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Abstract

A rapidly growing area of work has studied the ex-
istence of adversarial examples, datapoints which
have been perturbed to fool a classifier, but the
vast majority of these works have focused primar-
ily on threat models defined by `p norm-bounded
perturbations. In this paper, we propose a new
threat model for adversarial attacks based on the
Wasserstein distance in image space. In the im-
age classification setting, such distances measure
the cost of moving pixel mass, which can natu-
rally represent “standard” image manipulations
such as scaling, rotation, translation, and distor-
tion (and can potentially be applied to other set-
tings as well). To generate Wasserstein adversar-
ial examples, we develop a procedure for approxi-
mate projection onto the Wasserstein ball, based
upon a modified version of the Sinkhorn iteration.
The resulting algorithm can successfully attack
image classification models, bringing traditional
CIFAR10 models down to 3% accuracy within a
Wasserstein ball with radius 0.1 (i.e., moving 10%
of the image mass 1 pixel), and we demonstrate
that PGD-based adversarial training can improve
this adversarial accuracy to 76%. In total, this
work opens up a new direction of study in ad-
versarial robustness, more formally considering
convex metrics that accurately capture the invari-
ances that we typically believe should exist in
classifiers, and code for all experiments in the
paper is available at https://github.com/
locuslab/projected sinkhorn.
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Figure 1. A minimal example exemplifying the difference between
Wasserstein perturbations and `∞ perturbations on an image with
six pixels. The top example utilizes a perturbation ∆W to shift
the image one pixel to the right, which is small with respect to
2-Wasserstein distance since each pixel moved a minimal amount
(‖∆W ‖W2 = 3), but large with respect to `∞ distance since each
pixel changed a maximal amount (‖∆W ‖∞ = 1). In contrast,
the bottom example utilizes a perturbation ∆∞ which changes all
pixels to be grayer by 0.3. This is small with respect to `∞ distance,
since each pixel changes by a small amount (‖∆∞‖∞ = 0.3), but
large with respect to 2-Wasserstein distance, since the mass on
each pixel on the left had to move 3 pixels over at a cost of 32 per
unit of mass (‖∆∞‖W = 8.1).

1. Introduction
A substantial effort in machine learning research has gone to-
wards studying adversarial examples (Szegedy et al., 2014),
commonly described as datapoints that are indistinguishable
from “normal” examples, but are specifically perturbed to
be misclassified by machine learning systems. This notion
of indistinguishability, later described as the threat model
for attackers, was originally taken to be `∞ bounded pertur-
bations, which model a small amount of noise injected to
each pixel (Goodfellow et al., 2015). Since then, subsequent
work on understanding, attacking, and defending against
adversarial examples has largely focused on this `∞ threat
model and its corresponding `p generalization. While the
`p threat model is convenient, it is by no means a compre-
hensive description of all possible adversarial perturbations.
Other work (Engstrom et al., 2017) has looked at perturba-
tions such as rotations and translations, but beyond these
specific transforms, there has been little work considering
broad, well-defined classes of attacks beyond the `p ball.

In this paper, we propose a new type of adversarial pertur-
bation that encodes a general class of attacks that is funda-
mentally different from the `p ball. Specifically, we propose
an attack model where the perturbed examples are bounded
in Wasserstein distance in image space1 from the original

1This is in contrast to work that considers Wasserstein distances
in the training distribution (Sinha et al., 2018).

https://github.com/locuslab/projected_sinkhorn
https://github.com/locuslab/projected_sinkhorn
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example. Intuitively, for images, this is the cost of moving
around pixel mass to change one image into another. Note
that the Wasserstein and `p ball can be quite different: ex-
amples that are close in Wasserstein distance can be quite
far in `p distance, and vice versa (a pedagogical example
demonstrating this is in Figure 1).

We develop this idea of Wasserstein adversarial examples
in two main ways. Since adversarial examples are typi-
cally best generated using variants of projected gradient
descent, we first derive an algorithm that projects onto the
Wasserstein ball. However, performing an exact projection
is computationally expensive, so our main contribution here
is to derive a fast method for approximate projection. The
procedure can be viewed as a modified Sinkhorn iteration,
but with a more complex set of update equations. Second,
we develop efficient methods for adversarial training un-
der this threat method. Because this involves repeatedly
running this projection within an inner optimization loop,
speedups that use a local transport plan are particularly cru-
cial (i.e. only moving pixel mass to nearby pixels), making
the projection complexity linear in the image size.

