Fairness risk measures

Supplementary material for ‘“Fairness risk measures”

A. Justification of fairness risk measure axioms

We now argue why each of the axioms introduced in §4 is natural when R is used per (14) to ensure fairness across subgroups.
We note that apart from (F2), none of these properties can be relaxed without causing problems.

Convexity (F1) is desirable because without it, the risk could be decreased by more fine grained partitioning as we now
show. F1 and F2 are equivalent to R being sub-additive and positive homogeneous (Rockafellar & Uryasev, 2013). Suppose
S = {0, 1} and the sensitive feature is determinate and thus induces a partition (Xg, X1) of X. Then L = L° + L!, where
L? is the restriction of L to X;, so thate.g. LY = [s = 0] - P(S = 0) - L. Now if R were not convex it would not be
subadditive and we would have R(L? + L') = R(L) > R(L°) + R(L!). In other words, by splitting into subgroups we
could automatically make our risk measure smaller, which is counter to what we wish to achieve. Convexity is also desirable
because, combined with F3, it preserves tractability of optimisation.

Positive Homogeneity (F2) is desirable but not essential. We would like our fairness measure to not vary in a manner
that changes the optimal f when /¢ varies in a manner that leaves the base problem invariant. For example, if ¢/ = ¢ - £
for some ¢ > 0 then obviously argmin ;.5 L¢(f) = argmin .4 Ly (f). If R is positively homogeneous, then R(L') =
R(c-L) = c-R(L) and thus argmin ;.5 R(L) = argmin ;.4 R(L’). Observe this last statement would remain true if
R was k-homogeneous, for any k£ > 0. Whether a relaxation of (F2) adds any practical advantage is not yet understood.
Positive homogeneity does imply that the units of measurement of R(Z) are automatically the same as those for Z. The
assumption of 1-homogeneity is also beneficial when analysing duality properties of risk measures; see Rockafellar &
Uryasev (2013, Section 6).

Monotonicity (F3) is desirable because when combined with convexity (F1) it ensures that if f — L(f) is convex, then
so will be f — R(L(f)); see (Rockafellar & Uryasev, 2013, Section 5), and part 3 of Theorem 14. It is also intuitive that
one’s overall risk not increase if all subgroup risks are decreased. We note that a similar monotonicity assumption, and its
implications, were also employed in Dwork et al. (2018, Section 4).

Lower Semicontinuity (F4) is a technical assumption that avoids problems with limits (Rockafellar & Uryasev, 2013).

Translation invariance (F5) is desirable because if we replace £ by £ 4+ C' we have not changed the unfairness at all, just the
expected risk value.

Aversity (F6) means that deviation from perfect fairness (Definition 1) is penalised; without this property we would not be
capturing deviation from ideal fairness.

Law Invariance (F7) means that R only depends upon Z via its distribution Pz through an induced functional Fp: P(S) — R.
For a fairness measure this would mean that the identity of each of the values of the sensitive feature do not matter, only the
distribution of the risk variable L(s) as a function of s € S. This is clearly a desirable attribute for a fairness measure.
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B. Relationship to fairness methods based on inequality measures

An approach to fair machine learning similar to that based on fairness risk measures proposed in the body of the paper has
been developed by Speicher et al. (2018); Heidari et al. (2018; 2019), based instead on the notion of an inequality measure.
It turns out that this approach is closely related to that proposed in the main body of the paper. In this technical appendix,
we explore the relationship between the two methods by working out the relationship between inequality measures and
fairness risk measures.

The appendix is independent of the main paper in the sense that the paper can be understood entirely without looking at this
appendix. It is included for completeness, and because we believe the results may be of independent interest.

The literature on inequality measures is quite formal (axiomatic) and consequently this appendix is too. The conclusion we
draw (§B.5) is essentially that the requirements on a fairness risk measure are more stringent than those usually imposed
upon inequality measures: every fairness risk measure induces a “nice” inequality measure, but it is not the case that every
nice inequality measure induces a fairness risk measure. The additional constraints on fairness risk measures (convexity,
continuity and monotonicity) are exactly what one wants for the sake of solving fair machine learning problems, since they
guarantee computationally easy optimization problems.

B.1. Inequality Measures

We will show that the two approaches to solving fair ML problems, based respectively on inequality measures and risk
measures, are intimately related by demonstrating that every fairness risk measure induces an inequality measure compatible
with the Lorenz ordering (defined below). A weaker converse result holds which demonstrates that the requirements on a
fairness risk measure are more stringent than those traditionally imposed upon an inequality measure. This result may be of
interest in its own right since the literatures on risk measures and inequality measures appear to have not been explicitly
connected before in this manner. There are a four specific exceptions of which we are aware:

e Bennett & Zitikis (2015) showed that some existing inequality measures can be derived from a model of choice under
risk inspired by Harsanyi, especially his observation (Harsanyi, 1975) that Rawls’ maximin principle corresponds “to
an expected utility evaluation based on a lottery that assigns probability 1 to the event that one assumes the identity of
the worst-off individual in society.”

e Greselin & Zitikis (2015) unified a range of inequality measures and risk measures via a similar device — by choosing
what they call “societal references” (e.g. a statistic of a population distribution such as a measure of centrality,
or a tail measure) combined with distributions of personal gambles (that determine an individual’s position on a
population-based function). They make explicit connections with aspects of coherent risk measures.

e Gajdos & Weymark (2012) made a connection between random variables being “less risky” (meaning derivable from
comparator variables by adding zero mean noise), and measures of inequality. However, they did not draw connections
to the notion of risk measures.

e It has also been shown that the mathematical notion underlying the Pigou-Dalton transfer principle for inequality
measures (Schur convexity) is known to reduce to law invariance for coherent risk measures on atomless probability
spaces (Dana, 2005; Grechuk & Zabarankin, 2012), but these authors did not proceed to develop the more detailed
connections we develop below.

None of these works have systematically related the axioms for inequality measures to the axioms for risk as we do in this
appendix, nor do they propose the formulaic correspondence between risk measures and inequality measures that we do (see
(33)-(36)), which however is implicit in the work of Kolm (1976a;b).

