
Imitation Learning from Imperfect Demonstration

A. Proof for 2IWIL
A.1. Proof of Theorem 4.1

Theorem. The classification risk (6) can be equivalently expressed as

RSC,`(g) =Ex,r∼q[r(`(g(x))− `(−g(x))) + (1− β)`(−g(x))] + Ex∼p[β`(−g(x))],

where β ∈ [0, 1] is an arbitrary weight.

Proof. Similar to Eq. (4), we may express p(x|y = −1) by the Bayes’ rule as

p(x|y = −1) =
(1− r(x))p(x)

1− α
. (11)

Consequently, the statement can be confirmed as follows:

RSC,`(g) =

∫
αp(x|y = +1)`(g(x)) + (1− α)p(x|y = −1)`(−g(x))dx

=

∫
α
r(x)p(x)

α
`(g(x)) + (1− α)

(1− r(x))p(x)

1− α
`(−g(x))dx (∵ Eqs. (4) and (11))

=

∫
p(x)r(x)`(g(x)) + p(x)(1− r(x))`(−g(x))dx

=

∫
{r`(g(x)) + (1− r)`(−g(x))} q(x, r)dxdr

=Ex,r∼q[r`(g(x)) + (1− r)`(−g(x))]

=Ex,r∼q

r`(g(x)) + (1− r)`(−g(x)) + β`(−g(x))− β`(−g(x))︸ ︷︷ ︸
=0


=Ex,r∼q[r(`(g(x))− `(−g(x))) + (1− β)`(−g(x))] + Ex∼p[β`(−g(x))].

A.2. Proof of Proposition 4.2

Proposition. Let σcov denote the covariance between n−1c

∑nc

i=1 ri{`(g(xc,i))− `(−g(xc,i))} and n−1c

∑nc

i=1 `(−g(xc,i)).
For a fixed g, the estimator R̂SC,`(g) of Eq. (7) has the minimum variance when β = nu

nc+nu
+ σcov

Var(`(−g(x)))
ncnu

nc+nu
among

estimators in the form of Eq. (7) for β ∈ [0, 1].

Proof. Let

µ ,EDc,Du [R̂SC,`(g)],

µ1 ,EDc

[
1

nc

nc∑
i=1

`(−g(xc,i))

]
= EDu

[
1

nu

nu∑
i=1

`(−g(xu,i))

]
= Ex∼p[`(−g(x))],

w1 ,EDc

[
1

nc

nc∑
i=1

r(xi)(`(g(xc,i))− `(−g(xc,i)))

]
,

w2 ,EDc

( 1

nc

nc∑
i=1

r(xi)(`(g(xc,i))− `(−g(xc,i)))

)2
 ,

λ ,EDc

[(
1

nc

nc∑
i=1

r(xi)(`(g(xc,i)− `(−g(xc,i))))

)(
1

nc

nc∑
i=1

`(−g(xc,i))

)]
,

σcov ,Cov

(
1

nc

nc∑
i=1

ri(`(g(xc,i)− `(−g(xc,i)))),
1

nc

nc∑
i=1

`(−g(xc,i))

)
= λ− w1µ1
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We may represent EDc

[(
1
nc

∑nc

i=1 `(−g(xc,i))
)2]

in terms of Var(`(−g(x))) and µ1:

EDc

( 1

nc

nc∑
i=1

`(−g(xc,i))

)2
 =

1

n2c
EDc

 nc∑
i=1

`(−g(xc,i))
2 + 2

nc∑
i=1

a

i−1∑
j=1

`(−g(xc,i))`(−g(xc,j))


=

1

n2c

(
ncEx∼p

[
`(−g(x))2

]
+ nc(nc − 1)Ex∼p [`(−g(x))]

2
)

=
1

nc
Var(`(−g(x))) + µ2

1.