We evaluate the attack quality on standard models, showing
for example that we can reduce the adversarial accuracy of
a standard CIFAR10 classifier from 94.7% to 3% using a
Wasserstein ball of radius 0.1 (equivalent to moving 10%
of the mass of the image by one pixel), whereas the same
attack reduces the adversarial accuracy of a model certi-
fiably trained against `∞ perturbations from 66% to 61%.
In contrast, we show that with adversarial training, we are
able to improve the adversarial accuracy of this classifier
to 76% while retaining a nominal accuracy of 80.7%. We
additionally show, however, that existing certified defenses
cannot be easily extended to this setting; building models
provably robust to Wasserstein attacks will require funda-
mentally new techniques. In total, we believe this work
highlights a new direction in adversarial examples: convex
perturbation regions which capture a much more intuitive
form of structure in their threat model, and which move
towards a more “natural” notion of adversarial attacks.

2. Background and Related Work
Much of the work in adversarial examples has focused on
the original `∞ threat model presented by Goodfellow et al.
(2015), some of which also extends naturally to `p pertur-
bations. Since then, there has been a plethora of papers
studying this threat model, ranging from improved attacks,
heuristic and certified defenses, and verifiers. As there are
far too many to discuss here, we highlight a few which are
the most relevant to this work.

The most commonly used method for generating adversarial
examples is to use a form of projected gradient descent over

the region of allowable perturbations, originally referred to
as the Basic Iterative Method (Kurakin et al., 2017). Since
then, there has been a back-and-forth of new heuristic de-
fenses followed by more sophisticated attacks. To name a
few, distillation was proposed as a defense but was defeated
(Papernot et al., 2016; Carlini & Wagner, 2017), realistic
transformations seen by vehicles were thought to be safe un-
til more robust adversarial examples were created (Lu et al.,
2017; Athalye et al., 2018b), and many defenses submitted
to ICLR 2018 were broken shortly after the review period
finished (Athalye et al., 2018a). One undefeated heuristic
defense is to use the adversarial examples in adversarial
training, which has so far worked well in practice (Madry
et al., 2018). While traditionally used for `∞ and `2 balls
(with a natural `p generalization), in principle, the method
can be used to project onto any kind of perturbation region.

Another set of related papers are verifiers and provable
defenses, which aim to produce (or train on) certificates
that are provable guarantees of robustness against adver-
sarial attacks. Verification methods are now applicable
to multi-layer neural networks using techniques ranging
from semi-definite programming relaxations (Raghunathan
et al., 2018), mixed integer linear programming (Tjeng et al.,
2019), and duality (Dvijotham et al., 2018; Wong & Kolter,
2018; Wong et al., 2018). Provable defenses are able to
tie verification into training non-trivial deep networks by
backpropagating through certificates, which are generated
with duality-based bounds (Wong & Kolter, 2018; Wong
et al., 2018), abstract interpretations (Mirman et al., 2018),
and interval bound propagation (Gowal et al., 2018). These
methods have subsequently inspired new heuristic training
defenses, where the resulting models can be independently
verified as robust (Croce et al., 2018; Xiao et al., 2019).
Notably, some of these approaches are not overly reliant on
specific types of perturbations (e.g. duality-based bounds).
Despite their generality, these certificates have only been
trained and evaluated in the context of `∞ and `2 balls, and
we believe this is due in large part to a lack of alternatives.

Highly relevant to this work are attacks that lie outside the
traditional `p ball of imperceptible noise. For example, sim-
ple rotations and translations form a fairly limited set of
perturbations that can be quite large in `p norm, but are
sometimes sufficient in order to fool classifiers (Engstrom
et al., 2017). Other work uses flows to generate spatially
transformed adversarial examples, but lacks a well-defined
threat model (Xiao et al., 2018) and hasn’t been used in
adversarial training. On the other hand, real world adver-
sarial examples do not necessarily conform to the notion of
being “imperceptible”, and need to utilize a stronger adver-
sary that is visible to real world systems. Some examples
include wearing adversarial 3D printed glasses to fool fa-
cial recognition (Sharif et al., 2017), the use of adversarial
graffiti to attack traffic sign classification (Eykholt et al.,
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2018), and printing adversarial textures on objects to attack
image classifiers (Athalye et al., 2018b). While Sharif et al.
(2017) allows perturbations that are physical glasses, the
others use an `p threat model with a larger radius, when a
different threat model could be a more natural description
of adversarial examples that are perceptible on camera.