Inequality measures’ have been investigated by “welfare” economists, interested in such issues as the distribution of wealth
or income. Their perspective is intrinsically moral, rather than the more traditional view of economics as aspirational physics
(Mirowski, 1989; 1992), and such an engagement with the moral dimensions has been forcefully advocated recently (Shiller
& Shiller, 2011). Formal measures of economic inequality were made famous by Tony Atkinson’s 1970 widely cited paper
(Atkinson, 1970). Late in his career Atkinson (2009)® bemoaned the decline in explicit discussion of welfare economics
from its heyday in the 1960s. Atkinson stressed the need for plurality — that there is no single criteria that captures welfare:

"Sometimes called “measures of inequality” or “inequality indices”.
8 The title of Atkinson’s paper is “economics as a moral science”. There are at least four other works with that exact title, whose
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Many of the ambiguities and disagreements [in economics] stem not from differences of view about how the
economy works but about the criteria to be applied when making judgments. ... People can legitimately reach
different conclusions because they apply different theories of justice. (Atkinson, 2009, page 803).

The rest of the appendix is organised as follows. In Section B.2 we introduce the main axioms used in studying inequality
measures; in §B.3 we present a number of apparently new results formally relating the axioms from the previous subsection
with those for fairness measures stated in the main body of the paper; in §B.4 we pull the various lemmas together and state
our main result; and finally in §B.5 we make some brief general conclusions regarding the consequences for the use of either
risk or inequality measures to solve the problems of fair machine learning.

B.2. Axiomatizing Inequality Measures

The idea of an inequality measure Z is to measure the degree of inequality of a population, say, in terms of incomes; that
is some measure of variability, unevenness or non-uniformity. In contrast to risk measures, which can work sensibly on
continuous probability spaces, inequality measures are usually only defined for populations of individuals of some finite size
n € N. Let x € R", and represent by x; the income of the ith individual. Without loss of generality we assume incomes
are nonnegative, and thus an inequality measure is a function Z: R%, — R>q. It is often assumed that the ordering of the
individuals is such that ¢ < j = x; < x;. This assumption will be relaxed later by imposing a symmetry condition on Z.

Merely requiring 7 to be a function RY; — R is hardly illuminating or satisfactory. In order to capture what is intuitively
understood by “inequality” a range of conditions are additionally imposed. Depending upon which conditions are used, this
leads to a large variety of measures of inequality, some of which are surveyed by Cowell (2000) and Sen (1997).

In order to introduce these conditions on Z and to relate inequality measures to fairness measures, we introduce some
notation and terminology due to Marshall et al. (2011). Suppose x € R". We write z[; for the ith component of the
decreasing rearrangment of x which satisfies 1 < j = x[;) > x[;. For z,y € R", we say x is majorized by y on A and
write z >, yon Aif z,y € A and

k

k n n
me < Zy[i],Vk S [n — 1] and Zm[z] = Zym.
=1 =1 i=1

i=1
Suppose A C R™. A function ¢: A — R is Schur-convex on A if
r,yonA = o) < P(y).

If, furthermore, ¢(x) < ¢(y) whenever x =, y but y is not a permutation of x, then ¢ is strictly Schur-convex on A. If
A = R" we simply say Schur-convex or strictly Schur-convex. Let C(X) denote the set of continuous convex functions on

pertinent common message we distill via the following four brief quotations:

e “Adam Smith, who has strong claim to being both the Adam and the Smith of systematic economics, was a professor of moral
philosophy and it was at that forge that economics was made. Even when I was a student, economics was still part of the moral
sciences tripos at Cambridge University. It can claim to be a moral science, therefore, from its origin, if for no other reason.
Nevertheless, for many economists the very term ‘moral science’ will seem like a contradiction” (Boulding, 1969).

i

e “Economics is, and always has been, essentially a moral science whatever the protestations to the contrary by some of its practitioners’
(Cochran, 1974).

e “[E]conomic science must merge with moral science” (Hodgson, 2001, page 309).

e “Morality is not something we add to a model constructed without it; one built without morality as its integral component is an
unsound structure. Restoring economics to its former habitat as a moral science, a science of practical knowledge, cannot be evaded”
(Rona & Zsolnai, 2017, page 9).

Amartya Sen, in his On Ethics and Economics, argued that “economics has had two rather different origins, both related to politics, but
related in rather different ways, concerned respectively with ‘ethics’, on the one hand, and with what may be called ‘engineering’, on
the other” (Sen, 1987, pages 2-3). Sen uses “ethics” to mean choices of values and goals, and “engineering” as mere means to achieve
them. Ironically there has been a steady growth in soul searching in the discipline of engineering itself asking these same questions. Most
recently, the engineering field of machine learning is waking up to the same realisation; perhaps soon we shall see papers entitled Machine
Learning as Moral Science!
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X. We have (Marshall et al., 2011, page 14) that
n n
Ty S Y ) SZ i) Vo € C(R™).
=1 i=1

Every convex symmetric function is Schur convex. A special case of this are convex seperable functions of the form
d(z) = >, g(z;), where g: R — R is convex and continuous. But not all Schur-convex functions are convex seperable.
The significance of Schur-convexity for our current purpose is that the Pigou-Dalton condition on an inequality measure Z is
equivalent to requiring that Z is strictly Schur-convex (Marshall et al., 2011, page 560).

A widely used notion in the theory of economic inequality is the Lorenz curve. We associate with an income vector z € R%,
a probability distribution p,, defined via

po({z:}) = L1{j € [n]: z; = x;}].

Let F, denote the corresponding cumulative distribution function: F,(t) := L|i: #; <t| and F ! its quasi inverse
F;1(p) := inf{z: F(z) > p}. The Lorenz curve for z is then defined as {(p, L.(p): p € [0,1]}; i.e. the graph of the

xr
function

1 '3
Lp) = - [ Pt pe o)
my 0
where m, = ffooo tdF,(t) is the corresponding mean. Let R™ := {(x1,...,2,) € R": 21 < 25 < --- < x,}. The

Lorenz curve induces a partial order on R™ via pointwise domination of the corresponding functions: z <y < L, > L,.
This is called the Lorenz ordering.

We can interpret x € R™ as a map z: [n] — R and thus for a permutation 7, we write £ 0 T = (Tr(1), .-+, Tr(n)). We
denote the Kronecker product by @ and 1,, € R" the all ones vector of length . Letz € R”,r ¢ Nyand 2" := 1, ® z. If S
isasetand J € N, then S1, ..., Sy is called a partition of S'if S; N S; =0 fori,j € [J],i# j,and S = Uje[J] S;.

