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Abstract

Ensuring that classifiers are non-discriminatory
or fair with respect to a sensitive feature (e.g.,
race or gender) is a topical problem. Progress in
this task requires fixing a definition of fairness,
and there have been several proposals in this re-
gard over the past few years. Several of these,
however, assume either binary sensitive features
(thus precluding categorical or real-valued sensi-
tive groups), or result in non-convex objectives
(thus adversely affecting the optimisation land-
scape). In this paper, we propose a new definition
of fairness that generalises some existing propos-
als, while allowing for generic sensitive features
and resulting in a convex objective. The key idea
is to enforce that the expected losses (or risks)
across each subgroup induced by the sensitive fea-
ture are commensurate. We show how this relates
to the rich literature on risk measures from math-
ematical finance. As a special case, this leads to
a new convex fairness-aware objective based on
minimising the conditional value at risk (CVaR).

1. Introduction

Ensuring that learned classifiers are non-discriminatory or
fair with respect to some sensitive feature (e.g., race or
gender) is a topical problem (Pedreshi et al., 2008; Zliobaité,
2017; Chouldechova et al., 2018). Progress on this problem
requires that one agrees upon some pre-defined notion of
fairness; to this end, there have been several definitions of
fairness at both the individual (Dwork et al., 2012; Kusner
et al., 2017; Speicher et al., 2018) and group level (Calders
& Verwer, 2010; Feldman et al., 2015; Hardt et al., 2016;
Zafar et al., 2017a; Heidari et al., 2019).

Recently, several works (Zafar et al., 2017a; Dwork et al.,
2018; Hashimoto et al., 2018; Alabi et al., 2018; Speicher
et al., 2018; Donini et al., 2018; Heidari et al., 2019) have
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abstracted earlier definitions of fairness by framing the prob-
lem in terms of subgroup losses. Intuitively, these works
posit that a fair predictor incurs similar losses for each sen-
sitive feature subgroup (e.g., men and women). One encour-
ages fairness by minimising specific notions of disparity of
subgroup losses. For specific choices of loss, this leads to a
convex objective (Zafar et al., 2017c; Donini et al., 2018).

In this paper, we propose a new definition of fairness that
follows this theme, but abstracts the notion of subgroup loss
disparity. Our resulting framework is applicable for generic
base losses, complex sensitive features (e.g., multi-valued),
and results in a convex objective when using convex losses.
In detail, our contributions are as follows:

(C1) building on notions of fairness in terms of subgroup
errors (Zafar et al., 2017a; Dwork et al., 2018; Donini
et al., 2018), we provide a new definition of fairness
(Definition 3) requiring the average losses (or risks) for
each sensitive feature subgroup have low deviation.

(C2) we draw a connection (Corollary 12) between our
proposed definition of fairness and the rich literature
on risk measures from mathematical finance (Artzner
et al., 1999; Follmer & Schied, 2011), thus allowing
one to leverage tools and analyses from the latter.

(C3) we propose a new convex fairness-aware objective
(Equation 26) based on minimising the conditional
value at risk (CVaR) (Rockafellar & Uryasev, 2000),
and relate it to existing learning objectives.

In a nutshell, our proposal is to break up the standard risk
into risks on each subgroup defined by the sensitive feature.
We combine these via an aggregator which measures the
mean and deviation of the subgroup risks. By defining some
axioms an aggregator should satisfy, we obtain a connection
to risk measures from finance and operations research.

We remark that much of the work in the paper is in setting
up the problem to easily exploit a wide body of existing
results on risk measures; however, to our knowledge, the
application of such tools to fairness is novel. The end result
is a simple, powerful framework to learn fair classifiers.

In the sequel, after reviewing existing work (§2), we in-
troduce our new definition of fairness (§3), and relate it to
financial risk measures (§4). We detail a special case em-
ploying the conditional value at risk (§5), further develop
our approach (§6), and confirm its empirical viability (§7).
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2. Background

We briefly review the fairness-aware learning problem.

2.1. Standard and fairness-aware learning

Given pairs of instances (e.g., job applicants) and target
labels (e.g., likelihood of repaying a loan), supervised learn-
ing concerns finding a predictor that best estimates the target
label for new instances. Formally, suppose there is a feature
set X, and label set Y. A predictoris any f: X — A for
some action set A, where typically A = Y. Suppose we
are given a class of predictors I C AX and a loss function
£:Y x A — R>( measuring the disagreement between a
target label and its prediction. The base goal of learning is
to find an f* € F minimising the risk or expected loss:'

f* = argmin L(f) where L(f) := XEY Y, fOX)], 1)
feF )

where X, Y are drawn from some distribution over X x Y.

