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Abstract
Model selection and evaluation are usually strictly
separated by means of data splitting to enable an
unbiased estimation and a simple statistical infer-
ence for the unknown generalization performance
of the final prediction model. We investigate the
properties of novel evaluation strategies, namely
when the final model is selected based on em-
pirical performances on the test data. To guard
against selection induced overoptimism, we em-
ploy a parametric multiple test correction based
on the approximate multivariate distribution of
performance estimates. Our numerical experi-
ments involve training common machine learn-
ing algorithms (EN, CART, SVM, XGB) on vari-
ous artificial classification tasks. At its core, our
proposed approach improves model selection in
terms of the expected final model performance
without introducing overoptimism. We further-
more observed a higher probability for a success-
ful evaluation study, making it easier in practice
to empirically demonstrate a sufficiently high pre-
dictive performance.

1. Motivation
Impressive progress has been made over the last years in
a vast variety of supervised machine learning applications.
End-to-end deep learning approaches have led to steadily
improving results in traditional domains as well as in novel
settings (LeCun et al., 2015; Jiang et al., 2017; Litjens et al.,
2017; Miotto et al., 2017; Ching et al., 2018).

However, several challenges remain. In this work, we con-
sider overfitting issues and overoptimistic claims concerning
the predictive performance which are still common in ap-
plied machine learning (Boulesteix, 2009; Boulesteix &
Strobl, 2009; Jelizarow et al., 2010; Boulesteix et al., 2013).
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This is in particular true when labelled data is expensive to
acquire and datasets are thus only of modest size or the em-
ployed statistical methodology is inadequate for the particu-
lar study design. This issue is even more severe in critical
applications like automated and assisted medical diagnosis
where consequences could be ultimately life-threatening. In
such scenarios, machine learning researches should conduct
a rigorous model evaluation study and in fact may be even
required to do so by regulators (Pepe, 2003; Knottnerus &
Buntinx, 2009). While regulation is mandatory only in a
few domains today, its introduction is heavily discussed in
many environments (Cath et al., 2018; Gómez et al., 2018;
Olhede & Wolfe, 2018; Pesapane et al., 2018; Reed, 2018).

From a statistical viewpoint, an evaluation study seeks to
provide evidence that a novel prediction model has a suffi-
ciently high performance compared to the reference standard
(which provides the true labels). The true performance is of
course unknown in practice and needs to be estimated based
on data. Much can go wrong in this process which is why
across the machine learning literature the following three-
way data split is frequently recommended (Friedman et al.,
2009; Japkowicz & Shah, 2011; Zheng, 2015; Goodfellow
et al., 2016; Géron, 2017):

1. Training: used to train all initial candidate models.

2. Validation: used for algorithm / hyperparameter se-
lection, the final model results from retraining this
algorithm on training and validation data.

3. Evaluation (Test): used to access the performance of
the final model.

A standard approach to address sampling variability of the
empirical test performance, is to conduct (frequentist) statis-
tical inference of the unknown generalization performance
ϑ. This allows the construction of confidence intervals

CI1−α(ϑ) = (ϑl, ϑu) (1)

based on the test data such that CI1−α(ϑ) covers ϑ with
probability 1 − α. More formally, a test decision for the
hypothesis problem

H0 : ϑ ≤ ϑ0 vs. H1 : ϑ > ϑ0 (2)
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can be made. Hereby, it is required that the type 1 error
rate, the probability of falsely rejecting the null, is (approxi-
mately) bounded by the significance level α, e.g. α = 0.05.
This approach may be motivated as follows: We assume
that there is an existing comparator for the prediction task
at hand, either in form of a threshold ϑ0 or the performance
of a reference model f̂0. For instance, an automated disease
diagnosis system might only be deemed as useful when it
can provide a classification accuracy of at least ϑ0 = 90%
due to other advantages, e.g. decreased costs or lower in-
vasiveness compared to the reference standard. Similarly,
a company may decide to only replace their existing (and
working) stock price forecasting model if enough evidence
is available that the new candidate model performs better. It
is sometimes criticized that the outcome of a statistical test
is ultimately binary (reject or don’t reject). We argue how-
ever that this binary outcome perfectly matches the pending
decision in the given application: either we implement the
candidate model in practice or we don’t.

The statistical testing approach implicitly reflects that we
hereby usually perceive type I errors (concluding a model
performs well enough when it doesn’t) to be more harmful
than type II errors (failing to conclude superiority of a suf-
ficiently good model). This view may be too rigorous for
early-phase studies or algorithmic development attempts. It
is however justified in critical applications and regulated
environments.