In order to make sense of the zoo of potential inequality measures, a range of conditions (often called “axioms”) are imposed
(Nufez-Veldzquez, 2006). We first state the axioms formally, and then discuss them, providing the intuition and justification
behind them®. In the inequality measure literature, often the domain is consistently taken to be R'” but since we will only
consider measures that satisfy symmetry, apart from axiom I1 we presume Z is defined on R™.

I1 Symmetry For any permutation 7: [n] — [n], Z(x o ) = Z(z) for all z € RT™,

I2 Scale Invariance For any A > 0, Z(A\z) = Z(z) for all z € R™.

I3 Pigou-Dalton Principle Z is strictly Schur-convex on R™.

14 Dalton Population Principle Z(z(")) = Z(z) for all 2 € R and r € N,

I5 Normalization Z(z) > 0 forall z € R" and Z(z) = 0 < z = cl,, for some ¢ € R.
I6 Constant Addition Z(x + cl,,) < Z(z) for all z € R™ and ¢ > 0.

17 Lorenz Compatibility Z(z) < Z(y) < = xy.

I8 Additive Decomposition Let J € N\ {1}, Si,...,S; be a partition of [n], and for j € [J], let n; := |S;| and
) = ()ie s, An inequality measure 7 satisfies additive decomposition if

(Vz € R™) Z w;Z(x))
JEJ]
where w; and B depend only on the subgroup sizes n; and means m; := nl—? Zze[n,] x(] )

“We make no claim that the list of axioms presented here is complete. But they do appear to be the most significant and widely used
ones
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19 Subgroup Consistency Let Sy, S5 be a partition of [n]. An inequality measure Z satisfies subgroup consistency if there
exists an aggregation function ® increasing in its first two arguments, such that

(V2 € RM™) Z(x) = & (Z(D), Z(®);ma, ma; ma,m2)

110 Seperable We say 7 is seperable if it can be written as Z(z) = Y., g(x;), where g: R>g — Rxo.

I11 Constant Sum Convexity Forc > 07, = {z € R": Zie[n] x; = c}. Then T is constant sum convex (resp. constant
sum strictly convex) if for any ¢ > 0 it is convex (resp. strictly convex) on 7.

We make some comments regarding each of these axioms.

I1 Symmetry captures the notion that the identity of individuals should not change the perceived degree of inequality.

I2 Scale invariance is also known as 0-homogeneity or homotheticity. It captures the idea that if all incomes (say) are
multiplied by A > 0 then whilst the welfare and well-being of individuals would change, the inequality across the
population would not.

I3 Pigou-Dalton Principle is usually described in terms of the “principle of transfers,” whereby if income is transferred
from a rich to a poor person in a “mean-preserving” manner, then inequality can noot go up; see (Marshall et al., 2011,
page 6) or (Cowell, 2000, page 98) for an exposition. For our purposes, the statement in terms of strict Schur convexity
is more convenient.

I4 Dalton Population Principle is motivated by the idea that if a finite population is replicated r times (for each individual
with given wealth, for example, r copies are created with the same wealth) then the inequality measure should not
change. This principle, as stated, hides a significant subtelty. Implicit in its statement is that we actually have a set
{Z™},en of inequality measures, where 7™ : RZ, — R>. The relationship between Z™ and Z™ for n # m obviously
needs to be specified. Usually this is done by writing a functional form (i.e. a symbolic formula) that holds for all
n € N. Of course if, for a fixed n* € N, Z" is specified, then there is no unique way to induce the full set {Z"},,en;
confer (Chakravarty, 1999, page 165). In some of the literature, this point is glossed over (e.g. (Nufez-Veldzquez,
2006, page 205)).

I5 Normalization guarantees the inequality measure is non-negative, and only equals zero (no inequality) when all x;
(¢ € [n]) are identical.

I6 Constant Addition captures the idea that a constant positive addition to everyone’s income does not increase inequality.

I7 Lorenz Compatibility is of interest because of the historically wide use of the Lorenz curve and the induced Lorenz
ordering; the axiom requires that the partial ordering induced by an inequality measure is the same as that induced by
pointwise domination of the corresponding Lorenz curves.

I8 Additive Decomposition is motivated by the idea that the inequality of an entire population must be related to the
inequalties of its constituent sub-populations. The condition is very strong and, in contrast say to 16, is stated as
an equality rather than as an inequality. Shorrocks (1980) has shown that when combined with 12 and 14, the only
admissible inequality measures are those in a single parameter generalised entropy family.

19 Subgroup consistency introduced in (Shorrocks, 1984), is a significant weakening of I8 (I8 implies 19). Rather than
insisting on an additive decomposition across subgroups, it is merely required that the inequalities of subgroups be
aggregatable to recover the inequality of the whole population. Surprisingly, there is a sort of converse whereby an
inequality measure satisfying I9 can be transformed via a monotonic transformation to one satisfying I§. Axiom I9 can
be applied recursively to hold for partitions of arbitrary size. The inequality in the definition of 19 excludes inequality
measures with the property that inequality in every subgroup rises, but overall inequality falls. Properties of inequality
measures from the perspective of subgroup decomposition are explored in depth by Deutsch & Silber (1999).

I10 Seperability Is a special case of additive decomposition, and is an oft imposed condition on Social Welfare functions
from which inequality measures can be derived (Cowell, 2000).
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I11 Constant Sum Convexity Does not appear to be widely assumed in the inequality measure literature, with the
exception of (Kolm, 1976b, Section IX) who provides an extensive justification of it and related notions of convexity.
Constant sum convexity is arguably a better assumption than I8, 19, and I10 for three reasons. First, it allows a neater
connection with risk measures. Second, it is mathematically more elegant. The third reason is perhaps more interesting.
Axioms I8 and 19 are stated as equalities and this allows the application of the theory of functional equations in
analysing the implications. Capturing the intent of 19 (one can not make inequality look better by dividing into
subgroups) via an inequality precludes analysis via the theory of functional equations, but actually makes the arguments
easier via the theory of convexity. Kolm (1976a, page 423) also proposed subadditivity as an axiom. If Z is assumed
1-homogeneous, this is equivalent to convexity (recall [subadditivity and positive homogeneity] implies [convexity and
positive homogeneity]).