Similarly, we obtain EDu
[( 1
nu

∑nu

i=1 `(−g(xu,i)))
2] = n−1u Var(`(−g(x))) + µ2

1. As a result,

Var(R̂SC,`(g))

=EDc,Du

[(
R̂SC,`(g)

)2]
− µ2

=EDc,Du

 1

nc

nc∑
i=1

ri(`(g(xc,i))− `(−g(xc,i)))︸ ︷︷ ︸
(A)

+(1− β)
1

nc

nc∑
i=1

`(−g(xc,i))︸ ︷︷ ︸
(B)

+β
1

nu

nu∑
i=1

`(−g(xu,i))︸ ︷︷ ︸
(C)

− µ2

= w2︸︷︷︸
(A)2

+2(1− β) λ︸︷︷︸
(A)(B)

+2β w1µ1︸ ︷︷ ︸
(A)(C)

+(1− β)2
(

1

nc
Var(`(−g(x))) + µ2

1

)
︸ ︷︷ ︸

(B)2

+ 2(1− β)β µ2
1︸︷︷︸

(B)(C)

+β2

(
1

nu
Var(`(−g(x))) + µ2

1

)
︸ ︷︷ ︸

(C)2

−µ2

=

(
w2 + 2λ− µ2 +

1

nc
Var(`(−g(x))) + µ2

1

)
︸ ︷︷ ︸

const.w.r.t.β

−2

(
Var(`(−g(x)))

nc
+ σcov

)
β + Var(`(−g(x)))

(
nc + nu
ncnu

)
β2

=Var(`(−g(x)))

(
nc + nu
ncnu

)(
β −

(
nu

nc + nu
+

σcov
Var(`(−g(x)))

ncnu
nc + nu

))2

+ const.

Since Var(`(−g(x)))
(
nc+nu

ncnu

)
≥ 0, and β ∈ [0, 1], Var(R̂SC,`(g)) is minimized when β =

clip[0,1]

(
nu

nc+nu
+ σcov

Var(`(−g(x)))
ncnu

nc+nu

)
. Note that clip[l,u](v) = min{max{v, l}, u}.

A.3. Proof of Theorem 4.3

Theorem. Let G be the hypothesis class we use. Assume that the loss function ` is ρ`-Lipschitz continuous, and that
there exists a constant C` > 0 such that supx∈X ,y∈{±1} |`(yg(x))| ≤ C` for any g ∈ G. Let ĝ , arg min

g∈G
R̂SC,`(g) and

g∗ , arg min
g∈G

RSC,`(g). For δ ∈ (0, 1), with probability at least 1− δ over repeated sampling of data for training ĝ,

RSC,`(ĝ)−RSC,`(g
∗) ≤ 16ρ`((3− β)Rnc

(G) + βRnu
(G)) + 4C`

√
log(8/δ)

2

(
(3− β)n

− 1
2

c + βn
− 1

2
u

)
.
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Proof. Note that ĝ and g∗ are the minimizers of R̂SC,`(g) and RSC,`(g), respectively. Then,

RSC,`(ĝ)−RSC,`(g
∗) = RSC,`(ĝ)− R̂SC,`(ĝ) + R̂SC,`(ĝ)− R̂SC,`(g

∗) + R̂SC,`(g
∗)−RSC,`(g

∗)

≤ sup
g∈G

(
RSC,`(g)− R̂SC,`(g)

)
+ 0 + sup

g∈G

(
R̂SC,`(g)−RSC,`(g)

)
≤ 2 sup

g∈G

∣∣∣R̂SC,`(g)−RSC,`(g)
∣∣∣ .

From now on, our goal is to bound the uniform deviation supg∈G

∣∣∣R̂SC,`(g)−RSC,`(g)
∣∣∣. Since

sup
g∈G

∣∣∣R̂SC,`(g)−RSC,`(g)
∣∣∣

≤ sup
g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

{ri(`(g(xc,i))− `(−g(xc,i))) + (1− β)`(−g(xc,i))}

− Ex,r∼q [r(`(g(x))− `(−g(x))) + (1− β)`(−g(x))]
∣∣∣

+ β sup
g∈G

∣∣∣∣∣ 1

nu

nu∑
i=1

`(−g(xu,i))− Ex∼p [`(−g(x))]

∣∣∣∣∣
≤ sup

g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

∣∣∣∣∣+ sup
g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

ri`(−g(xc,i))− Ex,r∼q[r`(−g(x))]

∣∣∣∣∣
+ (1− β) sup

g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

`(−g(xc,i))− Ex,r∼q[`(−g(x))]

∣∣∣∣∣+ β sup
g∈G

∣∣∣∣∣ 1

nu

nu∑
i=1

`(−g(xu,i))− Ex∼p[`(−g(x))]