In fairness-aware learning, we augment the base goal by
requiring our predictor does not discriminate with respect to
some sensitive feature (e.g., race). Formally, suppose there
is a sensitive set S over which there is a random variable S,
and that the feature set X contains S as a subset.” A fairness
measure is some A(+) for which A(Y, f(X),S) evaluates the
level of discrimination of f. The fairness goal is to find an
f minimising the risk subject to A being small: for ¢ > 0,

f* = argmin L(f) such that A(Y, f(X),S) <e. (2
feg

2.2. Measures of perfect fairness

To design a fairness measure A, it is useful to decide what it
means for a predictor to be perfectly fair. Most formalisms
of perfect (group) fairness are statements of statistical inde-
pendence. Demographic parity (Dwork et al., 2012) requires

ALS, 3)

so that knowledge of the predictions A := f(X) provides
no knowledge of the sensitive feature S. For example, when
S = {male, female}, this would mean that the distribution
of predictions are identical for both men and women. On
the other hand, equalised odds (Hardt et al., 2016) requires

ALS|Y, 4)

so that given knowledge of the true label Y, knowledge of
the predictions A provides no knowledge of the sensitive
feature S. Continuing the previous example, this requires

'"We do not indicate the implicit dependence of L(f) on the
underlying distribution or loss ¢ for brevity.

2Omitting S from the feature set does not guarantee fairness, as
it is typically correlated with other features (Pedreshi et al., 2008).

that the predictions do not discriminate between men and
women beyond whatever power these have in predicting
Y. Similarly, lack of disparate mistreatment (Zafar et al.,
2017a) constrains the subgroup error rates to be identical:

(Vs,s' € S)P(Y #A[S=5)=P(Y #AA[S=5). (5

There are other extant notions of perfect fairness (Zafar
et al., 2017b; Ritov et al., 2017; Heidari et al., 2018; Zhang
& Bareinboim, 2018), including those for individual rather
than group fairness (Dwork et al., 2012; Kusner et al., 2017).

2.3. Measures of approximate fairness

Notions of perfect fairness represent ideal statements about
the world. When learning a classifier from a finite training
sample, it is infeasible to guarantee perfect fairness on a test
sample (Agarwal et al., 2018). In practice, one often instead
works instead with measures of approximate fairness. The
learner may then seek to achieve a tradeoff between fairness
and accuracy (Menon & Williamson, 2018).

We highlight three popular measures of approximate fair-
ness, using demographic parity (3) as the underlying perfect
fairness notion for simplicity. The first is to look at the
maximal deviation between subgroup predictions (Calmon
etal., 2017), (Alabi et al., 2018, Section 5.2.2):

Agey(A,S) = sup |[P(A=a|S=35)—PA=a|S=5)|.
This measure is popular for binary S, where it is known
as the mean difference score (Calders & Verwer, 2010).
However, it involves computing |S|? terms for categorical
S, and is infeasible for real-valued S. The former issue can
be addressed with a simple variant (Agarwal et al., 2018).

An elegant alternative is to recall that perfect fairness mea-
sures assert that certain random variables are independent.
One may naturally measure approximate fairness by measur-
ing their degree of independence. For example, one might
quantify approximate demographic parity (3) via

Avir(A,S) = MI(A;S) = KL(B(A,S) | P(A)-B(S)). (6)

where MI denotes the mutual information, KL the Kullback-
Leibler divergence, P(A, S) the joint distribution over pre-
dictions and sensitive features, and P(A), P(S) the corre-
sponding marginals. Since the MI measures the degree of
independence of two random variables, Ay is a natural
measure of approximate demographic parity (Kamishima
et al., 2012; Fukuchi et al., 2013; Calmon et al., 2017; Ghas-
sami et al., 2018). One can replace the KL divergence
in (6) with other measures of dissimilarity between distribu-
tions, e.g., an f-divergence (Komiyama & Shimao, 2017)
or Hilbert-Schmidt criterion (Pérez-Suay et al., 2017).