The motivation of scholars of inequality in adopting the axiomatic approach varies. Many use it as a device to whittle
down the large number of possibilites to a few or even one single inequality measure. But the arguments regarding the
social desirability of the various axioms are not so clear cut. Kolm (1976a;b) in particular has argued at length against a
simple-minded acceptance of any of these axioms; confer (Cowell, 2011). Kampelmann (2009) has observed that the appeal
of such analyses is sometimes that of a pursuit of objectivity in making a choice that is seemingly “opinion-free”. More
fundamentally, any notion of inequality is predicated on some notion of equality, which turns out to be more subtle than
one might think. Even in the realm of pure mathematics it is a subtle concept, which Mazur (2008) has argued is better
construed as equivalence up to a canonical isomorphism. One could even argue that the proposals of Sen (1992) to take
capabilities into account is partially grappling with this purely logical issue: taking income equality as “equality” implies
quotienting out everything else! (Confer (Loewenstein, 2009) for a complementary argument against the notion that simple
scalar measures can capture what is important.).

Fortunately, we can sidestep these weighty questions because our goal is not to prescribe which are suitable for the social
and economics purposes to which they are typically applied, but rather to simply explore the relationship with risk measures
in order that we can sensibly compare fair machine learning approaches built upon inequality measures with those built
upon risk measures.

B.3. Relating properties of risk measures and properties of inequality measures

The theory of risk measures and the theory of inequality measures have been developed independently. We will now
show that there is a straight-forward connection between them, which, up to some minor qualifications, provides a 1:1
correspondence between a fairness risk measure R (or equivalently a symmetric deviation measure D) and an inequality
measure Z.

In order to achieve this goal we first we need to deal with the different type signatures: R and D take a random variable
X: § — R>( as an argument; inequality measures Z take a vector = € RT;S or R% as an argument. We demand that Z, R

and D all be symmetric which means henceforth we can take the domain of Z as RZ ;. Risk measures can be defined on an
arbitrary sample space S, but to construct the connection with inequality measures we set S = [n].

Risk and deviation measures are defined on a space of random variables, and there needs to be some base measure on the
sample space S for this to make sense. While as mentioned in the main body of the paper, the freedom to choose different
v is a feature of the framework we propose, we will restrict ourselves to v = 77, the uniform probability measure on [n]:
for B C [n], v}(B) = |B|/n. There are two reasons for this. First, it immediately guarantees symmetry of the induced
inequality measures. Second, one can extend the argument due to Harsanyi (1955; 1958; 1975; 1978) to justify the choice
of a uniform distribution as being morally warranted (when .S corresponds to sensitive features) a uniform distribution
corresponds to treating each value of the sensitive feature equally. In the limit where each person who is represented by data
corresponds to an element of .S, we precisely recover Harsanyi’s setting and a uniform distribution corresponds to the moral

principle of treating people without regard for their identity.

A vector z € R%, can be identified with a a function [n] — R>o. We henceforth identify random variables X: [n] — Rxo
with vectors = € R, via the identity

x; = X(1), i€ n].
Since our sample space S is now assumed finite, there are no measurability issues to concern us. We thus write Z(x) = Z(X)
as synonyms; likewise we write R(X) = R(x) and D(X) = D(z) as synonyms.

We know from the quadrangle theorem (Theorem 14) that regular risk measures R and regular deviation measures D are in
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1:1 correspondence via the relationship
R(X) =E(X) + D(X). (32)

Motivated by (32), we define an inequality measure Z in terms of a given R or D, and conversely define a risk measure R
or deviation measure D in terms of a given inequality measure Z. Given a deviation measure D, and a random variable

X: 8 = Rxo, let
D(X)/E(X), ifE(X 0
Lo (x) i | POO/E), IFE(X) 2 -
0 ifE(XX)=0
(Observe that since X > 0, we have that E(X) = 0 = D(X) = 0 for any regular deviation measure, and thus the second case

above actually follows from the first by considering lim.|o D(X.)/E(X.), where X. := ¢X, and X is an arbitrary random
variable such that X > 0 and D(X) > 0.) Using (32), we can equivalently define

R(X)
Ir(X) i= —= —1 34
which is guaranteed to be well defined for any R satisfying F6. Conversely, given an inequality measure Z, we define
Dz(X) := E(X)Z(X) (35)
Rz (X) := E(X) + E(X)Z(X) = E(X)[1 + Z(X)]. (36)

As an example, consider D(X) = o(X) (the standard deviation), in which case we get Z,(X) = o(X)/E(X), which is
known as the coefficient of variation.

We will now justify the above definitions by showing, under suitable assumptions on Z, that Dz (resp. Rz) is a deviation
(resp. risk) measure satisfying a subset of axioms F1—F8; and conversely, given suitable assumptions on D (resp. R), that
Ip (resp. Ir) is an inequality measure satisfying a subset of axioms I1-I11.

B.3.1. 11 SYMMETRY

The symmetry constraints on fairness measures and inequality measures are easily related:
Lemma 17. Suppose S = [n] and v = v.

1. If T is symmetric (11) then Rz is law invariant (F7).
2. If R is law-invariant (F7) then Ix is symmetric (11).

For regular risk measures, law invariance of R implies law-invariance of D so an analogous results holds with R replaced
by D throughout.

Proof. Let I1,, be the set of all permutations 7: [n] — [n]. Observe that for any 7 € II,,, " o 7~ = v, Given that
Rz(X) = E(X)[1 4 Z(X)], we have Rz is law-invariant (resp. symmetric) if and only if Z is law-invariant (resp. symmetric)
since [ is law-invariant (resp. symmetric).

It convenient to rewrite the definitions of symmetry and law-invariance as follows.
7 is symmetric if Z(L) = Z(L) VL, VL € Loym(L) (37)
7 is law invariant if Z(L) = Z(L) VL, VL € £y(L), (38)

where Loy (L) := {Lom: 7 € II,,} and £y;(L) := {L: p. = p;}. Thus in order to prove the lemma it suffices to show
that for any L, Lgym (L) = £L1;(L) since then the conditions (37) and (38) are identical.

