o2 -1 1
1+ Ao*/D
and so
o?—1
Jal0) ~ 14+ Xo*/D’

Thus, if we attempt to fit the mixture 7 N'(0, I) 4+ (1 — ) N'(r, I) with ¢*> > ||r||> > 02 >> D, we are approximately in
the regime of Proposition[d]and so the ratio between the two components in the fit is

o2 -1 o2 -1
exp (f(o) - f(’l")) ~ exp ( Aot ot >
I+75 1+ 625D

1 1
4/ 2 (I—=mD ~— 7D
=exp | Ao" (07 — 1) ( ol ot 2o >>
< L+ D + (1—7m)D + w(1—m)D?

1 m—1
=exp | =Aot(0? — 1) 2 S35% .
2 Dr(1—m) + Aot + 25~

Ifr= %, the density ratio is correctly 1. If we further assume that A > D /o, so that the denominator is dominated by the
last term, then the ratio becomes approximately

exp(f(0) — f(r) ~ exp (QUDA (w - ;)) |

Thus, depending on the size of D/(20%)\) < 02 /2, the ratio will usually either remain too close to % or become too extreme
as m changes; only in a very narrow parameter range is it approximately correct.

D. Upper bound on normalizer bias

Recall the importance sampling setup of Section [3.2}

U ~ _
1 Po(Yu) 5 Po(Yu)
g = — r, wherey, ~ qo, Ty := so EZg= q0(yu) = Zs.
U 2 q0(Yu) q0(Yu)

u=1
Proposition 1. Suppose that a,s € R are such that Pr(r, > a) = 1 and Pr(r, < s) < p < 1. Define t := (s + a)/2,
V(q, Zg) := log% + £ — 1, and let P := max (¢(a, Zs), % (t, Zg)). Then

¥ (t, Zg) Var[r,]
(Zg—t)? U

[Nl

log Zg — Elog Zo <

+ P (4p(1 = p))

Proof. Inspired by the technique of |Liao & Berg| (2018)), we will decompose the bias as follows. (We will suppress the
subscript @ for brevity.)



Learning Deep Kernels for Exponential Family Densities

First note that the following form of a Taylor expansion holds identically:

p(z) = o(Z) +¢'(Z)(x — Z) + h(z, Z)(x - Z)?

plz) —(Z) — o' (2)(x — 2)

h(z,Z) := @27

We can thus write the bias as the following, where p(z) = —log(z), P is the distribution of Z,and t > a:

E[p(2)] - »(E2) :/ (p(z) = 9(2)) dP(2)

a

= [ W @a -2+ hie. e - 27) 4@
= (2) (/Oo:rdP(gc) — Z) + /Oo h(z, Z)(x — Z)*dP(x)
= /t h(z, Z)(z — Z)*dP(z) + /too h(x, Z)(x — Z)*dP(x)

<

sup h(z, Z)(x — 2)2} / "P(@) + [sup hz, Z)} /t " (o= 2)%aP()

|:a§m§t >t

< | sup h(z,Z)(x— Z)Q} Pr(Z < t)+ |sup h(z, Z)} Var[Z].

a<z<t x>t

Now,

h(z, Z)(x — Z)* = log z +—=-
x

N &

is convex in z and thus its supremum is max (log % + % —1,log % + % — 1), with the term at a being necessarily larger
aslongast < Z.

Picking ¢ = (s + a)/2 gives the desired bound on Pr(Z < t) via Lemma

Lemma 1 of [Liao & Berg| (2018) shows that since ¢'(z) = —1/x is concave, h(x, Z) is decreasing in z. Thus
sup, s, h(z,Z) = h(t, Z), giving the claim. O

Lemma 5. Let a and s be such that Pr(r, > a) = 1 and Pr(r, <s) <p < %, with a < s. Then

1 v s+ a U
PI“<U§ru§ B >§(4P(1_P))2~

Proof. Let K denote the number of samples of r,, which are smaller than s, so that U — K samples are at least s. Then we
have

K is distributed binomially with probability of success at most p < %, so applying Theorem 1 of |Arratia & Gordon|(1989)
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yields

U
1 sS+a 1 1 1 1
Pr(=S"r, < < U |=log — + = log ————
r(UZr =73 >—6Xp( 3 35
U
—exp (G 1ox 101 )

= (4p(1 = p))

Proposition 6. The function x;(x) = (log% + é — 1) /(x — t)? is strictly convex for all x > 0. Thus we have that
Ex:(Zo) > x¢(E Zg) = x¢(Zo), with equality only if Pr(Zg = Zg) = 1.

s}

O

Proof. We can compute that

3 2
V() = 2;—3—9%+18£—11—6log£'
‘ (z—1)*

Letr :=t/x, so x € [t,00) corresponds to r € (0, 1], and = € (0, ¢] corresponds to 7 € [1,00). Then

" (t) _2r —9r? +18r — 11 — Glogr
t e

We can evaluate lim,_,1 X" (t/r) = 55 > 0. Forr # 1, x/ > 0 if and only if f(r) > 0, where

r

f(r):=2r% —9r* + 18 — 11 — 6log r.
Clearly lim,_,o f(r) = oo and f(1) = 0. But notice that

—1)3
f(r) :6r2—18r+18—§: br—1)° ,
r r

so that f(r) is strictly decreasing on (0, 1), and strictly increasing on (1, 00). Thus f(r) > 0 forall r € (0,1) U (1, 00),
and x} (z) > 0 for all x > 0. The claim follows by Jensen’s inequality. O
D.1. Estimator of bias bound

For a kernel such as (7) bounded in [0, 1], @ := exp (Zn]\le min(y,, 0)) is a uniform lower bound on r,,.