∣∣∣∣∣ ,
(12)

all we need to do is to bound four terms appearing in the RHS independently, which can be done by McDiarmid’s
inequality (McDiarmid, 1989). For the first term, since

∑nc

i=1 ri`(g(xc,i))− Ex,r∼q[r`(g(x))] is the bounded difference
with a constant CL/nc for every replacement of xc,i, McDiarmid’s inequality state that

Pr

[
sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)
− E

[
sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)]
≥ ε

]

≤ exp

(
− 2ε2

C2
L/nc

)
,

which is equivalent to

sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)

≤ E

[
sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)]
+ CL

√
log(8/δ)

2nc
,

with probability at least 1− δ/8. Following the symmetrization device (Lemma 6.3 in Ledoux & Talagrand (1991)) and
Ledoux-Talagrand’s contraction inequality (Theorem 4.12 in Ledoux & Talagrand (1991)), we obtain

E

[
sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)]
≤ 2Rnc

(` ◦ G) (symmetrization)

≤ 4ρLRnc
(G) (contraction).

Note that 0 ≤ ri ≤ 1 for i = 1, . . . , nc. Thus, one-sided uniform deviation bound is obtained: with probability at least
1− δ/8,

sup
g∈G

(
1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

)
≤ 4ρLRnc

(G) + CL

√
log(8/δ)

2nc
.



Imitation Learning from Imperfect Demonstration

Applying it twice, the two-sided uniform deviation bound is obtained: with probability at least 1− δ/4,

sup
g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

ri`(g(xc,i))− Ex,r∼q[r`(g(x))]

∣∣∣∣∣ ≤ 8ρLRnc(G) + 2CL

√
log(8/δ)

2nc
.

Similarly, the remaining three terms in the RHS of Eq. (12) can be bounded. Since the second, third, and fourth terms
are the bounded differences with constants CL/nc, CL/nc, and CL/nu, respectively, the following inequalities hold with
probability at least 1− δ/4:

sup
g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

ri`(−g(xc,i))− Ex,r∼q[r`(−g(x))]

∣∣∣∣∣ ≤ 8ρLRnc
(G) + 2CL

√
log(8/δ)

2nc
,

sup
g∈G

∣∣∣∣∣ 1

nc

nc∑
i=1

`(−g(xc,i))− Ex,r∼q[`(−g(x))]

∣∣∣∣∣ ≤ 8ρLRnc
(G) + 2CL

√
log(8/δ)

2nc
,

sup
g∈G

∣∣∣∣∣ 1

nu

nu∑
i=1

`(−g(xu,i))− Ex∼p[`(−g(x))]

∣∣∣∣∣ ≤ 8ρLRnu
(G) + 2CL

√
log(8/δ)

2nu
.

After all, we can bound the original estimation error: with probability at least 1− δ,

RSC,`(ĝ)−RSC,`(g
∗) ≤ 16ρL((3− β)Rnc

(G) + βRnu
(G)) + 4CL

√
log(8/δ)

2

(
(3− β)n

− 1
2

c + βn
− 1

2
u

)
.

B. Proof for IC-GAIL
B.1. Proof of Theorem 4.4

Theorem. Denote that

V (πθ, Dw) = Ex∼p[log(1−Dw(x))] + Ex∼p′ [logDw(x)],

and that C(πθ) = maxw V (πθ, Dw). Then, V (πθ, Dw) is maximized when Dw = p′

p+p′ (, D∗w), and its maximum value is
C(πθ) = − log 4 + 2JSD(p‖p′). Thus, C(πθ) is minimized if and only if pθ = popt almost everywhere.

Proof. Given a fixed agent policy πθ, the discriminator maximize the quantity V (πθ, Dw), which can be rewritten in the
same way we did in Eq. (13), such as

V (πθ, Dw) = Ex∼p[log(1−Dw(x))] + Ex∼p′ [logDw(x)]

=

∫
p′(x) logDw(x) + p(x) log(1−Dw(x))dx.