Suppose L = L o & for some 7 € II,,. Then for any A € ‘B(RZO) (the Borel ssubsets of R>),

pp(A) = (v o )(A)

vy om toLlh)(4)
VL‘O H(4)
= pL(A).

(v
= (v
= (
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Thus Leym(L) C Lyi(L).

Suppose instead that L, L: [n] — R are such that y = pi - Then the image of S under L and L is identical: L(S) = L(S).
Let {t1,...,tx} = L(S) where k < n. Fori € [k], u({t:}) = ji/n, where j; is positive integer and ), ji = n. Each
elementary probability mass 1/n corresponds under L (resp. Dtoa particular s, € S (resp. s; € S), r,7 € [n]. The only

freedom in choosing L and L is in the indexing of elements of S. Thus one can write 7 = 7~ 1(r) for some permutation 7
and thus L = L o w. Consequently Lgym, (L) 2 £1;(L) which completes the proof. O

B.3.2. 12 SCALE INVARIANCE

The form of scaling behaviour of inequality measures and risk measures is also easily related:

Lemma 18. If D (resp. R) is positively homogeneous (i.e. satisfies F2) then Tp (resp. Ir ) is 0-homogeneous (12); conversely,
if T satisfies I2 then Dz (resp. Rz) satisfies F2.

Proof. Since E is positively homogeneous and the ratio of two positively homogeneous functions is 0-homogeneous, we
obtain the first part. The second part follows since the product of a 1-homogeneous function with a 0-homogeneous function
is 1-homogeneous. O

The fact that if Z is 0-homogeneous then X — E(X)Z(X) is 1-homogeneous was observed by Kolm (1976a, page 423).

B.3.3. I3 PIGOU-DALTON (SCHUR-CONVEXITY)

We need the following straightforward lemma.

Lemma 19. Suppose ¢: R™ — R. Let T := % i, x; and define b: x> ¢(x)/z. Then & is Schur-convex (resp. strictly
Schur-convex) if and only if ¢ is Schur-convex (resp. strictly Schur-convex).

Proof. Suppose z,y € R™ and z =, y which implies £ = § =: m. Suppose m > 0 (we justify that this does not lose
generality below). Let Z := x/m and § = y/m. Observe that z >, y < & >, §. We thus have

¢ is Schur-convex < [z, y < ¢(z)
& [T, 9 o(2)
& [tm,y & 9z) < 9(y)]

& quS is Schur-convex.

Since [z is not a permutation of y] < [Z is not a permutation of §] we similarly can conclude that strict Schur-convexity of
@ is equivalent to strict Schur-convexity of ¢. O

Lemma 20. Suppose D is convex (F1), then Tp is strictly Schur-convex (13).
Proof. Combine Lemma 19 with the fact that every convex symmetric function is Schur-convex (Marshall et al., 2011). [

A similar result has been observed in a particular case that complements the situation of interest to us: a probability space S
is called atomless is there exists a random variable on S with a continuous cumulative distribution function. Dana (2005)
showed (confer (Grechuk & Zabarankin, 2012)) that on an atomless probability space, every law invariant risk functional
LP(S) — R is Schur-convex. A converse to the above lemma is impossible because there are Schur-convex functions that
are not convex (Marshall et al., 2011).

B.3.4. 14 DALTON POPULATION PRINCIPLE
Lemma 21. If R (resp. D) is law invariant (F7), then I satisfies I4.
Proof. 1t follows from the definition of Zx that Z satisfies 14 if and only if R does (since expectation trivially does not

change under replication). For r € N, given a random variable L: [n] — R>( define the r-replicated random variable
Lry: [rn] = R via Ly (i) := L(¥y()), where ¢, : N — Nis given by 1, (i) := [i/r]. The inverse ¢, *: N =3 N is
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givenby ¥ (j) = {s € N: [s/r] = j} = {rj,rj+1,...,7j + (r — 1)}. Thus the probability law of L, is given by
(for A € B(R>0))

MLy (A) = (V "o L(;%)(A>

= ("o L7H(A)

= pu(4),
because 11" o 91 = v, Since T is law invariant, Z (L(,y) = Zr (L) and consequently Zr, satisfies the Dalton Population
Principle 14. O

The Dalton Population Principle does not, on its own, imply law invariance. It can’t, because if we start with a population of
size n, it only makes assertions about populations of size nr for r € N. But given a distribution y, there are many more
sample spaces (not necessarily of cardinality nr) on which one can define random variables L that can give rise to the same
distribution. In particular, if one does not impose symmetry, one can construct examples of Z that are non-symmetric which
satisfy the Dalton population principle but are not law-invariant.

The condition of Z being law-invariant also has the subtlety of domain of definition that the Dalton population principle has,
but this can be cleanly swept under the carpet as follows. Let (S, S, v/) be a probability space and let Mg := {L: (5,8) —
(R>0,B(R>0))} denote the set of random variables defined on (.5, 8, v), measureable with respect to the Borel sigma-
algebra on R>(. For a given S (with associated 8 and v), one can talk precisely of Z7: Mg — R>(. However, one can not
talk sensibly of “Z: | Jq Mg — R>(” where the putative union is over “all sample spaces” (i.e. over all possible sets, with
all the difficulties such a notion implies). However, there is a simple fix that avoids such a definitional conundrum: the
whole point of the notion of law invariance is that Z depends upon L: S — R>¢ only in terms of the probability distribution
pL(A) = (v o L71)(A). That is, one can write Z(L) = Z(u) for some function Z. Whilst to compute ji. one needs to
specify a sample space S (and base measure v) the distribution itself is simply a function p : B(R>¢) — [0, 1] — and the
sample space becomes invisible. We could thus construe Z, R and D as having the type signature Z, R, D: A(R>¢) = R>o,
where A(R>() denotes the set of probability distributions on Rx>¢. (Confer the arguments of Le Cam (1986, Chapter 1)
regarding avoiding explicit use of the sample space.)

B.3.5. I5 NORMALIZATION

We restate IS in the language of random variables as: Z(X) > 0 for all X: [n] — R>¢ and Z(X) = 0 if and only if X = C
where C is a constant random variable, C(:) = C for all ¢ € [n] for some C' € R>.

Lemma 22. Suppose T satisfies 15, then Rz satisfies F6 and F8. Conversely, Suppose R satisfies F6 and FS. Then I
satisfies I5.