Last but not least, our paper relies heavily on the Wasser-
stein distance, which has seen applications throughout ma-
chine learning. Used to study monochromatic images in
Peleg et al. (1989), the Wasserstein metric has been suc-
cessfully applied to various vision problems (Rubner et al.,
2000; Snow et al., 2016). The traditional Wasserstein dis-
tance has the drawback of being computationally expensive:
computing a single distance involves solving an optimal
transport problem (a linear program) with a number of vari-
ables quadratic in the input dimension. However, it was
shown that by subtracting an entropy regularization term,
one can compute approximate Wasserstein distances ex-
tremely quickly using the Sinkhorn iteration (Cuturi, 2013),
later shown to run in near-linear time (Altschuler et al.,
2017). Our work can be viewed as a special case of unbal-
anced optimal transport (Chizat et al., 2016), however in
the context of projected gradient descent instead of gradi-
ent flows. Relevant but orthogonal to our work, is that of
Sinha et al. (2018) on achieving distributional robustness.
While we both use the Wasserstein distance in the context of
adversarial training, the approach is quite different: Sinha
et al. (2018) use the Wasserstein distance to perturb the un-
derlying data distribution, whereas we use the Wasserstein
distance as an attack model for perturbing each example.

Contributions This paper takes a step back from using `p
as a perturbation metric, and proposes using the Wasserstein
distance instead as an equivalently general but qualitatively
different way of generating adversarial examples. To tackle
the computational complexity of projecting onto a Wasser-
stein ball, we use ideas from the Sinkhorn iteration (Cuturi,
2013) to derive a fast method for an approximate projection.
Specifically, we show that subtracting a similar entropy-
regularization term to the projection problem results in a
Sinkhorn-like algorithm, and using local transport plans
makes the procedure tractable for generating adversarial
images. In contrast to `∞ and `2 perturbations, we find
that the Wasserstein metric generates adversarial examples
whose perturbations have inherent structure reflecting the
actual image itself (see Figure 2 for a comparison). We
demonstrate the efficacy of this attack on standard models,
models trained against this attack, and provably robust mod-
els (against `∞ attacks) on MNIST and CIFAR10 datasets.
While the last of these models are not trained to be robust
against this attack, we observe that some (but not all) ro-
bustness empirically transfers over to protection against the
Wasserstein attack. More importantly, we show that while
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Figure 2. A comparison of a Wasserstein (top) vs an `∞ (bottom)
adversarial example for an MNIST classifier (for ε = 0.4 and 0.3
respectively), showing the original image (left), the added pertur-
bation (middle), and the perturbed image (right). Both examples
are misclassified as zero. We find that the Wasserstein perturbation
has a structure reflecting the actual content of the image, whereas
the `∞ perturbation also attacks the background pixels.

the Wasserstein ball does fit naturally into duality based
frameworks for generating and training against certificates,
there is a fundamental roadblock preventing these methods
from generating non-vacuous bounds on Wasserstein balls.

3. Preliminaries
PGD-based adversarial attacks The most common
method of creating adversarial examples is to use a vari-
ation of projected gradient descent. Specifically, let (x, y)
be a datapoint and its label, and let B(x, ε) be some ball
around x with radius ε (the threat model for the adversary).
We first define the projection operator onto B(x, ε) to be

proj
B(x,ε)

(w) = arg min
z∈B(x,ε)

‖w − z‖22 (1)

which finds the point closest (in Euclidean space2) to the
input w that lies within the ball B(x, ε). Then, for some
step size α and some loss ` (e.g. cross-entropy loss), the
algorithm consists of the following iteration:

x(t+1) = proj
B(x,ε)

(
x(t) + arg max

‖v‖≤α
vT∇`(x(t), y)

)
(2)

where x(0) = x or any randomly initialized point within
B(x, ε). This is sometimes referred to as projected steepest
descent, which is used to generated adversarial examples
since the standard gradient steps are typically too small. If
we consider the `∞ ball B∞(x, ε) = {x+ ∆ : ‖∆‖∞ ≤ ε}
and use steepest descent with respect to the `∞ norm, then
we recover the Basic Iterative Method originally presented
by Kurakin et al. (2017).