Several works investigate and compare statistical meth-
ods for the evaluation of prediction models usable for this
framework (Garcı́a et al., 2010; Japkowicz & Shah, 2011;
Raschka, 2018). Some of these methods are tailored to-
wards the comparison of learning algorithms rather than
models (Dietterich, 1998; Nadeau & Bengio, 2000; Hothorn
et al., 2005; Eugster et al., 2008). In this case, each algo-
rithm under investigation produces several models based
on different datasets or partitions of the same dataset. The
results of such a (benchmark) experiment are than based
on a summary statistic of different performance estimates
per algorithm, e.g. the average accuracy. We will however
focus on model comparison and evaluation in this work. In
the terminology of Dietterich (1998, figure 1), we primarily
address research questions 1 and 3.

In a recent comprehensive overview article, Raschka (2018)
presented different multiple tests which allow to conduct
simultaneous inference regarding more than one models on
a single test dataset while still controlling the probability of
making a false positive claim. Raschka (2018) states that ’if
we are honest and rigorous, the process of multiple hypothe-
sis testing with appropriate corrections can be a useful aid
in decision making.’ We certainly agree with this statement.
However, based on our observations, these methods are still
not commonly employed in applied machine learning.

A novel perspective on model selection and evaluation
which helps to justify the use of multiple testing method-
ology for model evaluation was presented by Westphal &
Brannath (forthcoming 2019). In a nutshell, the authors
propose to evaluate multiple models on purpose to allow the
final model being selected on the test data. The resulting
selection induced bias is countered by using a multiple test
correction based on the approximate multivariate distribu-
tion of performance estimates. Westphal & Brannath (forth-
coming 2019) used the so-called maxT-approach which is
not well-known in the machine learning literature but has
several appealing properties which we will highlight later.
In numerical simulations of many repetitions over the com-
plete learning-evaluation pipeline this approach resulted in
final models with higher performance and also increased
statistical power, i.e. the probability that the null hypothesis
is correctly rejected. An additional motivation for this ap-
proach is given in case learning and evaluation data differ
systematically, e.g. when the learning data is sampled from
a perturbed data distribution. While this should generally
be avoided, it is not uncommon in practice. For instance, di-
agnostic models in medical research are commonly trained
on retrospectively collected data with potentially unrepre-
sentative characteristics compared to the intended target
population, e.g. on patients with less/more/other comorbidi-
ties or following different sample protocols. The evaluation
data on the other hand is usually highly representative due to
a prospective study design with restrictive inclusion criteria.
If this is the case, it can be frustrating not to be allowed
to use the test data for model selection for the sake of an
unbiased estimation and valid statistical inference for the
performance of the single prespecified model. We are not
aware of other publications exploring a similar route, i.e. an
intended model selection based on the test data.

The outline of this work is as follows: In the second sec-
tion we will briefly introduce basic notation and the most
important statistical aspects. In the third section we show
results of new and extensive numerical simulations in which
we compare the properties of different evaluation strategies.
Finally, in the fourth section, we summarize our results,
point out limitations of our work and give an outlook on
future research.

2. Notation and Statistical Framework
2.1. The Default Data Splitting Approach

The goal of supervised machine learning is to learn a pre-
diction model f̂ : x 7→ ŷ which maps a P -dimensional
feature vector x to a (scalar) label ŷ. This is achieved by
a machine learning algorithm A which takes a learning set
L = {zi = (xi, yi)}nLi=1 as input. Hereby, L is assumed
to be sampled from the unknown joint data distribution
D = D(X,Y ), we write L ∼ DnL in short. Usually several
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models are trained as it is rarely known beforehand which
algorithm provides the best results for the problem at hand.
This can be justified with the no free lunch theorem of ma-
chine learning (Shalev-Shwartz & Ben-David, 2014). We
assume that that M algorithms Am are used to train models
f̂m, m ∈ M = {1, . . . ,M}. A learning algorithm may
depend on one or more so-called hyperparameters, e.g. the
strength of a penalty term. In the following, we will treat the
same algorithm with two different hyperparameter choices
as two different algorithms Am, Ak, m 6= k.

The true performance of the m-th model f̂m is defined as

ϑm = ϑ(f̂m) = ED[s(f̂m(X), Y )]. (3)