Conceptually, measures based on (6) have appealing gener-
ality: in particular, they can seamlessly handle multi-class,
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multi-label and continuous S. However, they typically re-
sult in a non-convex objective (Kamishima et al., 2012). An
alternate measure that is similarly general, but convex, is the
covariance between the target and sensitive features (Zafar
et al., 2017c¢; Olfat & Aswani, 2018; Donini et al., 2018):

Acor(A,S) = Cov(A,S) = E[A-S] — E[A]-E[S]. (7)

2.4. Fairness-aware algorithms

Having fixed a notion of perfect or approximate fairness,
one may then go about designing a fairness-aware learning
algorithm. Broadly, these follow one of three approaches:

(a) pre-process the training set to ensure fairness of any
learned model (Zemel et al., 2013; Johndrow & Lum,
2017; Calmon et al., 2017; Adler et al., 2018; del Barrio
et al., 2018; McNamara et al., 2019);

(b) post-process model predictions to ensure their fair-
ness (Feldman et al., 2015; Hardt et al., 2016);

(c) directly ensure fairness by optimising (2) (Zafar et al.,
2016; 2017a; Agarwal et al., 2018; Donini et al., 2018).

This paper focusses on methods of type (c); we defer impli-
cations for methods of types (a) and (b) to future work.

2.5. Scope of this paper

In relation to the above (necessarily incomplete) survey, the
scope of the present work is in providing:
— anew notion of approximate fairness (Definition 3),
— anew method that optimises for this notion (§5), and
— anew connection between fairness and concepts from
mathematical finance (Corollary 12).

In more detail, we consider fairness in terms of subgroup
risk, following (Zafar et al., 2017a; Donini et al., 2018;
Dwork et al., 2018; Alabi et al., 2018). Our new notion of
approximate fairness is that these risks exhibit low deviation.
By connecting this to risk measures in mathematical finance,
we arrive at a convex objective for fairness-aware learning,
applicable for generic sensitive features .S, and with inter-
esting connections to some existing learning paradigms.

3. Fairness as Subgroup Risk Deviation

We present our new measure of fairness by introducing
the notion of subgroup risks, and using it to define nat-
ural measures of perfect (§3.2) and approximate fairness
(6§3.3). We also define some recurring notation, summarised
in Table 1. The core idea of our proposal is to aggregate
the subgroup risks by measuring their mean behaviour and
deviance (Equations 14 and 15).

3.1. Subgroup risks

Observe that the sensitive feature S partitions the instance
space X into subgroups (e.g., men and women). It will

Symbol  Meaning

L f Base loss, predictor

L(f) Risk of f on entire population

Ls(f) Risk of f on subgroup with S = s
L(f) Random variable of all subgroup risks
D(L(f)) Deviation of subgroup risks

R(L(f)) Aggregation of subgroup risks

Table 1. Glossary of important symbols.

be useful to define two induced quantities. The first is the
subgroup risk for a predictor f, which for any s € S'is

L= B0 FX). ®

The second is the random variable L(f) := Ls(f) sum-
marising all subgroup risks. For |S| < oo, this is simply a
discrete random variable taking on |.S| possible values, i.e.,
{Ls(f)}ses, with corresponding probabilities P(S = s).

We can now rewrite the original risk L(f) from (1) as an
average over these subgroup risks:

L(f) =E E [£(Y, f(X))] = E[L(f)]. ©)

S X,Y|S
The base goal of learning (1) is thus expressible as

* = argmin E[L(f)], (10)
fesx
so that one seeks good average subgroup risk. Equally, we
wish to select f* € JF based on the expectations of the
family of random variables {L(f)} tc7.

We now introduce our new measure of fairness. Following
the discussion in §2, we do so in two steps: we start by
settling on a notion of perfect fairness based on the subgroup
risks, and then present an approximate version of the same.

3.2. Perfect fairness via subgroup risks

Every measure of fairness in §2.2 specifies that our predictor
f behaves similarly across the sub-groups induced by .S. We
employ a notion of perfect fairness that is faithful to this.

Definition 1. We say that a predictor f € JF is perfectly fair
with respect to ¢ if all subgroups attain the same average
loss; i.e., L(f) is a constant random variable, so that

(9,5 €5) B (Y. F0)= B Y. F(X). (D

X,Y|S=s

Abstractly, the idea behind (11) is that the loss £ should ide-
ally be chosen to capture all aspects of the problem ignoring
fairness; perfect fairness means that regardless of the value
of sensitive attribute, the performance does not vary. For a
specific choice of ¢, Definition 1 captures an existing notion
of perfect fairness due to Zafar et al. (2017a).
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Example 2. For the zero-one loss £o1(y, f) = [y # f],
(11) reduces to the previously introduced (5):

(Vs,s' € HP(F(X) #Y | S=15) =P(f(X) #Y [ S = ).