2The use of Euclidean metric in the objective is specific to
the setting of projected gradient descent, irrespective of the set
B(x, ε) being projected onto. Proximal operators with respect to
Wasserstein instead of Euclidean distances are used in gradient flow
problems (Jordan et al., 1998; Peyré, 2015), but are not relevant to
our setting.
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Algorithm 1 An epoch of adversarial training for a loss
function `, classifier fθ with parameters θ, and step size
parameter α for some ball B.

input: Training data (xi, yi), i = 1 . . . n
for i = 1 . . . n do

// Run PGD adversary
xadv := xi
for t = 1 . . . T do
δ := arg max‖v‖≤α v

T∇`(xadv, yi)
xadv := projB(xi,ε) (xadv + δ)

end for
// Backpropagate with xadv , e.g. with SGD
Update θ with∇`(fθ(xadv), yi)

end for

Adversarial training One of the heuristic defenses that
works well in practice is to use adversarial training with
a PGD adversary. Specifically, instead of minimizing the
loss evaluated at a example x, we minimize the loss on
an adversarially perturbed example xadv, where xadv is
obtained by running the projected gradient descent attack
for the ball B(x, ε) for some number of iterations, as shown
in Algorithm 1. Taking B(x, ε) to be an `∞ ball recovers
the procedure used by Madry et al. (2018).

4. Wasserstein Adversarial Examples
The crux of this work relies on offering a fundamentally
different type of adversarial example from typical, `p per-
turbations: the Wasserstein adversarial example. Informally,
for images, these are examples that have been perturbed
by moving pixel mass short distances. Unlike `p balls, this
includes standard image transformations (rotations, transla-
tions, distortions), making the Wasserstein distance a more
natural metric for images in both monochromatic and RGB
image problems (Peleg et al., 1989; Rubner et al., 2000).

4.1. Wasserstein distance

We first define the most crucial component of this work, an
alternative metric to `p distances. The Wasserstein distance
(also known as the Earth mover’s distance) is an optimal
transport problem that can be understood in the context of
distributions as the minimum cost of moving probability
mass to change one distribution into another. When applied
to images, this can be interpreted as the cost of moving
pixel mass from one pixel to another another, where the cost
increases with pixel distance.

More specifically, let x, y ∈ Rn+ be non-negative data points
such that

∑
i xi =

∑
j yj = 1, so images and other inputs

need to be normalized, and let C ∈ Rn×n+ be some non-
negative cost matrix where Cij encodes the cost of moving
mass from xi to yj (e.g. the distance between two pixels).

Then, the Wasserstein distance dW(x, y) is defined to be

dW(x, y) = min
Π∈Rn×n

+

〈Π, C〉

subject to Π1 = x, ΠT 1 = y

(3)

where the minimization is over transport plans Π, whose
entries Πij encode how much mass moves from xi to yj .
Then, we can define the Wasserstein ball with radius ε as

BW(x, ε) = {y : dW(x, y) ≤ ε, y ≥ 0} (4)

4.2. Projection onto the Wasserstein Ball

In order to generate Wasserstein adversarial examples, we
can run the projected gradient descent attack from Equation
(2), dropping in the Wasserstein ball BW from Equation (4)
in place of B. However, while projections onto regions such
as `∞ and `2 balls are straightforward and have closed form
solutions, simply computing the Wasserstein distance itself
requires solving an optimization problem. Thus, the first
natural requirement to generating Wasserstein adversarial
examples is to derive an efficient way to project onto the
Wasserstein ball. Specifically, projecting w onto a Wasser-
stein ball around x with radius ε and transport cost matrix
C can be written as the following optimization problem:

minimize
z∈Rn

+,Π∈R
n×n
+

1

2
‖w − z‖22

subject to Π1 = x, ΠT 1 = z

〈Π, C〉 ≤ ε

(5)

While we could directly solve this optimization problem
(using an off-the-shelf quadratic programming solver), this
is prohibitively expensive to do for every iteration of pro-
jected gradient descent, especially since there is a quadratic
number of variables. However, Cuturi (2013) showed that
the standard Wasserstein distance problem from Equation
(3) can be approximately solved efficiently by subtracting
an entropy regularization term on the transport plan W , and
using the Sinkhorn-Knopp matrix scaling algorithm. Mo-
tivated by these results, instead of solving the projection
problem in Equation (5) exactly, the key contribution that
allows us to do the projection efficiently is to instead solve
the following entropy-regularized projection problem:

minimize
z∈Rn

+,Π∈R
n×n
+

1

2
‖w − z‖22 +

1

λ

∑
ij

Πij log(Πij)

subject to Π1 = x, ΠT 1 = z

〈Π, C〉 ≤ ε.