Hereby, s is a similarity measure between prediction and
label such as s(ŷ, y) = 1(ŷ = y) for (binary) classification
tasks (on which we will focus later). In practice, only sample
estimates (empirical performances) ϑ̂m = 1

n

∑
i s(ŷi, yi)

are available whereby the summation is meant to include all
observations in the relevant dataset. It is well known that
model selection based on the same data that was used for
training generally favours (over)complex models. The usual
recommendation to avoid overfitting the training data is to
estimate performances on independent data (Friedman et al.,
2009; Japkowicz & Shah, 2011; Zheng, 2015; Goodfellow
et al., 2016; Géron, 2017). Hence we assume that the learn-
ing data is split into training data T ∼ DnT and validation
data V ∼ DnV . The performance of the resulting intermedi-
ate models f̂−m = Am(T ),m ∈M, (with training restricted
to T ) are compared based on the validation performances.
Usually, the empirical validation performance ϑ̂− is maxi-
mized to select the best algorithm m∗ = arg maxm∈M ϑ̂−m.
The final prediction model f̂m∗ is the result of retraining the
algorithm Am∗ on the whole learning data L = T ∪ V as
a non-decreasing generalization performance (on average)
can be expected from any reasonable learning algorithm. We
will call this approach the default selection rule hereafter.

A third and final dataset is eventually needed to allow for an
unbiased performance estimation and, if needed, rigorous
statistical inference regarding the true performance of the
final model ϑm∗ . This is due to the fact that the valida-
tion estimate for the final model m∗ is overoptimistic due to
selection induced bias. The magnitude of this bias is increas-
ing in the number of models M that are compared (Jensen
& Cohen, 2000). The final evaluation (or test) dataset will
be denoted as E ∼ DnE . This simple evaluation strategy
works because of the complete separation of model selec-
tion (based on V) and evaluation (based on E). However, it
might suffer if the selection results in a suboptimal model.
From a strict statistical viewpoint (i.e. if we seek to control
the type 1 error rate), we are not allowed to change our
hypothesis which is implied by our model choice after we
have investigated the evaluation data.

2.2. Simultaneous Evaluation of Multiple Models

The evaluation approach proposed by Westphal & Brannath
(forthcoming 2019) can be formalized by allowing arbitrary
selection rules r : L 7→ S ⊂M = {1, . . . ,M}. That is to
say, a subset of models S ⊂ M is selected for evaluation
based on L, particularly based on ϑ̂−. For simplicity, we
will assume that the models are ordered such that the valida-
tion estimates form a decreasing sequence ϑ̂−1 ≥ . . . ≥ ϑ̂

−
M .

In effect, we have S = {1, . . . , S}, S ≤ M . In the eval-
uation phase we now have to simultaneously evaluate all
selected models m ∈ S . By evaluation we mean estimation
of the unknown parameter vector ϑ = (ϑ1, . . . , ϑS) and a
test decision for the hypothesis system

H = {Hm
0 : ϑm ≤ ϑ0, m ∈ S}. (4)

The goal of the evaluation study is hence to reject at least
one null hypothesis Hm

0 , i.e. provide evidence that at least
one model has a sufficiently high performance. We are
particularly interested in the unknown performance ϑm∗
of the final model. In the remainder of this work, we will
focus on the most obvious way to choose the final model,
namely the model with the highest evaluation performance
m∗ = argmaxm∈S ϑ̂m(E). As a result model selection and
evaluation now overlap (if S > 1) and statistical methods
are needed to resolve bias introduced this way.

In general, a multiple test may be used to deal with
hypothesis system (4). A multiple test is a mapping
ϕ : E 7→ {0, 1}S whereby hypothesis Hm

0 gets rejected if
and only if ϕm = 1. We will employ a particular test, the
so-called maxT-approach which is also known as the pro-
jection method (Hothorn et al., 2008; Dickhaus, 2014). It
is based on the approximate multivariate normal distribu-
tion of the sample estimates ϑ̂ ·∼ NS(ϑ, Σ̂) where Σ̂ is a
consistent estimate of the true covariance matrix Σ of ϑ̂.
Usually, when performance is defined as in (3), Σ̂ is the
standard sample covariance of the similarity matrix

Q =
(
s(f̂m(xi), yi)

)
i=1,...,nE
m=1,...,S

(5)

scaled by the factor 1/nE . To compute Q, predictions for all
evaluation observations need to be obtained for all selected
models. In the following, we assume that the sample covari-
ance matrix can be decomposed as Σ̂ = D̂−1/2R̂D̂−1/2

whereby D̂ is the diagonal matrix of sample variances and
R̂ the estimated correlation matrix. From this, a vector of
test statistics can be constructed as

T = D̂−1/2(ϑ− ϑ0). (6)

Under the least favourable parameter configuration
ϑ = ϑ0 = (ϑ0, . . . , ϑ0) ∈ RS we have

T
·∼ NS(0, R̂) (7)
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due to the multivariate central limit theorem. Standard pack-
ages allow the numerical calculation of a critical value cα
such that, given ϑ = ϑ0,

P(max
m∈S

Tm ≤ cα) ≈
∫
(−∞,cα]S

φS(x, R̂)dx = 1− α.

