
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

A. Projected Sinkhorn derivation
A.1. Proof of Lemma 1

Lemma 1. The dual of the entropy-regularized Wasserstein
projection problem in Equation (6) is

maximize
α,β∈Rn,ψ∈R+

g(α, β, ψ) (7)

where

g(α, β, ψ) =− 1

2λ
‖β‖22 − ψε+ αTx+ βTw

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)
(8)

Proof. For convenience, we multiply the objective by λ and
solve this problem instead:

minimize
z∈Rn

+,Π∈R
n×n
+

λ

2
‖w − z‖22 +

∑
ij

Πij log(Πij)

subject to Π1 = x

ΠT 1 = z

〈Π, C〉 ≤ ε.

(15)

Introducing dual variables (α, β, ψ) where ψ ≥ 0, the La-
grangian is

L(z,Π, α, β, ψ)

=
λ

2
‖w − z‖22 +

∑
ij

Πij log(Πij) + ψ(〈Π, C〉 − ε)

+ αT (x−Π1) + βT (z −ΠT 1).

(16)

The KKT optimality conditions are now

∂L

∂Πij
= ψCij + (1 + log(Πij))− αi − βj = 0

∂L

∂zj
= λ(zj − wj) + βj = 0

(17)

so at optimality, we must have

Πij = exp(αi) exp(−ψCij − 1) exp(βj)

z = −β
λ

+ w
(18)

Plugging in the optimality conditions, we get

L(z∗,Π∗, α, β, ψ)

=− 1

2λ
‖β‖22 − ψε+ αTx+ βTw

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)

=g(α, β, ψ)

(19)

so the dual problem is to maximize g over α, β, ψ ≥ 0.

A.2. Proof of Lemma 2

Lemma 2. Suppose α∗, β∗, ψ∗ maximize the dual problem
g in Equation (8). Then,

z∗i = wi − βi/λ
Π∗ij = exp(α∗i) exp(−ψ∗Cij − 1) exp(β∗j)

(13)

are the corresponding solutions that minimize the primal
problem in Equation (6).

Proof. These equations follow directly from the KKT opti-
mality conditions from Equation (18).

A.3. Algorithm derivation and interpretation

Derivation To derive the algorithm, note that since this is
a strictly convex problem to get the α and β iterates we solve
for setting the gradient to 0. The derivative with respect to
α is

∂g

∂αi
= xi − exp(αi)

∑
j

exp(−ψCij − 1) exp(βj) (20)

and so setting this to 0 and solving for αi gives the α iterate.
The derivative with respect to β is

∂g

∂βj
= − 1

λ
β+w− exp(βj)

∑
i

exp(αi) exp(−ψCij−1)

(21)
and setting this to 0 and solving for βj gives the β iterate
(this step can be done using a symbolic solver, we used
Mathematica). Lastly, the ψ updates are straightforward
scalar calculations of the derivative and second derivative.

Interpretation The original Sinkhorn iteration has a nat-
ural interpretation as a matrix scaling algorithm, iteratively
rescaling the rows and columns of a matrix to achieve the
target distributions. The Projected Sinkhorn iteration has a
similar interpretation: while the α step rescales the rows of
exp(−ψC− 1) to sum to x, the β step rescales the columns
of exp(−ψC−1) to sum to−β/λ+w, which is the primal
transformation of the projected variable z at optimality as
described in Lemma 2. Lastly, the ψ step can be interpreted
as correcting for the transport cost of the current scaling:
the numerator of the Newton step is simply the difference
between the transport cost of the current matrix scaling and
the maximum constraint ε.

To see this, recall the transformation of dual to primal vari-
ables from Lemma 2. We can interpret these quantities
before optimality as primal iterates. Namely, at each itera-
tion t, let

z
(t)
i = wi − β(t)

i /λ

Π
(t)
ij = exp(α(t)) exp(−ψ(t)Cij − 1) exp(β(t))

(22)

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

Then, since the α and β steps are equivalent to setting Equa-
tions (20) and (21) to 0, we know that after an update for
α(t), we have that

xi =
∑
j

Π
(t)
ij (23)

so the α step rescales the transport matrix to sum to x.
Similarly, after an update for β(t), we have that

z
(t)
i =

∑
i

Π
(t)
ij (24)

which is a rescaling of the transport matrix to sum to the
projected value. Lastly, the numerator of the ψ(t) step can
be rewritten as

ψ(t+1) = ψ(t) + t · 〈Π
(t), C〉 − ε

〈Π(t), C · C〉
(25)

as a simple adjustment based on whether the current trans-
port plan Π(t) is above or below the maximum threshold
ε.