This maximum is achieved when Dw(x) = Dw∗(x) = p′(x)
p′(x)+p(x) , with the same discussion as Proposition 1 in Goodfellow

et al. (2014). As a result, we may derive maxw V (πθ, Dw) with D∗w(x),

C(πθ) = V (πθ, D
∗
w) = Ex∼p

[
log

p

p′ + p

]
+ Ex∼p′

[
log

p′

p′ + p

]
,

where p′ = αpθ + (1− α)pnon. Note that C(πθ) = Ex∼p[log 1
2 ] + Ex∼p′ [log 1

2 ] = − log 4 when p′ = p. We may rewrite
C(πθ) as follows:

C(πθ) =Ex∼p
[
log

p

p′ + p

]
+ Ex∼p′

[
log

p′

p′ + p

]
=− log 4 + Ex∼p

[
log

p′

(p′ + p)/2

]
+ Ex∼p′

[
log

p

(p′ + p)/2

]
=− log 4 + 2JSD(p‖p′),
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where JSD(p1‖p2) , 1
2Ep1 [log p1

(p1+p2)/2
] + 1

2Ep2 [log p2
(p1+p2)/2

] is Jensen-Shannon divergence. Since Jensen-Shannon
divergence is greater or equal to zero and it is minimized and only if p′ = p, we obtain that C(πθ) is minimized if and only if

p′ = p⇒ αpθ + (1− α)pnon = αpopt + (1− α)pnon almost everywhere
⇒ pθ = popt almost everywhere.

B.2. Proof of Theorem 4.5

Theorem. V (πθ, Dw) can be transformed to Ṽ (πθ, Dw), which is defined as follows:

Ṽ (πθ, Dw) = Ex∼p[log(1−Dw(x))] + αEx∼pθ [logDw(x)] + Ex,r∼q[(1− r) logDw(x)].

Proof. The statement can be confirmed as follows:

Ex∼p[log(1−Dw(x))] + Ex∼p′ [logDw(x)]

= Ex∼p[log(1−Dw(x))] + αEx∼pθ [logDw(x)] + (1− α)Ex∼pnon [logDw(x)]

= Ex∼p[log(1−Dw(x))] + αEx∼pθ [logDw(x)] + (1− α)Ex,r∼q
[

1− r
1− α

logDw(x)

]
= Ex∼p[log(1−Dw(x))] + αEx∼pθ [logDw(x)] + Ex,r∼q[(1− r) logDw(x)], (13)

where the first identity comes from the definition p′ = αpθ + (1− α)pnon, and the second identity holds since

Ex∼pnon
[logDw(x)] =

∫
logDw(x)pnon(x)dx

=

∫
logDw(x)

1− r(x)

1− α
p(x)dx (note pnon(x) = p(x|y = −1))

=

∫
logDw(x)

1− r
1− α

q(x, r)dxdr

= Ex,r∼q
[

1− r
1− α

logDw(x)

]
.

B.3. Proof of Theorem 4.6

Theorem. Let W be a parameter space for training the discriminator and DW , {Dw | w ∈ W} be its
hypothesis space. Assume that max{supx∈X ,w∈W | logDw(x)|, supx∈X ,w∈W | log(1 − Dw(x))|} ≤ CL, and that
max{supw∈W | logDw(x)− logDw(x′)|, supw∈W | log(1−Dw(x))− log(1−Dw(x′))|} ≤ ρL|x−x′| for any x, x′ ∈ X .
For a fixed agent policy πθ, let Dŵ , arg max

w∈W
V̂ (πθ, Dw) and Dw∗ , arg max

w∈W
V (πθ, Dw). For δ ∈ (0, 1), with

probability at least 1− δ over repeated sampling of data for training Dŵ,

V (πθ, Dw∗)− V (πθ, Dŵ) ≤ 16ρL(Rnu
(DW) + αRna

(DW) + Rnc
(DW)) + 4CL

√
log(6/δ)

2

(
n
− 1

2
u + αn

− 1
2

a + n
− 1

2
c

)
.