Proof. T satisfying I5 implies [Rz(X) = E(X)(1 4+ Z(X)) > 0 VX: [n] — R>¢] and [Rz(X) = E(X) if and only if X =
C]. Thus Rz satisfies F6. Furthermore we have R(C) = E(C)[1 + I( )] = C and so Rz satisfies F8.
(

Conversely suppose R satisfies F6 and F8 and Zg (X) = E(X)) 1. Suppose X is constant (X = C), then F8 implies

R(C) = C. But E(C) = C also and thus Zr (X) = 0. Alternatively, if X is non-constant, then by F6, we have T (X) > 0.
Thus Zx satisfies I5. O

Since we know (main body of paper) that F5 and F6 imply F8, we also have the second part of above lemma holding where
the assumption is simply F5.
B.3.6. 16 CONSTANT ADDITION

Lemma 23. Suppose R satisfies F5 and [F6 or (F1 and F2) or (Subadditivity and F2)], then T satisfies 16. Conversely,
suppose T satisfies 15, then R satisfies F6.

Proof. Translating 16 to the language of random variables we require Zg (X + C) < Zg (X) for all X: [n] — R and all
constant random variables C(¢) = C for all ¢ € [n] for some constant C' > 0. If X(¢) = 0 for ¢ € [n], then F6 implies
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R(X) = E(X) and thus Zr (X + C) = Zr (C) = 0 = Zg (X) and 16 is satisfied. Alternatively, if X > 0 then E(X) > 0 and
we have

F6 = E(X) < R(X) WX > 0
= C(E(X) = R(X)) >0 ¥X > 0, YO € (0,00)
= %EE;?}; (;()foc))) <0 ¥X > 0, YC € (0, 0)
. ROOE() + E?:)Ei?E —X7)z(+><£§(><) ~RXIC _ VX > 0, ¥C € (0, 00)
- g(%)ig g((;(()) <0 VX > 0, YC € (0,00)
= g((;(ig))1gg((§))1 ¥X > 0, YO € (0, 00),

where pulling the C into the argument of R is justified by F6 or (F1 & F2) or (Subadditivity & F2)

= I6.

Conversely, given Z, consider Rz(X) = E(X)(1+Z(X)). If X = Cis constant then Rz(C) = E(C)(14+Z(C)) = E(C) = C,

which proves one part of F8. If X is not constant, then by I5, Z(X) > 0 and thus Rz (X) > E(X) which proves the other part
of F8. O

B.3.7. 17 LORENZ COMPATIBILITY

Foster (1985) characterised Lorenz compatibility of inequality measures via the following:

Lemma 24. An inequality measure is Lorenz compatible (17) if and only if it satisfies 11, 12, 13 & 14.

Relations between 17 and F1,. .. F9 thus follow from Lemma (24) and the earlier lemmas.

B.3.8.18,19,110 AND I11 (DECOMPOSABILITY)

We consider I8-111 together. It is now convenient to write inequality measures (and deviation and risk measures) in terms of
vectors z € R . We write E(z) = ||z[|1/n, where ||z[|; = S forx € RZ,.

We need the following lemma (Marshall et al., 2011, page 92, C.1.a) applied to the interval (0, c0):

Lemma 25. Suppose I is seperable (110). Then I is strictly Schur-convex if and only if g is strictly convex.

A consequence of this lemma is that if 7 is seperable and satisfies I3, then 7 is strictly convex. We consider deviation
measures induced from an inequality measure: Dz(x) := E(x)Z(x).

Lemma 26. Suppose L satisfies [12 and I3 and 110] or [12 and 111 (strict)]. Then Dz (resp. Rz) is strictly convex and
positively homogeneous (F1 and F2).

Proof. For the first case, by Lemma 25, 7 is strictly convex. The second case simply assumes constant sum strict convexity
of Z, so we can henceforth presume it. For m > 0 let A, := {z € R%: E(x) = m}. We first show that Dr is strictly
convex on A,, for all m > 0. Fix m > 0 and pick z,y € A,,. Then for any A € (0,1),

DAz + (1= Ny) =EAz+ (1 = y)Z(Ax+ (1 —A))y)
=mI(Az+ (1-N)y)
<m(AZ(z)+ (1 = AN)Z(y))
= ImZI(z)+ (1 - A\)mI(y)
= ADz(x) + (1 = N)Dz(y),
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and thus Dz is strictly convex on Ay, for all m > 0. Lemma 18 implies that Dz is 1-homogeneous on R% ;. We now show
that these two facts imply D is strictly convex on RZ .

Pick z,y € RY, and let m, := E(z) and m, := E(y). Observe that E(Az + (1 — A)y) = Amy + (1 — A\)m,,. Furthermore,
since Dz is 1-homogeneous, for all z € RY, Dz(z) = ||z[)x (LDI(mD = ||z||1Dz(x/||x||1). Thus for all A € (0,1)

[EJIR

Az + (11— Ny )
[Az + (1= Nyl
= (Anmyg + (1 — N)nmy, ) Dz (AT + (1 — N)g),

Dyt (- A)y) = A + (1 Ayl Dz (

where T := z/(Anmg + (1 — X\)nmy) and § := y/(Anm, + (1 — A\)nm,) and Z,§ € A,,. Since D7 is strictly convex on
A,, we have

Dz(Az+ (1 - N)y) < (Anmg + (1 — XN)nmy)Dz(z) + (1 — X)(Anmg + (1 — XN)nmy, )Dz(y)
= ADz(z) + (1 = A)Dz(y),

and thus D7 is strictly convex. Since Rz(z) = E(x) + Dz(x), strict convexity and positive homogeneity of Rz follows
from the fact that these properties are preserved under summation with the convex and positively homogeneous function
x — E(z). O

If 7 is not seperable, then I3 does not guarantee strict convexity (or even convexity) of Z since not every strictly Schur-convex
function is strictly convex in which case we can not guarantee the strict convexity (or even convexity) of Drz.

(Kolm, 1976b) has argued that one could equally normalise inequality measures via 1-homogeneity, in which case the bridge
to risk and deviation measures is even simpler — such an 1-homogeneous inequality measure is a deviation measure.