B. Experimental setup
B.1. MNIST

Adaptive ε During adversarial training for MNIST, we
adopt an adaptive ε scheme to avoid selecting a specific ε.
Specifically, to find an adversarial example, we first let ε =
0.1 on the first iteration of projected gradient descent, and
increase it by a factor of 1.4 every 5 iterations. We terminate
the projected gradient descent algorithm when either an
adversarial example is found, or when 50 iterations have
passed, allowing ε to take on values in the range [0.1, 2.1]

Optimizer hyperparameters To update the model
weights during adversarial training, we use the SGD op-
timizer with 0.9 momentum and 0.0005 weight decay, and
batch sizes of 128. We begin with a learning rate of 0.1,
reduce it to 0.01 after 10 epochs.

B.2. CIFAR10

Adaptive ε We also use an adaptive ε scheme for adver-
sarial training in CIFAR10. Specifically, we let ε = 0.01 on
the first iteration of projected gradient descent, and increase
it by a factor of 1.5 every 5 iterations. Similar to MNIST,
we terminate the projected gradient descent algorithm when
either an adversarial example is found, or 50 iterations have
passed, allowing ε to take on values in the range [0.01, 0.38].

Optimizer hyperparameters Similar to MNIST, to up-
date the model weights, we use the SGD optimizer with 0.9
momentum and 0.0005 weight decay, and batch sizes of 128.
The learning rate is also the same as in MNIST, starting at
0.1, and reducing to 0.01 after 10 epochs.

B.3. Motivation for adaptive ε

A commonly asked question of models trained to be robust
against adversarial examples is “what if the adversary has a
perturbation budget of ε+ δ instead of ε?” This is referring
to a “robustness cliff,” where a model trained against an
ε strong adversary has a sharp drop in robustness when
attacked by an adversary with a slightly larger budget. To
address this, we advocate for the slightly modified version
of typical adversarial training used in this work: rather than
picking a fixed ε and running projected gradient descent,
we instead allow for an adversarial to have a range of ε ∈
[εmin, εmax]. To do this, we begin with ε = εmin, and then
gradually increase it by a multiplicative factor γ until either
an adversarial example is found or until εmax is reached.
While similar ideas have been used before for evaluating
model robustness, we specifically advocate for using this
schema during adversarial training. This has the advantage
of extending robustness of the classifier beyond a single ε
threshold, allowing a model to achieve a potentially higher
robustness threshold while not being significantly harmed
by “impossible” adversarial examples.

C. Auxiliary experiments
In this section, we explore the space of possible parameters
that we treated as fixed in the main paper. While this is not
an exhaustive search, we hope to provide some intuition as
to why we chose the parameters we did.

C.1. Effect of λ and C

We first study the effect of λ and the cost matrix C. First,
note that λ could be any positive value. Furthermore, note
that to construct C we used the 2-norm which reflects the
1-Wasserstein metric, but in theory we could use any p-
Wasserstein metric, where the the cost of moving from pixel
(i, j) to (k, l) is

(
|i− j|2 + |k − l|2

)p/2
. Figure 8 shows

the effects of λ and p on both the adversarial example and
the radius at which it was found for varying values of λ =
[1, 10, 100, 500, 1000] and p = [1, 2, 3, 4, 5].

We find that it is important to ensure that λ is large enough,
otherwise the projection of the image is excessively blurred.
In addition to qualitative changes, smaller λ seems to make
it harder to find Wasserstein adversarial examples, making
the ε radius go up as λ gets smaller. In fact, for λ = (1, 10)
and almost all of λ = 100, the blurring is so severe that no
adversarial example can be found.

In contrast, we find that increasing p for the Wasserstein
distance used in the cost matrixC seems to make the images
more “blocky”. Specifically, as p gets higher tested, more
pixels seem to be moved in larger amounts. This seems to
counteract the blurring observed for low λ to some degree.