(8)

Hereby, φS(· , R̂) is the density function of the
S−dimensional standard normal distribution with corre-
lation matrix R̂. Altogether, this leads to a simultaneous
test procedure ϕ by defining ϕm = 1 ⇔ Tm > cα. This
test controls the family wise error rate (FWER) in the strong
sense asymptotically (as nE →∞). That is to say that the
probability of any hypotheses in (4) being falsely rejected
is bounded by the significance level α for all possible pa-
rameter configurations ϑ. If S = 1, the maxT-approach is
equivalent to a standard Z-test. It is also possible to con-
struct a simultaneous confidence region for the parameter
vector ϑ with (approximate) coverage probability 1 − α.
Additionally, a corrected point estimator ϑ̃ may be defined
via

ϑ̃m = ϑ̂m − c0.5 · ŝe(ϑ̂m), (9)

whereby c0.5 fulfils equation (8) with α = 0.5. This cor-
rected estimator is median-conservative, i.e. the probabil-
ity P(∪m∈S{ϑ̃m > ϑm}) that any component ϑ̃m over-
estimates the true performance ϑm is approximately (as
nE →∞) bounded by 0.5. Further details are provided by
Westphal & Brannath (forthcoming 2019).

The maxT-approach due to Hothorn et al. (2008) is not
widespread in applied machine learning but has several ap-
pealing properties: (a) It is applicable to a wide variety
of performance measures due to the employed normal ap-
proximation. (b) It takes into account the similarity of the
models via the estimated correlation structure of the empir-
ical performances. It is therefore less strict (smaller cα) if
similar models are evaluated. Simpler approaches such as
the Bonferroni correction ignore the correlation structure
completely (Dickhaus, 2014). (c) The framework allows
corrected (median-conservative) performance estimates via
(9) which is useful even if statistical testing is not of di-
rect scientific interest. On the downside, the approximate
nature of the procedure may result in too liberal test deci-
sion for small test sets. In the following section, the pros
and cons of our multiple testing approach will be assessed
systematically in an extensive simulation study.

3. Simulation Study
3.1. Goal

The goal of our simulation study is to compare different
model evaluation strategies. We will combine different

selection rules (based on the validation data) and the same
statistical inference framework (on the test data). That is
to say, the same multiple test we be employed in all cases,
namely the maxT-approach described in the last section.
Our main focus is how different selection rules impact the
final model performance. Furthermore, we will compare
estimation bias, statistical power and type 1 error rate.

The simulation study is inspired by previous work but was
vastly extended regarding several aspects (Westphal & Bran-
nath, forthcoming 2019). Most importantly, the diversity
of learning algorithms (EN, RPART, SVM, XGB) was in-
creased. The diversity of learning tasks was also increased
as we now deal with unbalanced classification problems
based on nonlinear risk scores. In addition, the number of
candidate algorithms was increased to 200 = 4 · 50 and the
hyperparameters are now sampled randomly instead of grid
based. In total, we simulated 72,000 instances of the com-
plete machine learning and evaluation pipeline and trained
200 models twice (pre and post validation) on each instance.

3.2. Software

All numerical experiments have been conducted in R (R
Core Team, 2013). We used many existing packages, most
importantly the batchtools (Lang et al., 2017) package
for processing batch jobs and the mvtnorm (Genz et al.,
2018) for computations concerning the multivariate normal
distribution. For the machine learning part, we employed the
caret1 package as a wrapper for methods from glmnet,
rpart, LiblineaR, and xgboost.

In addition, two newly developed packages were used:
SEPM2 (Statistical Evaluation of Prediction Models) pro-
vides the selection and statistical inference framework.
SEPM.MLE3 provides all functions used to conduct the nu-
merical experiments presented in this work. To reproduce
the simulations and analyses we recommend to follow the
instructions provided in the public R project SEPM.PUB4

3.3. Setup

For the simulation study, we will focus entirely on binary
classification and prediction accuracy. In the following, we
will describe some of its main features.

3.3.1. DATA GENERATION

Training, validation and evaluation datasets T ,V and E
are sampled from the same distribution D = D(X,Y ). In
addition, a large population dataset P with 100,000 ob-
servations is generated. It is not used for selection or

1https://github.com/topepo/caret/
2https://github.com/maxwestphal/SEPM
3https://github.com/maxwestphal/SEPM.MLE
4https://github.com/maxwestphal/SEPM.PUB
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evaluation but rather to calculate the ground truth (e.g.
true classifier accuracies) with high precision. The stan-
dard error of calculated ’true’ proportions is bounded by√

0.5(1− 0.5)/nP ≤ 0.0016.