B.4. Relating inequality measures and risk measures

Let FRM denote the set of fairness risk measures (i.e. R satisfying F1-F7) and let SIM denote the set of standardised inequality
measures (i.e. satisfying Lorenz compatibility I7, normalisation I5 and constant addition 16). Let Rgy := {Rz: Z € SIM}.

Theorem 27. Suppose S = [n| and v = v} and that Rz and T, are defined by (33)—(36).

1. If R € FRM then I € SIM.

2. T € SIM then Rz satisfies F2, F6, F7 and F8. If furthermore L satisfies 110, then R also satisfies F1.
Thus FRM C RSIM'
Proof. Part 1 follows from lemmas 17, 18, 20, 21, 22 and 23. Part 2 follows from lemmas 17, 18, 22, 23 and 26. O

The theorem suggests that fairness risk measures are a stronger notion than inequality measures. We now give some intuition
as to why it is not plausible that the second part of the theorem can be strengthened, and that fairness risk measures are
indeed a stronger (more restrictive) notion.

A crucial property of fairness risk measures is monotonicity (F3). Observe that if F3 is satisfied, not only do we have
that (translating to vector notation for now) for 7,y € R%,, # <y = R(z) < R(y) butalso » <y = E(z) < E(y).

Since Zr (x) = E((;)) — 1, we can conclude nothing about Z(z + y) on the basis of these assumptions. Furthermore, to

consider the converse direction, the crucial property of strict Schur-Convexity of Z is equivalent to the requirement that
x =,y < I(x) < Z(y) for all such Z. But the relationship of majorisation conflicts with the pointwise domination required
for monotonicity since if # < y and x >, y then x = y (Marshall et al., 2011, page 13). Thus the property of pointwise
inequality x < y is “invisible” to inequality measures. This failure matters for our motivating purpose — to find learned
hypotheses that performs well in the traditional sense (average losses are small) and satisfies some notion of equity or
fairness. While inequality measures can judge the unfairness, if one combines them with the average loss in a dimensionally
sensible way (such as our 1-homogeneous proposal Rz), the resulting risk measure is not guaranteed to satisfy the highly
desirable property of monotonicity.
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Although most specific proposed inequality measures are continuous, continuity does not feature in the list of axioms
typically applied to inequality measures. And thus we can not guarantee that Rz satsifies F4. Of course one could trivially
impose it upon Z and the same continuity would immediately hold for Rz.

Finally there is an intrinsic difficulty in deriving an equality constraint (F5) on Rz from an inequality constraint on Z such
as I6.

Thus in general we can not guarantee that Rz satisfies F3, F4 and F5 and so Rz is not guaranteed to be a fairness risk
measure.

B.5. Consequences for Fair Machine Learning and Beyond

Our conclusion from the above analysis is that for the purposes of learning hypotheses from empirical data that perform well
in terms of expected loss and allow the control of fairness, it is better to use the slightly more restricted class of fairness risk
measures FRM rather than attempting to work with the larger class Rg;y which lacks many of the desirable properties of a
fairness risk measure (convexity, monotonicity, and continuity). Since R € FRM are also attractive from a computational
standpoint, fairness risk measures seem to be preferrable to inequality measures as a basis for fair machine learning.
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C. Additional experiments

We present some experimental results supplementing those in the body.

C.1. Results with categorical sensitive feature

We illustrate the viability of using the CVaR-fairness learner with a categorical sensitive feature S. We consider the adult
dataset, but this time with race as the sensitive feature. This feature takes on 5 distinct values. We train the CVaR-fairness
learner with fixed regularisation C' = 1.

Figure 2 shows the average subgroup risk, and the difference between the maximal and minimal subgroup risks. We see
that the average subgroup risk is maintained fairly constant. However, as « is increased, the gap between the maximal and
minimal risks shrinks, i.e., the subgroup risks become more commensurate.
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Figure 2. Results on adult dataset with race as the categorical sensitive feature. The panels show that as « is varied, CVaR-based
optimisation results in the maximal and minimal subgroup risks being driven closer together.

C.2. Results with real-valued sensitive feature

We illustrate the viability of using the CVaR-fairness learner with a real-valued sensitive feature .S. We consider the adult
dataset, but this time with fnlwgt (an estimate of how representative an individual is) as the sensitive feature. Following 31,
essentially all instances are placed into separate subgroups in forming the CVaR objective. We train the CVaR-fairness
learner with fixed regularisation C' = 1.

Figure 3 compares the histogram of margin scores {y; - f(z;)}/", for @« = 0.1 and o« = 0.9. We see that, as expected,
setting o = 0.9 encourages all scores to be roughly commensurate.
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Figure 3. Results on adult dataset with fnlwgt as the continuous sensitive feature. The left and right panel are for « = 0.1 and
a = 0.9 respectively. Since essentially each individual is a member of a singleton subgroup, the latter is seen to encourage commensurate
model predictions, and thus margin scores across all instances.

C.3. Additional results on synth and adult

We present additional results for the experimental setting in the body. In Figures 4 — 9, we show the behaviour of the
CVaR method as « is varied with respect to different metrics. In terms of fairness metrics, this includes the violation of the
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balanced error, demographic parity and equality of opportunity, defined as

Ager(f) = [BER(f; Px yjs=1) — BER(f;Px y|s=0)|
App(f) = P(f(X) > 0[S =1) =P(f(X) > 0[S = 0)|
Apo(f) =IP(f(X) >0[S=1LY=1)-P(f(X)>0[S=0,Y =1)|.
Here, BER(f;P) is the balanced error of a classifier on distribution P. The difference in the balanced error across the
subgroups is a particular instance of the lack of disparate mistreatment objective (5).
We present results using three different choices of subgroup risk L(f) for the model:
LOf)y=_E [(Y, f(X
D)= B 0 100)
LO(f) = E [PY)" LY, f(X))]

X,Y|S=s
L) = B [BY S =970, 7))

where  is the square-hinge loss. Here, L(!) is the standard subgroup risk, L(?) is the subgroup risk arising from balancing the
class-labels globally, and L) is the subgroup risk arising from balancing the class-labels within each subgroup. Explicitly,
using L) yields
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. f<x>>1] ,

o< E [ E
Y~Unif(Y) | XY=y
so that the aggregate is a balanced version of the risk. On the other hand, using L(®),

L) =_E [PY[S=s)""LY,f(X))]

X,Y|S=s
- E, [XYI%_S [P(Y |S =810, f(X))ﬂ

=D i B [ FX)]
yey T

w<y,f<><>>]} 7

x E { E
Y~Unif(Y) | X|Y=y,S=s
so that the subgroup risk itself is balanced across the distribution of labels for the subgroup.