Definition 1 is not new as a measure of perfect fairness.
Indeed, Donini et al. (2018, Appendix H) considered es-
sentially the same notion, with additional conditioning on
Y = 1. Several other recent works implicitly define per-
fect fairness in terms of subgroup risks (Dwork et al., 2018;
Hashimoto et al., 2018; Alabi et al., 2018). Further, recent
welfare-based notions of fairness (Speicher et al., 2018; Hei-
dari et al., 2019) also posit that fair classifiers have equally
distributed benefit (i.e., negative losses; see Remark 13).

However, we build on Definition 1 to provide a novel notion
of approximate fairness, one which has appealing properties
and provides a bridge to the tools of financial risk measures.

3.3. Approximate fairness via subgroup deviations

A natural way to design an approximate fairness measure
based on (11) is to ensure that the subgroup risks L(f) are
roughly constant. Formally, for some deviation measure D
of the non-constancy of a random variable (e.g., the standard
deviation), we will require that D(L(f)) is small.

Definition 3. Ler D(-) be a measure of deviation of a ran-
dom variable. For any € > 0, we say that f € F is e-
approximately fair with respect to D and ¢ if the average
subgroup losses have small deviation; i.e., D(L(f)) < e.

Definition 3 is applicable for generic S (e.g., real-valued).
For the case of binary .9, it is consistent with existing notions
of approximate fairness, as we now illustrate.

Example 4. Suppose S = {0, 1}, and that we use deviation
measure Dsp(-) = o(-), where ¢ is the standard deviation

of a random variable. Fix f € J, and for brevity write the
subgroup risks as L := Ls(f) and L := L(f). We have

1
EL) -0 =5
Recall that the subgroup risks L depend on the underlying
loss . Employing the zero-one loss ¢y in (12) yields

Den(L) = 3 - [BIX) #Y [S=0) ~ BFX) £Y S = 1))

Dsp(L) = “|Lo—Li|.  (12)

i.e., the mean-difference score (Calders & Verwer, 2010)
applied to the lack of disparate mistreatment (5).
3.4. Fairness-aware learning via subgroup aggregation

To achieve approximate fairness according to Definition 3,
we may augment the standard expected risk (10) with a
penalty term: for suitable A > 0, we may find

f* =argmin L(f) 4+ X-D(L(f)), (13)
fes

so that we find a predictor that predicts the target label, but
does so consistently across all subgroups. Observe now that
in light of (9), we can succinctly summarise (13) as

f* = argmin Ry (L(f)) (14)
fegF
Ra(L) :=E(L) + A - D(L). (15)

We make two observations. First, both standard risk minimi-
sation (10) and (14) minimise a function of the subgroup
risks L(f); the only difference is the choice of subgroup risk
aggregator R . In (14), we aim to ensure that the subgroup
risks are small, and that they are roughly commensurate. In-
tuitively, the latter ensures that we do not exhibit systematic
bias in terms of mispredictions on one of the subgroups.

Second, given a finite sample {(z;,y;,s;)7., one may
solve the empirical analogue of (14): we minimise
R (I:( 1)), where L comprises empirical subgroup risks, i.e.,
we employ empirical expectations in (8); see, e.g., (27).

We make (14) concrete with an example.

Example 5. For the setting of Example 4, for deviation
measure Dsp we have the fairness-aware objective (14)

Repa(l) = E(L) + A - Dep(L) = E(L) + g Ly — La|, (16)

so that we ensure that the average subgroup risk is small,
and that the two subgroup risks are commensurate.

Remark 6. For binary S, previous methods sharing our no-
tion of perfect fairness (Definition 1) have objectives similar
to (16). There is, however, a subtle difference: in (14), we
use the same loss ¢ to measure the standard risk, and its
deviation across subgroups. However, Zafar et al. (2017a);
Donini et al. (2018) employ different losses for these two
terms. Specifically, they employ a linear loss for the de-
viation, which corresponds to measuring the covariance
between A and S per (7). This choice is crucial to ensur-
ing convexity of their objective; we shall see that one can
preserve convexity for other ¢ by instead modifying D.

Remark 7. The idea of moving beyond expectations to a
general aggregation of the per-instance losses has precedent
in learning theory (Chapelle et al., 2001; Maurer & Pontil,
2009) and robust optimisation (Duchi et al., 2016; Gotoh
et al., 2018). These encourage the loss deviance across all
samples to be small, i.e., effectively, they treat each instance
as its own group. Similar connections will also arise in §5.3.