For each dataset, we firstly generate feature data X ∈ RP
from a multivariate standard normal distribution with
P = 50 features whereby only Pact < P active features
contribute to define the labels Y . In half of the cases the
features are independent of each other. For the other half
of instances features are redundant. That is to say, for each
active feature, we have one ’partner’ feature which is corre-
lated (ρ = 0.5) to the active feature but does not contribute
any information towards the true label.

True labels are then generated based on a risk score which
is a function g : x 7→ p = P(Y = 1|X = x) ∈ (0, 1).
We used six different risk scores. The first two (A, B) are
linear in X and depend on Pact = 5 features (Westphal
& Brannath, forthcoming 2019). They result in balanced
learning problems, i.e. π = P(Y = 1) = 0.5. The next
two (C, D) are nonlinear risk scores also based on Pact = 5
features. The last two (E, F) are also nonlinear and based on
Pact = 9 features. The risk scores for scenarios C through
F were inspired by prediction tasks used by Friedman (1991,
p. 35) and Breiman (1996, p. 139) and are tuned such that
πC = πE = 0.3 and πD = πF = 0.15. Besides these
realistic class balances we checked that all tasks have a
realistic optimal performance ϑopt which is defined as the
accuracy of the classifier resulting from thresholding the
true (data-generating) risk score at 0.5, compare table 1.

Altogether we investigate 24 = 6 · 2 · 2 different scenarios
resulting from all combinations of risk score (A-F), feature
distribution (independent [I] or redundant [R]) and size of
the learning data nL (either 400 or 800). The validation data
size was set to nV = nL/4 in all cases. For each of the 24
distinct scenarios, we generated 3,000 data instances.

3.3.2. MACHINE LEARNING

For every data instance, we train M = 200 models with
randomly sampled hyperparameters on the training data T
and again (with the same hyperparameters) on the learning
data L = T ∪ V . We employed the following learning
algorithms (in brackets: number of hyperparameters):

• EN: Elastic Net - Penalized Logistic Regression (2)

• CART: Cost-Sensitive Classification and Regression
Trees (2)

• SVM: L2 Regularized Linear Support Vector Machines
with Class Weights (3)

• XGB: eXtreme Gradient Boosting (7)

Each algorithm was used to train M/4 = 50 models on
each data instance. These particular algorithms were cho-
sen in order to achieve a good compromise between high
performance and low training time. Details regarding the
implementation and theoretical background are given in the
caret documentation1 and by Kuhn & Johnson (2013).

3.3.3. SELECTION RULES

Our main focus is the comparison of the following two
selection rules, motivated by previous research (Westphal &
Brannath, forthcoming 2019).

(a) default: evaluate the best the validation model only

(b) within 1 SE: evaluate all models within one standard
error of the best validation model

To reduce the computational costs for our simulation and
potentially avoid a loss in statistical power we limited
the number of selected model by imposing the condition
S ≤ b√nEe. This can be motivated by noting that we have
tr(Σ) = O(Sn

−1/2
E ) for the trace of the covariance matrix

of ϑ̂. Furthermore, we also included two oracle rules for
comparison which cannot be implemented in practice. The
oracle [train] rule selects the single best model based on true
performances ϑ−m (before retraining) and the oracle [learn]
rule is based on the true performances ϑm of the final mod-
els. For each of the 72,000 learning data sets, five test sets
with different sizes nE ∈ {100, 200, 400, 800, 8000} were
sampled. All evaluation strategies are finally employed to
the same 360,000 resulting combinations (L, E).

3.4. Main Results

The main results described here are averaged over all learn-
ing instances and stratified by relevant factors. A much
more detailed supplementary report with several additional
analyses is available online5.

3.4.1. PREDICTION TASKS

The 24 considered scenarios are summarized in table 1. The
six different data distributions A-F are defined by the accord-
ing risk score which are either linear (L) or nonlinear (N).
The label depends either on Pact = 5 or 9 active features.
The fourth column shows the prevalence of the positive
class π = P(Y = 1). For each combination of data distri-
bution A-F and learning sample size nL ∈ {400, 800} the
two rightmost column show the mean over all correspond-
ing simulation instances of the maximum true performance
ϑmax = maxm∈M ϑm for the case M = 200. These num-
bers are somewhat smaller when nL = 400 and when the

5https://maxwestphal.github.io/SEPM.PUB/
MLE_SIM_ACC.html
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Table 1. Description of the classification tasks investigated in the
simulation study. Each task is defined by the its label distribution
(A-F), number of learning samples (400 or 800) and an independent
(I) or redundant (R) feature distribution.