We present results for each of the three settings in turn.!? As in the body, increasing o generally has the effect of reducing
predictive accuracy of Y while also reducing the fairness violation. Further, using the subgroup-level label balancing per
L) is seen to decrease the CVaR method’s fairness violations. We also find that fair-ERM generally achieves low equality
of opportunity violation, which is again unsurprising given the method is designed for this goal.

We reiterate here a comment in the body: by design, the CVaR objective seeks to ensure commensurate surrogate subgroup
risk. This does not necessarily imply commensurate the subgroup risk with respect to 0-1 loss. Nonetheless, the above
shows that such behaviour can be borne out empirically.

"%For the adult dataset, in these plots we fix the regularisation parameter to C' = 10~°, since for larger C' even the setting o = 0 can
achieve equitable subgroup risk; such results thus do not serve the purpose of illustrating the effect of increasing o when o« = 0 provides
a suboptimal tradeoff.
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Figure 4. Results on synth dataset. The top panel shows three different measures of performance of CVaR in predicting the target Y: the
balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The middle panel show three different measures of fairness
of CVaR in being agnostic towards the sensitive feature S: the difference in balanced error across subgroups, the violation of demographic
parity, and violation of equality of opportunity. The bottom panel compares the CVaR model against baselines using different measures of
fairness and accuracy.
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Figure 5. Results on synth dataset with global label balancing of the loss. The top panel shows three different measures of performance
of CVaR in predicting the target Y: the balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The middle panel
show three different measures of fairness of CVaR in being agnostic towards the sensitive feature S: the difference in balanced error across

subgroups, the violation of demographic parity, and violation of equality of opportunity. The bottom panel compares the CVaR model
against baselines using different measures of fairness and accuracy.
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Figure 6. Results on synth dataset with subgroup-level label balancing of the loss. The top panel shows three different measures of
performance of CVaR in predicting the target Y: the balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The
middle panel show three different measures of fairness of CVaR in being agnostic towards the sensitive feature S: the difference in
balanced error across subgroups, the violation of demographic parity, and violation of equality of opportunity. The bottom panel compares
the CVaR model against baselines using different measures of fairness and accuracy.



Fairness risk measures

0320, ' ' ' ' ' ' ' 1 I - 0185, ' I I 1 I I 1 ' i -
0.315- - + 0.180- 5 0.200- '
Q
2 005 - Berm. o PSSR
[}
= 0.305- i 50_170_ - 0.190- i
0.300- .
g 0.295 & 0.165- - goass- ]
B 7| kel [0}
0 0.290 g 0.160- - 0.180; ]
S i o
@0 0.285- - 3 0.155- - 0.175- :
0.280- - &0150- ? - 0.170- s
0.275- ] ] \ , , , ! - 0. 0.165- . . . ] . . . -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 02 0.3 04 05 0.6 0.7 0.8 09 : 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
o o @
- 018_ i i i i i - 032_ i i i i -
C 0.13- - c i c 0.30- 5
T 0.12- .90l -
© T 0.28- N
o o
> 0.11- 3 014- - >026- i
- » o
|.u 010 o 8 0.24
v 0.09- N v 0.12- B @ b 3
o e Y 0.22- -
< 0.08- A £ c
= % 0.10- .=
w 0.07- . L w 0.20- 5
0.06- ! ! \ ! ! . ! - 0.08- . ! ! \ . ! ! .- 0.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 01 0.2 03 0.4 05 06 07 0.8 09
0] e} [0}
0127 \ \ \ \ \ \ \ N 0.18- \ \ \ \ \ \ N 0.30 7 \ \ \ \ \ * \ N
O [ .* K o0 SVM
c 0.10- .* . 016~ c 0.25- * ‘ Fair-ERM -
o o
= - 30.14— - 2 ® COvaR
= o
5 0.08- s g o12. i < 020- s
; > >
4 0.06 - - % 0.10- - Q 0.15- -
n wn
ﬁ 0.04 - S o 008 i 9 0.10- L/ S
2 c c [ ]
£ % svm = 0.06- ¥ swM s =
£ 0.02- ¢ rairerm - s ° ¢ rairerm & 0.05- 3
® cvar ) : ° ® war ! ¢
0.00 4 ! ! ! ! . i ] - 0.02- ! ! ! ! . : ] - 0.00+ ! ! ! ! ! . . -
0.30 0.31 0.32 033 0.34 0.35 0.36 0.37 0.38 0.30 0.31 032 0.33 0.34 035 0.36 0.37 0.38 0.30 031 0.32 0.33 0.34 0.35 0.36 0.37 0.38
Balanced error Balanced error Balanced error

Figure 7. Results on adult dataset. The top panel shows three different measures of performance of CVaR in predicting the target Y: the
balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The middle panel show three different measures of fairness
of CVaR in being agnostic towards the sensitive feature S: the difference in balanced error across subgroups, the violation of demographic
parity, and violation of equality of opportunity. The bottom panel compares the CVaR model against baselines using different measures of
fairness and accuracy.
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Figure 8. Results on adult dataset with global label balancing of the loss. The top panel shows three different measures of performance
of CVaR in predicting the target Y: the balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The middle panel
show three different measures of fairness of CVaR in being agnostic towards the sensitive feature S: the difference in balanced error across
subgroups, the violation of demographic parity, and violation of equality of opportunity. The bottom panel compares the CVaR model
against baselines using different measures of fairness and accuracy.
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Figure 9. Results on adult dataset with subgroup-level label balancing of the loss. The top panel shows three different measures of
performance of CVaR in predicting the target Y: the balanced error, pairwise disagreement (one minus AUC-ROC), and 0-1 error. The
middle panel show three different measures of fairness of CVaR in being agnostic towards the sensitive feature S: the difference in
balanced error across subgroups, the violation of demographic parity, and violation of equality of opportunity. The bottom panel compares
the CVaR model against baselines using different measures of fairness and accuracy.