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

0.0 0.5 1.0 1.5 2.0
ε radius for Wasserstein ball

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

Standard 3x3
Standard 5x5
Standard 7x7
Robust 3x3
Robust 5x5
Robust 7x7

Figure 7. Adversarial accuracy of a standard model and a model
trained to be provably robust against `∞ attacks for different sizes
of transport plans. In most cases the size of the transport plan
doesn’t seem to matter, except for the 3× 3 local transport plan.
In this case, the adversary isn’t quite able to reach 0% accuracy for
the standard model, reaching 2.8% for for ε = 1.83. The adversary
is also unable to attack the robust MNIST model, bottoming out at
41% adversarial accuracy at ε = 1.83.

Naturally, the ε radius also grows since the overall cost of
the transport plan has gone up.

C.2. Size of local transport plan

In this section we explore the effects of different sized trans-
port plans. In the main paper, we used a 5×5 local transport
plan, but this could easily be something else, e.g. 3× 3 or
7× 7. We can see a comparison on the robustness of a stan-
dard and the `∞ robust model against these different sized
transport plans in Figure 7, using λ = 1000. We observe
that while 3 × 3 transport plans have difficulty attacking
the robust MNIST model, all other plan sizes seem to have
similar performance.

Once a transport plan is large enough to attack a model, al-
lowing larger plans does not substantially change the attack
success rate. Since the cost of transport grows as distance
from the source pixel increases and optimal transport mini-
mizes the transport cost, Wasserstein adversarial examples
will tend to be local perturbations. While the size of the
transport plans considered in the main paper are quite small,
this is due to the weakness of networks to the adversarial
attack. A 25 × 25 local transport plan takes 0.08 seconds
per iteration on a 1080ti which can do 5× 5 local transport
plans in 0.02 seconds, and so local transport size is not the
bottleneck.

D. Provable defense
In this section we show how a Sinkhorn-like algorithm can
be derived for provable defenses, and that the resulting al-
gorithm is actually just a simplified version of the Projected
Sinkhorn iteration, which we call the Conjugate Sinkhorn
iteration (since it solves the conjugate problem).

D.1. Conjugate Sinkhorn iteration

By subtracting the same entropy term to the conjugate ob-
jective from Equation (14), we can get a problem similar to
that of projecting onto the Wasserstein ball.

minimize
z∈Rn

+,Π∈R
n×n
+

− λzT y +
∑
ij

Πij log(Πij)

subject to Π1 = x

ΠT 1 = z

〈Π, C〉 ≤ ε.

(26)

where again we’ve multiplied the objective by λ for con-
venience. Following the same framework as before, we
introduce dual variables (α, β, ψ) where ψ ≥ 0, to con-
struct the Lagrangian as

L(z,Π, α, β, ψ)

=− λzT y +
∑
ij

Πij log(Πij) + ψ(〈Π, C〉 − ε)

+ αT (x−Π1) + βT (z −ΠT 1).

(27)

Note that since all the terms with Πij are the same, the
corresponding KKT optimality condition for Πij also re-
mains the same. The only part that changes is the optimality
condition for z, which becomes

β = λy (28)

Plugging the optimality conditions into the Lagrangian, we
get the following dual problem:

L(z∗,Π∗, α, β, ψ)

=− ψε+ αTx

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)

=g(α,ψ)

(29)

Finally, if we minimize this with respect to α and ψ we
get exactly the same update steps as the Projected Sinkhorn
iteration. Consequently, the Conjugate Sinkhorn iteration is
identical to the Projected Sinkhorn iteration except that we
replace the β step with the fixed value β = λy.

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

ε=N/A

p=
1

λ=1

ε=N/A

λ=10

ε=1.83

λ=100

ε=0.71

λ=500

ε=0.58

λ=1000

ε=N/A

p=
2

ε=N/A ε=N/A ε=1.04 ε=0.71

ε=N/A

p=
3

ε=N/A ε=N/A ε=1.14 ε=0.78

ε=N/A

p=
4

ε=N/A ε=N/A ε=1.25 ε=0.53

ε=N/A

p=
5

ε=N/A ε=N/A ε=1.25 ε=0.71

Figure 8. A plot of the adversarial examples generated with different p-Wasserstein metrics used for the cost matrix C and different
regularization parameters λ. Note that when regularization is low, the image becomes blurred, and it is harder to find adversarial examples.
In contrast, changing p does not seem to make any significant changes.