(6)

Although this is an approximate projection onto the Wasser-
stein ball, importantly, the looseness in the approximation is
only in finding the projection z which is closest (in `2 norm)
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to the original example x. All feasible points, including the
optimal solution, are still within the actual ε-Wasserstein
ball, so examples generated using the approximate projec-
tion are still within the Wasserstein threat model. Using
the method of Lagrange multipliers, we can introduce dual
variables (α, β, ψ) and derive an equivalent dual problem in
Lemma 1 (the proof is deferred to Appendix A.1).
Lemma 1. The dual of the entropy-regularized Wasserstein
projection problem in Equation (6) is

maximize
α,β∈Rn,ψ∈R+

g(α, β, ψ) (7)

where

g(α, β, ψ) =− 1

2λ
‖β‖22 − ψε+ αTx+ βTw

−
∑
ij

exp(αi) exp(−ψCij − 1) exp(βj)
(8)

Note that the dual problem here differs from the traditional
dual problem for Sinkhorn iterates by having an additional
quadratic term on β and an additional dual variable ψ.
Nonetheless, we can still derive a Sinkhorn-like algorithm
by performing block coordinate ascent over the dual vari-
ables (the full derivation can be found in Appendix A.3).
Specifically, maximizing g with respect to α results in

arg max
αi

g(α, β, ψ) =

log (xi)− log

∑
j

exp(−ψCij − 1) exp(βj)

 ,
(9)

which is identical (up to a log transformation of variables)
to the original Sinkhorn iterate proposed in Cuturi (2013).
The maximization step for β can also be done analytically
with

arg max
βj

g(α, β, ψ) =

λwj −W

(
λ exp(λwj)

∑
i

exp(αi) exp(−ψCij − 1)

)
(10)

whereW is the LambertW function, which is defined as the
inverse of f(x) = xex. Finally, since ψ cannot be solved
for analytically, we can perform the following Newton step

ψ′ = ψ − t · ∂g/∂ψ

∂2g/∂ψ2
(11)

where

∂g/∂ψ = −ε+
∑
ij

exp(αi)Cij exp(−ψCij) exp(βj)

∂2g/∂ψ2 = −
∑
ij

exp(αi)C
2
ij exp(−ψCij) exp(βj)

(12)

Algorithm 2 Projected Sinkhorn iteration to project x onto
the ε Wasserstein ball around y. We use · to denote element-
wise multiplication. The log and exp operators also apply
element-wise.

input: x,w ∈ Rn, C ∈ Cn×n, λ ∈ R
Initialize αi, βi := log(1/n) for i = 1, . . . , n and ψ := 1
u, v := exp(α), exp(β)
while α, β, ψ not converged do

// update K
Kψ := exp(−ψC − 1)

// block coordinate descent iterates
α := log(x)− log(Kψv)
u := exp(α)
β := λw −W

(
uTKψ · λ exp(λw)

)
v := exp(β)

// Newton step
g := −ε+ uT (C ·Kψ)v
h := −uT (C · C ·Kψ)v

// ensure ψ ≥ 0
α := 1
while ψ − αg/h < 0 do
α := α/2

end while
ψ := ψ − αg/h

end while
return: w − β/λ

and where t is small enough such that ψ′ ≥ 0. Once we
have solved the dual problem, we can recover the primal
solution (to get the actual projection), which is described in
Lemma 2 and proved in Appendix A.2.

Lemma 2. Suppose α∗, β∗, ψ∗ maximize the dual problem
g in Equation (8). Then,

z∗i = wi − βi/λ
Π∗ij = exp(α∗i ) exp(−ψ∗Cij − 1) exp(β∗j )

(13)

are the corresponding solutions that minimize the primal
problem in Equation (6).