For large U, essentially any p < % will make the second term practically zero, so we select s as slightly less than the 40th
percentile of an initial sample of r,,, and confirm a high-probability (0.999) Hoeffding upper bound p on Pr(r, < s) with
another sample. (We use s as exp(—0.001) = 0.999 times the estimate of the 40th percentile, to avoid ties.) We use 107
samples for each of these.

We estimate Var([r, ] on a separate sample with the usual unbiased estimator, using 10° samples for most cases but 1019 for
MiniBoone.

To finally estimate the bound, we estimate Zg on yet another independent sample, again usually of size 10° but 101 for
MiniBoone.

Crucially, the function (¢, x)/(x — t)? is convex (Proposition[6); because the variance is unbiased, our estimate of the
bias bound is itself biased upwards. As Proposition [Ifs bound is also not tight, our estimate thus likely overstates the actual
amount of bias.

E. Additional experimental details

E.1. Synthetic datasets

For each synthetic distribution, we sample 10 000 random points from the distribution, 1 000 of which are used for testing;
of the rest, 90% (8 100) are used for training, and 10% (900) are used for validation. Training was early stopped when
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Figure 4: Validation score loss on 6 synthetic datasets for 5 runs.

validation cost does not improve for 200 minibatches. The current implementation of KCEF does not include a Nystrom
approximation, and trains via full-batch L-BFGS-B, so we down-sampled the training data to 1000 points. We used the
Adam optimizer (Kingma & Ba, 2015) for all other models. For MADE, ReaNVP, and MAF, we used minibatches of size
200 and the learning rate was 10~ For KEF-G and DKEF, we used 200 inducing points, used |D;| = |D,| = 100, and
learning rate 10~3. The same parameters are used for each component for mixture models trained on MoR.

To show that learning is stable, we ran the experiments on 5 random draws of training, validation and test sets from the
synthetic distributions, trained KDEF initialized using 5 random seeds and calculated validation score at each iteration until
convergence in the first phase of training (before optimizing for \’s). The traces are shown in Figure[d]

The same data for benchmark datasets are shown in Figure[5] There is no overfitting except for the small Redwine dataset.
Runs on Hepmass and Miniboone do not seem to fully converge, despite having met the early stopping criterion.

E.2. Benchmark datasets

Pre-processing RedWine and WhiteWine are quantized, and thus problematic for modeling with continuous densities;
we added to each dimension uniform noise with support equal to the median distances between two adjacent values. For
HepMass and MiniBoone, we removed ill-conditioned dimensions as did [Papamakarios et al.|(2017). For all datasets except
HepMass, 10% of the entire data was used as testing, and 10% of the remaining was used for validation with an upper limit
of 1000 due to time cost of validation at each iteration. For HepMass, we used the same splitting as done in |[Papamakarios
and with the same upper limit on validation set. The data is then whitened before fitting and the whitening
matrix was computed on at most 10 000 data points.

Likelihood-based models We set MADE, MADE-MOG, each autoregressive layer of MAF and each scaling and shifting
layers of real NVP to have two hidden layers of 100 neurons. For real NVP, MAF and MAF-MOG, five autoregressive
layers were used; MAF-MOG and MADE-MOG has a mixture of 10 Gaussians for each conditional distribution. Learning
rate was 103 The size of a minibatch is 200.
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Figure 5: Validation score loss on 5 benchmark datasets for 5 runs.

Deep kernel exponential family We set the DKEF model to have three kernels (R = 3), each a Gaussian on features
of a 3-layer network with 30 neurons in each layer. There was also a skip-layer connection from data directly to the last
layer which accelerated learning. Length scales o, were initialized to 1.0, 3.3 and 10.0. Each A was initialized to 0.001.
The weights of the network were initialized from a Gaussian distribution with standard deviation equal to 1/+/30. We also
optimized the inducing points z,, which were initialized with random draws from training data. The number of inducing
points M = 300, and |D;| = |D,| = 100. The learning rate was 10~2. We found that our initialization on the weight std
and o,’s are importance for fast and stable learning; other parameters did not significantly change the results under similar
computational budget (time and memory).

FSSD tests were conducted using 100 points v, selected at random from the test set, with added normal noise of standard
deviation 0.2, using code provided by the authors.

We estimated log Zg with 10'° samples proposed from gq, as in Section and estimated the bias as in Appendix

We added independent (0, 0.052) noise to the data in training. This is similar to the regularization applied by (Kingma &
[CeCunl 2010} [Saremi et al., 2018)), except that the noise is added directly to the data instead of the model.

For all models, we stopped training when the objective () or log likelihood) did not improve for 200 minibatches. We also
set a time budget of 3 hours on each model; this was fully spent by MAF, MOG-MAF and Real NVP on HepMass. We found
that MOG-MADE had unstable runs on some datasets; out of 15 runs on each dataset, 7 on WhiteWine, 4 on Parkinsons and
9 on MiniBoone produced invalid log likelihoods. These results were discarded in Figure [3|log likelihood panels.

The DKEF in our main results (Figure 3 has an adaptive go which is a generalized normal distribution. We also trained
DKEF with ¢ being an isotropic multivariate normal of standard deviation 2.0. These results Figure[6|are similar to Figure[3]
but exhibit much smaller bias estimates in the log normalizer for RedWine and Parkinsons.
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Figure 6: Results on benchmark datasets as in Figurewith the go in DKEF being isotropic multivariate normal of std 2.0.
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