Proof. Denote V(w) , V (πθ, Dw) and V̂(w) , V̂ (πθ, Dw). Note that ŵ and w∗ are the minimizers of V(w) and V̂(w),
respectively. Then,

V(w∗)− V(ŵ) = V(w∗)− V̂(w∗) + V̂(w∗)− V̂(ŵ) + V̂(ŵ)− V(ŵ)

≤ sup
w∈W

(
V(w)− V̂(w)

)
+ 0 + sup

w∈W

(
V̂(w)− V(w)

)
≤ 2 sup

w∈W

∣∣∣V̂(w)− V(w)
∣∣∣ .
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From now on, our goal is to bound the uniform deviation supw∈W

∣∣∣V̂(w)− V(w)
∣∣∣. Since

sup
w∈W

∣∣∣V̂(w)− V(w)
∣∣∣ ≤ sup

w∈W

∣∣∣∣∣ 1

nu

nu∑
i=1

log(1−Dw(xu,i))− Ex∼p [log(1−Dw(x))]

∣∣∣∣∣
+ α sup

w∈W

∣∣∣∣∣ 1

na

na∑
i=1

logDw(xa,i)− Ex∼pθ [logDw(x)]

∣∣∣∣∣
+ sup
w∈W

∣∣∣∣∣ 1

nc

nc∑
i=1

(1− ri) logDw(xc,i)− Ex,r∼q [(1− r) logDw(x)]

∣∣∣∣∣ , (14)

three terms appearing in the RHS must be bounded independently, utilizing McDiarmid’s inequality (McDiarmid, 1989).
For the first term, since

∑nu

i=1 log(1 −Dw(xu,i)) − Ex∼p[log(1 −Dw(x))] has the bounded difference property with a
constant CL/nu for every replacement of xu,i, we can conclude by McDiarmid’s inequality that

Pr

[
sup
w∈W

(
nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

)

−E

[
sup
w∈W

nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

]
≥ ε

]
≤ exp

(
− 2ε2

C2
L/nu

)
,

which is equivalent to

sup
w∈W

(
nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

)

≤ E

[
sup
w∈W

nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

]
+ CL

√
log(6/δ)

2nu
,

with probability at least 1 − δ/6. Following symmetrization device (Lemma 6.3 in Ledoux & Talagrand (1991)) and
Ledoux-Talagrand’s contraction inequality (Theorem 4.12 in Ledoux & Talagrand (1991)), we obtain

E

[
sup
w∈W

nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

]
≤ 2Rnu

(log ◦DW) (symmetrization)

≤ 4ρLRnu
(DW). (contraction inequality)

Thus, one-sided uniform deviation bound is obtained: with probability at least 1− δ/6,

sup
w∈W

(
nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

)
≤ 4ρLRnu(DW) + CL

√
log(6/δ)

2nu
.

Applying it twice, the two-sided uniform deviation bound is obtained: with probability at least 1− δ/3,

sup
w∈W

∣∣∣∣∣
nu∑
i=1

log(1−Dw(xu,i))− Ex∼p[log(1−Dw(x))]

∣∣∣∣∣ ≤ 8ρLRnu
(DW) + 2CL

√
log(6/δ)

2nu
.

Similarly, the second and third terms on the RHS of Eq. (14) can be bounded. Since they have the bounded difference
property with constants CL/na and CL/nc, respectively (note that |1 − r(x)| ≤ 1 for any x), both of the following
inequalities hold independently with probability at least 1− δ/3:

sup
w∈W

∣∣∣∣∣
na∑
i=1

logDw(xa,i)− Ex∼pθ [logDw(x)]

∣∣∣∣∣ ≤ 8ρLRna
(DW) + 2CL

√
log(6/δ)

2na
,

sup
w∈W

∣∣∣∣∣
nc∑
i=1

(1− ri) logDw(xc,i)− Ex,r∼q[(1− r) logDw(x)]

∣∣∣∣∣ ≤ 8ρLRnc(DW) + 2CL

√
log(6/δ)

2nc
.
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Combining the above all, we can bound the original estimation error: the following bound holds with probability at least
1− δ,

V(w∗)− V(ŵ) ≤ 16ρL(Rnu(DW) + αRna(DW) + Rnc(DW)) + 4CL

√
log(6/δ)

2

(
n
− 1

2
u + αn

− 1
2

a + n
− 1

2
c

)
.

C. Implementation and Experimental Details
We use the same neural net architecture and hyper-parameters for all tasks. For the architectures of all neural networks, we
use two hidden layers with size 100 and Tanh as activation functions. Please refer to Table 2 for more details. Specification
of each tasks is shown in Table 3, where we show the average return of the optimal and the uniformly random policies. The
average return is used to normalize the performance in Sec. 5 so that 1.0 indicates the optimal policy and 0.0 the random
policy.