The whole algorithm can then be vectorized and imple-
mented as Algorithm 2, which we call projected Sinkhorn
iterates. The algorithm uses a simple line search to ensure
that the constraint ψ ≥ 0 is not violated. Each iteration
has 8 O(n2) operations (matrix-vector product or matrix-
matrix element-wise product), in comparison to the original
Sinkhorn iteration which has 2 matrix-vector products. A
full derivation of the algorithm and an explanation of how
this is can be interpreted as a matrix-scaling algorithm can
be found in Appendix A.3.
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Table 1. Classification accuracies for models used in the experi-
ments.

DATA SET MODEL NOMINAL ACCURACY

MNIST STANDARD 98.90%
BINARIZE 98.73%
ROBUST 98.20%
ADV. TRAINING 96.95%

CIFAR10 STANDARD 94.70%
ROBUST 66.33%
ADV. TRAINING 80.69%

4.3. Local Transport Plans

The quadratic runtime dependence on input dimension can
grow quickly, and this is especially true for images. Rather
than allowing transport plans to move mass to and from
any pair of pixels, we instead restrict the transport plan to
move mass only within a k × k region of the originating
pixel, similar in spirit to a convolutional filter. As a result,
the cost matrix C only needs to define the cost within a
k×k region, and we can utilize tools used for convolutional
filters to efficiently apply the cost to each k×k region. This
reduces the computational complexity of each iteration from
O(n2) to O(nk2). For images with more than one channel,
we can use the same cost matrix for each channel and only
allow transport within a channel, so the cost matrix remains
k × k. For 5 × 5 local transport plans on CIFAR10, the
projected Sinkhorn iterates typically converge in around
30-40 iterations, taking about 0.02 seconds per iteration
on a Titan X for minibatches of size 100. Note that if we
use a cost matrix C that reflects the 1-Wasserstein distance,
then this problem could be solved even more efficiently
using Kantrovich duality, however we use our formulation
to enable more general p-Wasserstein distances, or even
non-standard cost matrices.

Projected gradient descent on the Wasserstein ball
With local transport plans, the method is fast enough to be
used within a projected gradient descent routine to generate
adversarial examples on images, and further used for ad-
versarial training as in Algorithm 1 (using steepest descent
with respect to `∞ norm), except that we do an approximate
projection onto the Wasserstein ball using Algorithm 2.

5. Results
In this section, we run the Wasserstein examples through
a range of typical experiments in the literature of adver-
sarial examples. Table 1 summarizes the nominal er-
ror rates obtained by all considered models. All exper-
iments can be run on a single GPU, and all code for
the experiments is available at https://github.com/
locuslab/projected sinkhorn.

Architectures For MNIST we used the convolutional
ReLU architecture used in Wong & Kolter (2018), with
two convolutional layers with 16 and 32 4× 4 filters each,
followed by a fully connected layer with 100 units, which
achieves a nominal accuracy of 98.89%. For CIFAR10 we
focused on the standard ResNet18 architecture (He et al.,
2016), which achieves a nominal accuracy of 94.76%.

Hyperparameters For all experiments in this section, we
focused on using 5× 5 local transport plans for the Wasser-
stein ball, and used an entropy regularization constant of
1000 for MNIST and 3000 for CIFAR10. The cost matrix
used for transporting between pixels is taken to be the 2-
norm of the distance in pixel space (e.g. the cost of going
from pixel (i, j) to (k, l) is

√
|i− k|2 + |j − l|2), which

makes the optimal transport cost a metric more formally
known as the 1-Wasserstein distance. For more extensive
experiments on using different sizes of transport plans, dif-
ferent regularization constants, and different cost matrices,
we direct the reader to Appendix C.

Evaluation at test time We use the following evaluation
procedure to attack models with projected gradient descent
on the Wasserstein ball. For each MNIST example, we start
with ε = 0.3 and increase it by a factor of 1.1 every 10
iterations until either an adversarial example is found or
until 200 iterations have passed, allowing for a maximum
perturbation radius of ε = 2. For CIFAR10, we start with
ε = 0.001 and increase it by a factor of 1.17 until either and
adversarial example is found or until 400 iterations have
passed, with a maximum perturbation radius of ε = 0.53.

5.1. MNIST

For MNIST, we consider a standard model, a model with
binarization, a model provably robust to `∞ perturbations of
at most ε = 0.1, and an adversarially trained model. Figure
3 contains a visual comparison of Wasserstein adversarial
examples generated for each model. The susceptibility of
each model to the Wasserstein attack is plotted in Figure 4.