D TYPE Pact π ϑopt nL ϑmax [I] ϑmax [R]

A L 5 .50 .885 400 .878 .877
800 .882 .881

B L 5 .50 .860 400 .850 .850
800 .856 .855

C N 5 .30 .951 400 .885 .853
800 .867 .865

D N 5 .15 .966 400 .892 .890
800 .901 .899

E N 9 .30 .950 400 .854 .852
800 .865 .864

F N 9 .15 .963 400 .891 .890
800 .900 .900

features are independent (I) rather than redundant (R), as
expected. The variation of ϑmax across simulation instances
is rather small, the largest standard deviation of 0.009 was
observed for task (C, 400, I). The distance of ϑmax to ϑopt,
the optimal achievable performance, can be seen as a proxy
of how well the considered algorithms are able to learn each
task. Overall, the XGBoost algorithm is most likely to learn
the best prediction model for most tasks. For tasks A and B
however, the elastic net frequently provides the best models.

3.4.2. FINAL MODEL PERFORMANCE

Our main goal is to investigate if our approach can be suc-
cessfully used to improve model selection. Figure 1 shows
the empirical distribution of performance gains ∆ϑ as ob-
served in the simulation study. ∆ϑ is defined as the differ-
ence between the true model performance ϑm∗ resulting
from using the within 1 SE selection rule and the default
selection rule. A positive ∆ϑ means a higher performance
for the former approach.

The mean performance gain is always greater than zero and
this effect is increasing in nE and decreasing in nV = nL/4.
This is also true when stratifying the analysis further for
learning task (see supplementary report). The magnitude of
the mean effect varies between 0.8% and 0.9% accuracy if
nE = nV . We furthermore observe that the distribution of
∆ϑ is skewed as a large gain (5% or greater) is much more
likely than an equally great loss in model performance. We
also tested if the expected performance gain is significantly
different from zero for the primary analysis (M = 200,
nV = nE ). The according null hypothesis H0 : E∆ϑ = 0
can be rejected in the overall analysis (nsim = 72000) for
the significance level α = 5%. This is also the case when
conducting Bonferroni-corrected tests in all 24 encompassed
scenarios (nsim = 3000). That is to say, in all 24 individ-
ual scenarios, the multiplicity-adjusted lower confidence
bounds for E∆ϑ are greater than zero.

Figure 1. Gain in final model performance ∆ϑ when the final se-
lection is conducted on the test data depending on the number of
learning observations nL and the number of test observations nE .

3.4.3. ESTIMATION

Evaluating only a single model has the undeniable advantage
that an unbiased point estimate can be obtained from the
test data. In contrast, evaluating multiple promising models
and choosing the final model based on the test data is prone
to selection induced bias. This is shown in the top row
of figure 2: The mean relative bias of the naive estimator
(sample mean) is around +2% for small test sets. This is the
reason why the former approach is so popular and frequently
recommended in the literature.

In contrast, the corrected estimator ϑ̃m∗ introduced in equa-
tion (9) is rather biased downward by a similar margin (bot-
tom row of figure 2). This bias also vanishes asymptotically.
This conservatism makes the corrected estimate preferable
for evaluation studies. Besides the bias, we also analysed the
mean squared error and mean absolute deviation of ϑ̂m∗ and
ϑ̃m∗ . Regarding these characteristics, the two estimators
perform very similarly in our simulation.

3.4.4. TEST DECISIONS

In a rigorous model evaluation study, we may require that
rejection of the null hypothesis Hm∗

0 : ϑm∗ ≤ ϑ0 is nec-
essary to conclude superiority of the final model f̂m∗ over
the benchmark ϑ0. Figure 3 shows exactly this rejection
rate π(δ) = P(ϕm∗ = 1|δ) given δ = ϑmax − ϑ0. Hereby
ϑmax is the true performance of the best candidate model
m ∈M, compare table 1.

When δ ≤ 0, the global null is true, i.e. all models are worse
than the benchmark ϑ0. In this case π(δ) coincides with the
type 1 error rate of the statistical test and hence should be
bounded by α. The (one-sided) significance level α = 2.5%
is indicated as the red dashed line in figure 3. Apparently,
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Figure 2. Relative deviation between estimated and true final
model performance for the naive (top) and corrected (bottom)
estimator. In this figure, only instances with nL = 400 are shown.

control of the type 1 error rate is possible for all employed
selection rules. Only when model selection is perfect (ora-
cle [learn] rule), the observed false positive rate of the test
is slightly above α. This can be explained by the asymptotic
nature of the employed statistical test. We remark here, that
the test decision for all models m /∈ S which have not been
selected is to retain the null hypothesis. This definition is
obvious but necessary to make selection rules comparable
(Westphal & Brannath, forthcoming 2019).