A natural question at this stage is what constitutes a “sen-
sible” choice of deviation measure D. One may of course
proceed with intuitively reasonable choices, such as the
standard deviation (Example 4); however, we shall now ax-
iomatise the properties we would like any sensible deviation
measure to satisfy. This shall lead to an admissible family
of fairness risk measures.
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4. Fairness Risk Measures

The proposal of the previous section was boiled down to
a simple recipe in (14): rather than minimise the average
of the subgroup risks, we minimise a general functional
R of them, which involves an expectation and deviation
D. We now axiomatically specify the class of admissible
subgroup aggregators R, which will in turn specify the class
of admissible deviations D (Theorem 14).

The technical aspects here are not new; rather, we leverage
results in the risk measures literature (particularly Rockafel-
lar & Uryasev (2013)) for a novel application to fairness.

4.1. Fairness risk measures: an axiomatic definition

At this stage, we employ a slight change of terminology: we
shall refer to R as a risk measure rather than aggregator.
The reasoning for this change will become evident in the
next section. With this, we define the class of fairness risk
measures R as those satisfying seven simple mathematical
axioms. In what follows, let £2(S) comprise real-valued
random variables over S with finite second moment.

Definition 8. We say R: £L2(S) - R:=RU {+oo} isa
fairness risk measure if, for any Z,Z' € L*(S) and C € R,
it satisfies the following axioms (F1)—(F7):

F1 Convexity R((1-\)Z+\Z") < (1-XN)R(Z)+IR(Z"),
VA € (0,1).

F2 Positive Homogeneity R(0) = 0, R(A\Z) = AR(Z)
VA > 0.

F3 Monotonicity R(Z) < R(Z') if Z < Z' almost surely.

F4 Lower Semicontinuity {Z: R(Z) < C} is closed.

F5 Translation Invariance R(Z + C) = R(Z) + C.

F6 Aversity R(Z) > E(Z) for any non-constant random
variable Z.

F7 Law Invariance R(Z) = R(Z’) if Pz = Pz.

In Appendix A, we argue why each of these axioms is
natural when R is used per (14) to ensure fairness across
subgroups. Here, we highlight the import of two axioms:

Convexity (F1) is desirable because without it, the risk could
be decreased by more fine grained partitioning as we now
show. Suppose S = {0,1} induces a partition (Xo, X1)
of X. Then L = L% + L1, where L? is the restriction of L
to X;, so thate.g. L = s = 0] - P(S = 0) - L,. Now
if R were not convex, it would not be sub-additive, and
so R(L) = R(L° + L') > R(LY) + R(L'). That is, by
splitting into subgroups we could automatically make our
risk measure smaller, which is undesirable.

The above primary motivation for convexity has a desirable
side benefit: convexity combined with F3 implies that if
f — L(f) is convex, then so is f — R(L(f)). Thus,
for convex ¢ and J, encouraging fairness does not pose an

optimisation burden, in contrast to some existing approaches
(Kamishima et al., 2012; Zafar et al., 2016).

Aversity (F6) has a clear justification, as it penalises devia-
tion from perfect fairness (by Definition 1, this corresponds
to constant L); this is essential for any fairness measure.

Remark 9. The subgroup risk aggregator Rgp correspond-
ing to the standard deviation (16) does not satisfy F1, and
thus is not a fairness risk measure. This does not necessarily
preclude its use; while Appendix A makes a case that these
measures are sensible to use, we do not claim that these are
the only legitimate measures. Nonetheless, we now see that
a wide class of measures satisfy F1-F7.

4.2. Relation to financial risk measures

In mathematical finance, a risk measure (Artzner et al.,
1999) is a quantification of the potential loss associated with
a position, i.e., a function p: £2(S) — R whose input is a
random variable, being the possible outcomes for a position.
‘We now show the intimate relationship between fairness risk
measures and two classes of risk measures widely studied
in finance and operations research (Artzner et al., 1999;
Pflug & Romisch, 2007; Krokhmal et al., 2011; Follmer &
Schied, 2011; Rockafellar & Uryasev, 2013). The first class
is readily defined in terms of our existing axioms.

Definition 10. We say R: £?(S) — R is a coherent mea-
sure of risk (Artzner et al., 1999) if it satisfies FI — F5.

The second class requires two additional axioms:

F8 Translation Equivariance R(Z) = C for any constant
random variable Z taking value C' € R.