Standard model and binarization For MNIST, despite
restricting the transport plan to local 5× 5 regions, a stan-
dard model is easily attacked by Wasserstein adversarial
examples. In Figure 4, we see that Wasserstein attacks with
ε = 0.5 can successfully attack a typical MNIST classifier
50% of the time, which goes up to 94% for ε = 1. A Wasser-
stein radius of ε = 0.5 can be intuitively understood as mov-
ing 50% of the pixel mass over by 1 pixel, or alternatively
moving less than 50% of the pixel mass more than 1 pixel.
Furthermore, while preprocessing images with binarization
is often seen as a way to trivialize adversarial examples on
MNIST, we find that it performs only marginally better than
the standard model against Wasserstein perturbations.

https://github.com/locuslab/projected_sinkhorn
https://github.com/locuslab/projected_sinkhorn
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Figure 3. Wasserstein adversarial examples on the MNIST dataset
for the four models. Note that the `∞ robust and the adversarially
trained models require a much larger ε radius for the Wasserstein
ball in order to generate an adversarial example. Each model
classifies the corresponding perturbed example as an 8 instead of a
5, except for the first one which classifies as a 6.
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Figure 4. Adversarial accuracy of various models on MNIST when
attacked by a Wasserstein adversary over varying sizes of ε-
Wasserstein balls. We find that all models not trained with adver-
sarial training against this attack eventually achieve 0% accuracy,
however we do observe that models trained to be provably robust
against `∞ perturbations are still somewhat more robust than both
standard models and models utilizing binarization as a defense.

`∞ robust model We also run the attack on the model
trained by Wong et al. (2018), which is guaranteed to be
provably robust against `∞ perturbations with ε ≤ 0.1.
While not specifically trained against Wasserstein perturba-
tions, in Figure 4 we find that it is substantially more robust
than either the standard or the binarized model, requiring a
significantly larger ε to have the same attack success rate.

Adversarial training Finally, we apply this attack as an
inner procedure within an adversarial training framework.
To save on computation, during training we adopt a weaker
adversary and use 50 iterations of projected gradient descent.
We also let ε grow within a range and train on the first
adversarial example found (essentially a budget version of
the attack used at test time). Details regarding this ε schedule
and also the learning parameters used are in Appendix B.1.
We find that the adversarially trained model is empirically
the most well defended against this attack of all four models,
and cannot be attacked down to 0% accuracy (Figure 4).
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Figure 5. Adversarial accuracy of various models on the CIFAR10
dataset when attacked by a Wasserstein adversary, with the adver-
sarially trained networks being the most robust at ε = 0.1.
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Figure 6. Wasserstein adversarial examples for CIFAR10 on a typ-
ical ResNet18 for all 10 classes. The perturbations here represents
the total change across all three channels, where total change is
plotted within the range ±0.165 (the maximum total change ob-
served in a single pixel) for images scaled to [0,1].

5.2. CIFAR10

For CIFAR10, we consider a standard model, a model prov-
ably robust to `∞ perturbations of at most ε = 2/255, and
an adversarially trained model. We plot the susceptibility of
each model to the Wasserstein attack in Figure 5.

Standard model We find that for a standard ResNet18
CIFAR10 classifier, a perturbation radius of as little as 0.01
is enough to misclassify 25% of the examples, while a radius
of 0.1 is enough to fool the classifier 97% of the time (Figure
5). Despite being such a small ε, we see in Figure 6 that the
structure of the perturbations still reflect the actual content of
the images, though certain classes require larger magnitudes
of change than others. Targeted attacks succeed 95% of the
time for all target classes at ε = 0.5.

`∞ robust model We further empirically evaluate the at-
tack on a model that was trained to be provably robust
against `∞ perturbations. We use the model from Wong
et al. (2018), which is trained to be provably robust against
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`∞ perturbations of at most ε = 2/255. Further note that
this CIFAR10 model actually is a smaller ResNet than the
ResNet18 architecture considered in this paper, and con-
sists of 4 residual blocks with 16, 16, 32, and 64 filters.
Nonetheless, we find that while the model suffers from
poor nominal accuracy (achieving only 66% accuracy on
unperturbed examples as noted in Table 1), the robustness
against `∞ attacks remarkably seems to transfer quite well
to robustness against Wasserstein attacks in the CIFAR10
setting, achieving 61% adversarial accuracy for ε = 0.1 in
comparison to 3% for the standard model.