In the more interesting case δ > 0, the global null is no
longer true, i.e. there are models with sufficiently high per-
formance ϑm > ϑ0. The rejection rate π(δ) then almost
coincides with statistical power, i.e. the probability to cor-
rectly identify such a model. To be precise, π(δ) may also
contain false positive test decisions for fm∗ , the empiri-
cally best model on the test data, when δ > 0. We found
in separate analyses that this difference is minor and only
noteworthy at all for small positive δ. The curves showing
the raw statistical power thus look almost identical to those
shown in figure 3 for δ > 0 and are provided in the supple-
mentary report. Either way, evaluating multiple promising
models increases statistical power uniformly (for all δ > 0).
For most of the investigated range of δ, the gain in power is
substantial as it lies between 10 and 20 percent. This gain is
decreasing in the number of validation samples nV = nL/4.

3.4.5. SENSITIVITY ANALYSES

We conducted several sensitivity analyses to investigate if
the results change under modified conditions. They are
described very briefly below. Details can be found in the
supplementary report.

Most importantly, we stratified all analyses further by learn-
ing task scenario, i.e. label and feature distribution. In all

Figure 3. Overall rejection rate, i.e. probability to falsely (δ ≤ 0)
or correctly (δ > 0) identify a sufficiently good prediction model.

cases the results were qualitatively similar to the those in
the main (global) analysis. In particular we observed an
increased final model performance and improved statistical
power when multiple models are evaluated simultaneously.

The case of fewer than 200 initial candidate models was
also emulated. For this purpose, we repeated the complete
analysis after randomly sampling 40 or 100 from the 200
available models for each simulation instance. Hereby, we
enforced that each of the four learning algorithms is repre-
sented equally in all sets of candidate modelsM, i.e. each
M (still) contains M/4 models of each type. In summary,
none of the previously reported results is particularly sensi-
tive to this change, neither qualitatively nor quantitatively.

We also investigated how our multiple testing approach com-
pares against selection based on model complexity, at least
for the subset of elastic net models (M = 50). A traditional
selection rule in this case is to minimize the number of non-
zero model coefficients under the side condition that the
validation performance is within one standard error of the
best validation model (Friedman et al., 2009, p. 61, p. 244).
Somewhat surprisingly, this selection rule didn’t even out-
perform the default approach regarding model performance
and quality of test decisions. Moreover, it may be very dif-
ficult in general to find a criterion which measures model
complexity for all candidate models when those are the
result of a diverse set of learning algorithms.

Finally, we examined the effect of using the well-known
Bonferroni correction instead of the advertised maxT-
approach in conjuction with the within 1 SE selection rule.
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This multiple test is based on dividing the global signifi-
cance level α by the number of selected models S to obtain
a local significance level αloc = α/S. As expected, the
Bonferroni correction results in a less powerful test proce-
dure as it ignores the dependency structure of test statistics.
The rejection rate was decreased by up to 10%, depending
on the benchmark ϑ0. The employed statistical test has no
influence on model selection, as we would still pick the
model with the highest empirical performance on the test
data as the final model.

4. Conclusion
4.1. Summary and Interpretation

’The test data should not guide model selection and instead
only be used for the assessment of a single (independently
selected) model.’ The main contribution of the present work
is the demonstration that this omnipresent recommendation
in machine learning should not be considered irrefutable. A
simultaneous evaluation of multiple models is possible when
suitable statistical methods are employed to counter the
induced overoptimism. Moreover, our proposed evaluation
strategy has two major advantages.

Firstly, in all scenarios investigated in our simulation, the
expected model performance was increased compared to
the default approach. This can be explained by the fact that
effectively more data is used to inform the model selection,
namely the test data which is otherwise only used for an
assessment of a single prespecified prediction model. In
other words, our approach enables the researcher to correct
mistakes made due to the imperfect model ranking in the
validation stage. The expected net benefit of this approach
in our simulation study, just under one percent classification
accuracy when nV = nE , may seem small. It may however
also be seen as a relative decrease in classification error of
(roughly) 10% = 0.01

1−0.9 .

The second benefit is the increased statistical power. In prac-
tice, the researcher has in effect a largely increased chance
to show that at least one of the candidate models performs
sufficiently well. The increase in power was substantial,
between 10% and 20% in most relevant situations. In other
words, less observational units are needed to achieve the
same power. This is an important factor as conducting eval-
uation studies in regulated environments such as medical
diagnosis can be very costly.

The main drawback of our approach is the introduced up-
ward bias of the final performance estimate in the evaluation
study. However, we showed that it is possible to adjust
for this bias with a corrected, median-conservative estima-
tor which is arguably preferable in the context of model
evaluation.