F9 Positivity under non-constancy R(Z) > 0, with

equality if and only if Z is constant.

Equipped with this, we have the following definition.

Definition 11. We say R: £2(S) — R is a regular measure
of risk (Rockafellar & Uryasev, 2013) if it satisfies F'1, F4,
F6 and F8. Similarly, D: £2(S) — R is a regular measure
of deviation if satisfies F1, F4 and F9.

Using Z = 0, (F5 A F6) = F8. We thus conclude that:

Corollary 12. Every fairness risk measure is a coherent
and regular measure of risk satisfying law-invariance.

Remark 13. Our chosen axioms were inspired by risk mea-
sures. Recently, Speicher et al. (2018); Heidari et al. (2019)
proposed axioms inspired by inequality measures. The two
notions can be related; see Appendix B. In brief, one can
start with a risk measure and induce an inequality measure,
and vice versa. In both directions, many, but not all, of the
desirable attributes of the induced measures are implied by
combinations of the attributes of the inducing measure.

3Law-invariance is fortunately satisfied by most widely-used
measures (Rockafellar et al., 2006; Pflug & Romisch, 2007).
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4.3. Practical implications

Connecting fairness and financial risk measures is not
merely of conceptual interest. In particular, Corollary 12
lets us construct fairness risk measures R given a regular
measure of deviation D via R(Z) = E(Z) + D(Z). This is
a consequence of the following quadrangle theorem.

Theorem 14 (Rockafellar & Uryasev (2013)). The relations

R(Z) = E(Z) + D(Z) and D(Z) = R(Z) — E(Z) (17)

give a one-to-one correspondence between regular measures
of risk R and regular measures of deviation D. Further, R
is positively homogeneous iff D is positively homogeneous;
and monotonic iff D(Z) < sup Z — E(Z) forall Z € L*(S).
Remark 15. Using the construction in (17), we arrive at risk
aggregators R that are an expectation plus a deviance D. By
contrast, in (13) we applied a scalar X to the deviance. This
is equivalent to using a new deviance Dy := A - D.

Corollary 12 also allows us to import well-studied financial
risk measures for use in a fairness context, as we now show.

5. The CVaR-fairness Risk Measure

We now explicate a special case of our framework based on
the conditional value of risk (CVaR), which yields a simple
objective (Equation 26) related to the v-SVM.

5.1. CVaR as a fairness risk measure

We first recall the definition of CVaR. For o € (0, 1) and
random variable Z, let ¢, (Z) be the quantile at level «. The
conditional value at risk is (Rockafellar & Uryasev, 2000)*

CVaRo(Z) := E(Z | Z > a(2)), (18)
i.e., it measures the tail behaviour of Z. Now define

Rev.al(Z) = CVaRa(Z) (19)
Dev.a(Z) := CVaR,(Z — E(Z)). (20)

Intuitively, Doy, measures the tail behaviour of 2’ = 7 —
E(Z), i.e., how much Z deviates above its mean.

One has that Rcv o and Dgy  are regular, coherent mea-
sures of risk and deviation respectively (Rockafellar &
Uryasev, 2013). By Theorem 14, one may equally write
Dcv,a(Z) = CVaRy(Z) — E(Z). Further, Rey o is a fair-
ness risk measure with fairness-aware objective (14)

N

i CVaRa(L(f)) = M E(L(f)) + Pov.a(L()- 1)

“We gloss over the subtleties of defining quantiles when Z has
atomic components; see (Rockafellar & Uryasev, 2013).

Here, o € (0, 1) is a tuning parameter. From (18), increas-
ing « focusses attention to the most extreme values of L(f),
i.e., the largest subgroup risks. Interestingly, the limiting
cases of « relate to existing fairness principles.’ Per Rock-
afellar (2007, Equation 5.8), as a — 1, (21) becomes

i L(f), 22
min max Ls(f) 22)
i.e., we seek all subgroup risks to be small, in line with the
maximin principle (Rawls, 1971). As o — 0, (21) becomes

min s (Ls(f)),
i.e., we seek the average subgroup risks to be small, in
line with the impartial observer principle (Harsanyi, 1977)
for uniform S (see §6.1). To intuit the effect of generic
a € (0,1), suppose n = |S| < oo, and S has uniform
distribution. Then,

ka
Aa

CVaRa(L(f)) = = S L) + (1= o) L4y (), (23)
@ i=1
where Lp;(f) denotes the ith largest subgroup risk, &, :=
[na] and A, is a weighting parameter given by Rockafellar
& Uryasev (2002, Proposition 8). When k,, is an integer,

Ko
CVaRA(L(f) = - D Li(f), @9
=1

Minimising (21) seeks that the average of the largest sub-
group risks is small. This tightens the range of subgroup
risks, thus ensuring they are commensurate.