Adversarial training For CIFAR10, we use a similar
scheme that was used for MNIST: we adopt a weaker ad-
versary that uses 50 iterations of projected gradient descent
during training and allow ε to grow (specific details can
be found in Appendix B.2). We find that adversarial train-
ing here is also able to defend against this attack, and at
the same threshold of ε = 0.1, we find that the adversarial
accuracy has been improved from 3% to 76%.

5.3. Provable Defenses against Wasserstein
Perturbations

Lastly, we present some analysis on how this attack fits into
the context of provable defenses, along with a negative result
demonstrating a fundamental gap that needs to be solved.
The Wasserstein attack can be naturally incorporated into
duality based defenses: Wong et al. (2018) show that to use
their certificates to defend against other inputs, one only
needs to solve the following optimization problem:

max
x∈B(x,ε)

−xT y (14)

for some constant vector y and for some perturbation region
B(x, ε) (a similar approach can be taken to adapt the dual
verification from Dvijotham et al. (2018)). For the Wasser-
stein ball, this is highly similar to the problem of projecting
onto the Wasserstein ball from Equation (6), with a linear
objective instead of a quadratic objective and fewer vari-
ables. In fact, a Sinkhorn-like algorithm can be derived to
solve this problem, which ends up being a simplified version
of Algorithm 2 (this is shown in Appendix D).

However, there is a fundamental obstacle towards generat-
ing provable certificates against Wasserstein attacks: these
defenses (and many other, non-duality based approaches)
depend heavily on propagating interval bounds from the in-
put space through the network, in order to efficiently bound
the output of ReLU units. This concept is inherently at odds
with the notion of Wasserstein distance: a “small” Wasser-
stein ball can use a low-cost transport plan to move all the
mass at a single pixel to its neighbors, or vice versa. As a
result, when converting a Wasserstein ball to interval con-
straints, the interval bounds immediately become vacuous:

each individual pixel can attain their minimum or maximum
value under some ε cost transport plan. In order to guarantee
robustness against Wasserstein adversarial attacks, signifi-
cant progress must be made to overcome this limitation.

6. Conclusion
In this paper, we have presented a new, general threat model
for adversarial examples based on the Wasserstein distance,
a well-defined metric that captures a kind of perturbation
that is fundamentally different from traditional `p pertur-
bations. To generate these examples, we derived an algo-
rithm for fast, approximate projection onto the Wasserstein
ball that exploits local transport plans on images. We suc-
cessfully attacked standard networks, showing that these
adversarial examples are structurally perturbed according
to the content of the image, and demonstrated the empirical
effectiveness of adversarial training under this threat model.
Finally, we observed that provably robust networks (to `∞
attacks) are more robust than the standard networks against
Wasserstein attacks, however we show that the current state
of provable defenses is insufficient to directly apply to the
Wasserstein ball due to their reliance on interval bounds.

We believe overcoming this roadblock is crucial to the de-
velopment of verifiers or provable defenses against not just
the Wasserstein attack, but also to improve the robustness of
classifiers against other attacks that do not naturally convert
to interval bounds (e.g. `0 or `1 attacks). Whether we can
develop efficient verification or provable training methods
that do not rely on interval bounds remains an open question.

Perhaps the most natural future direction for this work is
to begin to understand the properties of Wasserstein adver-
sarial examples and what we can do to mitigate them, even
if only at a heuristic level. However, at the end of the day,
the Wasserstein threat model defines just one example of a
convex region capturing structure that is different from `p
balls. By no means have we characterized all reasonable
adversarial perturbations, and so a significant gap remains in
determining how to rigorously define general classes of ad-
versarial examples that can characterize natural phenomena
different from the `p and Wasserstein balls.

Finally, although we focused primarily on adversarial exam-
ples, the method of projecting onto Wasserstein balls may
be applicable outside of deep learning. Projection opera-
tors play a major role in optimization algorithms beyond
projected gradient descent (e.g. ADMM and alternating pro-
jections). Even more generally, the techniques in this paper
could be used to derive Sinkhorn-like algorithms for classes
of problems that consider Wasserstein constrained variables.
Lastly, while the projected Sinkhorn iteration is guaranteed
to converge, deriving specific rates of convergence similar
to the original Sinkhorn iteration is an open problem.
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