4.2. Limitations and Outlook

Our conclusions are mainly based on an extensive simula-
tion study. As a consequence, the results cannot be extrap-
olated naively to all possible machine learning scenarios.
However, our conclusions are not limited to the employed
learning algorithms and data distributions. We rather see
those as reasonable to generate the truly relevant characteris-
tics, namely the distribution of (intermediate) performances
ϑ−, ϑ and their dependence structures. These characteris-
tics are partially analysed in table 1 and in the supplemen-
tary report. The range of the best learned model accuracy
(85%-90%) in relation to the theoretically optimal accuracy
(86%-97%) seems very realistic to us.

The biggest restriction of our simulation study may be the
investigated learning sample sizes nL. We feel that 400 to
800 learning samples are realistic for applications in assisted
disease diagnosis - our main target application. In ’big data’
scenarios however, the performance gain will eventually
vanish as all standard errors in the validation phase tend
to zero asymptotically. In this regard, our within 1 SE rule
’converges’ to the default selection rule as nV →∞.

The extension to other predictions tasks other than binary
classification or other performance measures is easily pos-
sible. All that is required is the asymptotic multivariate
normality of the performance estimate ϑ̂. This is the case
when performance (or error) estimates are computed as a
sample average over (dis)similarities between predictions
and labels and in many other cases.

A natural question directly motivated by this work concerns
the optimal number of models to include in the evaluation
study. In a post-hoc analysis of our simulation data, we
found that after a rapid gain in expected model performance
when increasing the number of models from a single one to
a few, this gain vanishes again when including even further
models. This is intuitive, as evaluating too many models will
lead to a shift of the selection bias issue from the validation
to the test data. Based on another recent work, we plan to
model the expected utility, e.g. the final model performance,
more explicitly in a Bayesian framework at the time point
of model selection for evaluation (Westphal, 2019).

An important extension of the present work will be the
simultaneous assessment of more than one performance
measure for multiple models. At least for medical diagnosis
applications, the most important example in this regard is
the assessment of sensitivity and specificity of a binary
classifier as co-primary endpoints. That is to say, the goal
of the evaluation study is to show superiority in both these
endpoints for at least one model under control of family-
wise error rate. We are looking forward to adapt our recent
multiple testing approach to this more complex setting in
the future (Westphal et al., 2019).
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M. Á., Gouyon, F., Hernández-Orallo, J., et al. Assess-
ing the impact of machine intelligence on human be-
haviour: an interdisciplinary endeavour. arXiv preprint
arXiv:1806.03192, 2018.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Hothorn, T., Leisch, F., Zeileis, A., and Hornik, K. The
design and analysis of benchmark experiments. Journal
of Computational and Graphical Statistics, 14(3):675–
699, 2005.

Hothorn, T., Bretz, F., and Westfall, P. Simultaneous infer-
ence in general parametric models. Biometrical journal,
50(3):346–363, 2008.

Japkowicz, N. and Shah, M. Evaluating learning algorithms:
a classification perspective. Cambridge University Press,
2011.

Jelizarow, M., Guillemot, V., Tenenhaus, A., Strimmer, K.,
and Boulesteix, A.-L. Over-optimism in bioinformatics:
an illustration. Bioinformatics, 26(16):1990–1998, 2010.

Jensen, D. D. and Cohen, P. R. Multiple comparisons in
induction algorithms. Machine Learning, 38(3):309–338,
2000.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang,
Y., Dong, Q., Shen, H., and Wang, Y. Artificial intelli-
gence in healthcare: past, present and future. Stroke and
vascular neurology, 2(4):230–243, 2017.

Knottnerus, J. A. and Buntinx, F. The evidence base of clini-
cal diagnosis: theory and methods of diagnostic research.
BMJ Books, 2009.

Kuhn, M. and Johnson, K. Applied predictive modeling,
volume 26. Springer, 2013.

Lang, M., Bischl, B., and Surmann, D. batchtools: Tools
for r to work on batch systems. The Journal of Open
Source Software, 2(10), feb 2017. doi: 10.21105/
joss.00135. URL https://doi.org/10.21105/
joss.00135.

https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
https://doi.org/10.21105/joss.00135
https://doi.org/10.21105/joss.00135


Improving Model Selection by Employing the Test Data

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436, 2015.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., van der Laak, J. A., Van Gin-
neken, B., and Sánchez, C. I. A survey on deep learning
in medical image analysis. Medical image analysis, 42:
60–88, 2017.

Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T.
Deep learning for healthcare: review, opportunities and
challenges. Briefings in bioinformatics, 2017.

Nadeau, C. and Bengio, Y. Inference for the generaliza-
tion error. In Advances in neural information processing
systems, pp. 307–313, 2000.

Olhede, S. and Wolfe, P. The growing ubiquity of algo-
rithms in society: implications, impacts and innovations.
Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, 376(2128):
20170364, 2018.

Pepe, M. S. The statistical evaluation of medical tests for
classification and prediction. Medicine, 2003.
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