Remark 16. The maximal subgroup risk (22) was also con-
sidered in Hashimoto et al. (2018); Mohri et al. (2019),
the former motivated by settings where group identity is
unknown. Objectives that interpolate between maximum
and average subgroup risk have been proposed, e.g., Alabi
et al. (2018, Section 6.1). These are similar in spirit to (23);
note however that (23) allows any « € (0,1), and thus can
partially account for the (k. + 1)th largest subgroup risk.

5.2. Optimising CVaR-fairness

Using CVaR as an aggregator (or deviance measure) yields
intuitive objectives. Further, these are feasible to optimise.
Optimisation of quantities based on the CVaR is aided by a
variational representation: for any « € (0, 1) and random
variable Z, (Rockafellar & Uryasev, 2000, Theorem 1)

. 1
CVaR,(Z) min {p +1 o E[Z p]+} . (25

5 Thus, CVaR,, serves as an effective alternative to the range
of fairness measures considered by Traub et al. (2005), who per-
formed an empirical study of people’s attitudes to the tradeoff be-
tween utility and fairness, and found that something “in-between”
the proposals of Harsanyi and Rawls fit the data best.
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Consequently, the CVaR-fairness objective (21) becomes

N

, 1
P {p + 1 EL() - p]+} . (26)

J

This is a convex objective when f +— L(f) is convex
(e.g., using a convex base ¢ and F). Given a finite sam-
ple [(z},y;,5;)fjL, with n = [S| < 400, this becomes

_fergjgeR{ﬂ+M§{ri > E(?/j-,f(zj))ﬂ:| } 27
+

s .
j:sj=s

for mg the number of examples with sensitive feature s.
In words, for fixed p, we find a predictor f € F which
minimises the average of “hard” subgroup risks.

5.3. Relation to existing paradigms

Fan et al. (2017) considered the problem of learning a ro-
bust binary classifier given a sample | (,y;)}L; and loss
£:Y x A — R. To achieve this, it was proposed to minimise
the average of the fop-k per-instance losses for k < m:

k
1
in — Ly 28
where £;;(f) is the ith largest element of the per-instance

losses [ £(y;, f(z;)) ]/, . Following (24), this is equal to°

I]}lelzfl CV&R(yk (Linst (f))

where ay, := k/m, and Liys (f) is the discrete random vari-
able of per-instance losses, with values {£(y;, f(z;)}7;.
Consequently, despite its motivating goal being ostensibly
different, this objective is a special case of our framework
where each instance belongs to a separate group.

CVaR also arises in the v-SVM (Scholkopf et al., 2000),
which alternately parametrises the SVM with v € (0,1),
and whose objective is expressible as (Gotoh & Takeda,
2005; Takeda & Sugiyama, 2008; Tsyurmasto et al., 2014)

I
min S IF 15 +v- CVaRi_, (M(f)),

where M( f) is the random variable of per-instance margins,
taking values [ —y; - f(z;)]7;. This is a special case of
our framework where each instance is a separate group, and
one employs the “linear” loss £(y, f) = —y - f: while the
v-SVM down-weights any instance with low margin error,

we down-weight any subgroup with low average loss.

®The connection to CVaR was not explicitly noted in Fan et al.
(2017). However, they employed the variational representation
(25) as derived in a different context by Ogryczak & Tamir (2003).

6. Extensions and Discussion

We briefly observe some extensions of our formulation.

6.1. Sensitive feature weighting

In forming our fairness-aware objective (14), we employed
the standard risk L(f), which is a weighted sum of the sub-
group risks (Equation 9). The default weighting is the un-
derlying sensitive feature distribution. However, one could
easily apply different a weighting vg to privilege certain
groups over others. For |S| < oo, we could define (c.f. (9))

L(fivs) = E [Ls(f)] =D vs(s) Li(f). (29

~U,
5 ses

For example, when S = {0, 1}, if one felt that individuals
with s = 0 were more important to treat well, one could
simply put a large mass on 1, e.g. v5(0) = 0.9 and vg(1) =
0.1. The effects of imposing S ~ vg will similarly be
reflected in one’s deviation measure D(Ls(f)).