Table 2. Hyper-parameters used for all tasks.

HYPER-PARAMETERS VALUE

γ 0.995
τ (GENERALIZED ADVANTAGE ESTIMATION) 0.97
BATCH SIZE 5, 000
LEARNING RATE (VALUE NETWORK) 3× 10−4

LEARNING RATE (DISCRIMINATOR) 1× 10−3

OPTIMIZER ADAM
LOSS FUNCTION (2IWIL) LOGISTIC LOSS

Table 3. Specification of each tasks. Optimal policy and random policy columns indicate the average return.

TASKS S A nu nc OPTIMAL POLICY RANDOM POLICY

HALFCHEETAH-V2 R17 R6 2000 500 3467.32 -288.44
WALKER-V2 R17 R6 1600 400 3694.13 1.91
ANT-V2 R111 R8 480 120 4143.10 -72.30
SWIMMER-V2 R8 R2 20 5 348.99 2.31
HOPPER-V2 R11 R3 16 4 3250.67 18.04

C.1. Performance comparison

The numeric performance of the proposed methods and other baselines are shown in Table 4.

Table 4. Comparison of the proposed methods with other baselines. We report the average normalized return over 5 trials. We show the
best and equivalent methods based on the 5% t-test in bold.

METHODS HALFCHEETAH-V2 ANT-V2 HOPPER-V2 SWIMMER-V2 WALKER2D-V2

OURS (2IWIL) 0.798± 0.019 0.687± 0.073 0.769± 0.2190.769± 0.2190.769± 0.219 0.973± 0.0270.973± 0.0270.973± 0.027 0.675± 0.0980.675± 0.0980.675± 0.098
OURS (IC-GAIL) 0.902± 0.0370.902± 0.0370.902± 0.037 0.850± 0.0770.850± 0.0770.850± 0.077 0.974± 0.0390.974± 0.0390.974± 0.039 0.952± 0.0230.952± 0.0230.952± 0.023 0.695± 0.0390.695± 0.0390.695± 0.039
GAIL (U+C) 0.636± 0.139 0.058± 0.200 0.561± 0.287 0.415± 0.310 0.528± 0.031
GAIL (REWEIGHT) 0.659± 0.077 0.379± 0.196 0.389± 0.183 0.510± 0.298 0.353± 0.122
GAIL (C) 0.342± 0.116 0.178± 0.132 0.314± 0.082 0.445± 0.369 0.234± 0.070
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C.2. Non-negative risk estimator

By observing the risk estimator of Eq. (7), it is possible that the empirical estimation is negative and this may lead to
overfitting (Kiryo et al., 2017). Since we know that the expected risk is nonnegative, we can borrow the idea from Kiryo et al.
(2017) to mitigate this problem by simply adding the max operator to prevent the empirical risk from becoming negative by
first rewriting the empirical risk as

R̂SC,`(g) = R̂+
C(g) + R̂−C,U (g), (15)

where

R̂+
C(g) =

1

nc

nc∑
i=1

r(xc,i)`(g(xc,i)),

and

R̂−C,U (g) =
1

nc

nc∑
i=1

(1− β − r(xi))`(−g(xc,i)) +
1

nu

nu∑
i=1

β`(−g(xu,i)).

Note that R−C,U ≥ 0 holds for all g. However, it is not the case for R̂−C,U (g), which is a potential reason to overfit. Based on
Eq. (15), we achieve the non-negative risk estimator that gives the non-negative empirical risk as follows.

R̂SC,`(g) = R̂+
C(g) + max

{
0, R̂−C,U (g)

}
. (16)

C.3. Ant-v2 Figures
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Figure 4. Learning curves of our 2IWIL and IC-GAIL versus baselines.

We empirically found that when using GAIL-based approaches in Ant-v2 environment, the performance degrades quickly in
early training stages. The uncropped figures are Figs. 4, 5 and 6.
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Figure 5. Learning curves of proposed methods with different standard deviations of Gaussian noise added to confidence. The numbers in
the legend indicate the standard deviation of the Gaussian noise.
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Figure 6. Learning curves of the proposed methods with different number of unlabeled data. The numbers in the legend suggest the
proportion of unlabeled data used as demonstrations.