To treat both groups equally in terms of risk, one could
alternately choose vg to be uniform. This forms the basis
for Harsanyi’s principle of justice (Harsanyi, 1977), and
would be analogous to the use of the balanced error in
classification (Brodersen et al., 2010; Menon et al., 2013).

6.2. Non-binary sensitive features

Our examples thus far have focussed on binary S. However,
the risk measures underpinning our framework seamlessly
handle generic S. We make this concrete with two examples.
The first is where S = R> (as is appropriate for a person’s
income, e.g.). Then, for a € (0,1) and measure vg over S
per (29), the CVaR-fairness objective (26) is:

[ = s vstas) . @0

min {p +
fEF,peR
On a finite sample | (2, y;, s;) {72, with all s;’s distinct for
simplicity, taking the empirical measure Ug gives

11—«

1
l—«

S el f)

Jj=1
(€29)
so that each instance is considered as belonging to the same
group. Interestingly, this is equivalent to the top-k objective
(28) for k = ma. However, one may consider other natu-
ral alternatives; e.g., one may construct a non-parametric
estimate of vg from the given sample, and use this in (30).

The case of multiple sensitive features {51, ..., S;} can be
similarly handled: all one needs to do is define a suitably
structured S, and a valid measure vg over .S. As an example,
one can set S := S X - -- x Sy and define vg as the product
of measures v, on each individual sensitive feature.

min
feTF,peR

m
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Figure 1. Results on synth (top) and adult (bottom) datasets. The left and middle panel show that as « is varied, CVaR-based
optimisation results in a decrease in predictive accuracy and fairness violation, as measured by the average and absolute difference of the
subgroup risks. The right panel overlays the performance of CVaR-based optimisation for various « with that of two baselines.

7. Empirical Illustration

We demonstrate that the CVaR-fairness minimiser (27)

empirically yields reasonable fairness-accuracy tradeoffs.

We present results on a synthetic two-dimensional dataset
(synth) from Donini et al. (2018), where there is a single
binary sensitive feature S, and the UCI adult dataset with
gender as the binary S. We use square-hinge 4y, (y, f) =
[1 — yf]% as our base loss, and regularised linear scorers

as our F. We use the validation procedure of Donini et al.

(2018) to tune the regularisation strength, using balanced
error as the base measure.

We assess CVaR-based optimisation (27) as « is tuned in
{0.1,0.2,...,0.9}. For each «, we compute the optimal
empirical predictor’s subgroup risks L, L1 per (8). We
then compute their average to assess the classifier’s ability
to predict the target Y, and their absolute difference to assess
the classifier’s ability to treat the subgroups equally. This is
repeated over 100 random 80—20% train-test splits.

The left and middle panels of Figure 1 evince that a allows
one to tune between predictive accuracy and fairness (in
the sense of Definition 3): as « is increased, the subgroup
risk’s absolute difference decreases, while their average
increases. This is as expected: for « — 17, the CVaR

method explicitly minimises the maximal subgroup risk.

The right panel of Figure 1 compares (on one train-test split)
the fairness-accuracy tradeoff against a standard SVM, and
the fair-ERM approach of Donini et al. (2018). For suitable
a, CVaR achieves relatively favourable tradeoffs.

We make two qualifying remarks on the scope of the above
results. First, the subgroup risks used to measure fairness
and accuracy employ the surrogate loss used for training.
Often, one may be interested in assessing the subgroup risks
employing the 0-1 loss instead. Second, they do not fo-
cus attention on performance when Y = 1. By contrast,
fair-ERM is designed to control the equality of opportunity
measure (4), which performs such conditioning. In Ap-
pendix C, we present additional plots for both these cases,
and for a setting with real-valued S. While more extensive
experiments are apposite, the above indicates the potential
in further studying fairness risk measures.

8. Conclusion and Future Work

We proposed a new definition of fairness that generalises
some existing proposals, while allowing for generic sensi-
tive features and resulting in a convex objective. The key
idea is to enforce that the expected losses (or risks) across
each subgroup induced by the sensitive feature are commen-
surate. We showed how this relates to the rich literature on
risk measures from mathematical finance. As a special case,
this leads to a new convex fairness-aware objective based
on minimising the conditional value at risk (CVaR).

Our relating of fairness and risk measures motivates study of
risk measures beyond CVaR, e.g., spectral measures (Acerbi,
2002), optimised certainty equivalents (Ben-Tal & Teboulle,
2007), & entropic value at risk (Ahmadi-Javid, 2012).
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