
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling

A. Proof of Lemma 1
For convenience, we re-state Lemma 1 here and then give
the proof.

Lemma. For any vector x ∈ Rd, and any matrix A ∈
Rm×d (m < d) with rank m, there exists an Ã ∈ Rm×d
with all singular values being ones, such that the following
two `1-norm minimization problems have the same solution:

P1 : min
x′∈Rd

‖x′‖1 s.t. Ax′ = Ax. (16)

P2 : min
x′∈Rd

‖x′‖1 s.t. Ãx′ = Ãx. (17)

Furthermore, the projected subgradient update of P2 is
given as

x(t+1) = x(t)−αt(I − ÃT Ã)sign(x(t)), x(1) = ÃT Ãx.

A natural choice for Ã is U(AAT )−1/2A, where U ∈
Rm×m can be any unitary matrix.

Proof. To prove that P1 and P2 give the same solution, it
suffices to show that their constraint sets are equal, i.e.,

{x : Ax = Az} = {x : Ãx = Ãz}. (18)

Since {x : Ax = Az} = {z + v : v ∈ null(A)} and
{x : Ãx = Ãz} = {z + v : v ∈ null(Ã)}, it then suffices
to show that A and Ã have the same nullspace:

null(A) = null(Ã). (19)

If v satisfies Av = 0, then U(AAT )−1/2Av = 0, which
implies Ãv = 0. Conversely, we suppose that Ãv =
0. Since U is unitary, AAT ∈ Rm×m is full-rank,
(AAT )(1/2)UT Ãv = 0, which implies that Av = 0. There-
fore, (19) holds.

The projected subgradient of P2 has the following update

x(t+1) = x(t) − αt(I − ÃT (ÃÃT )−1Ã)sign(x(t)), (20)

x(1) = ÃT (ÃÃT )−1Ãz (21)

Since Ã = U(AAT )−1/2A, we have

ÃÃT = U(AAT )−1/2AAT (AAT )−1/2UT

= U(AAT )−1/2(AAT )1/2(AAT )1/2(AAT )−1/2UT

= I. (22)

Substituting (22) into (21) gives the desired recursion:

x(t+1) = x(t) −αt(I − ÃT Ã)sign(x(t)), x(1) = ÃT Ãz.

B. Training parameters
Table 4 lists the parameters used to train `1-AE in our ex-
periments. We explain the parameters as follows.

• Depth: The number of blocks in the decoder, indicated
by T in Figure 1.

• Batch size: The number of training samples in a batch.

• Learning rate: The learning rate for SGD.

• Nmax: Maximum number of training epochs.

• Nvalidation: Validation error is computed everyNvalidation
epochs. This is used for early-stopping.

• Nno improve: Training is stopped if the validation error
does not improve for Nno improve ∗Nvalidation epochs.

C. Model-based CoSaMP with additional
positivity constraint

The CoSaMP algorithm (Needell & Tropp, 2009) is a simple
iterative and greedy algorithm used to recover a K-sparse
vector from the linear measurements. The model-based
CoSaMP algorithm (Algorithm 1 of (Baraniuk et al., 2010))
is a modification of the CoSaMP algorithm. It uses the prior
knowledge about the support of the K-sparse vector, which
is assumed to follow a predefined structured sparsity model.
In this section we slightly modify the model-based CoSaMP
algorithm to ensure that the output vector follows the given
sparsity model and is also nonnegative.

To present the pseudocode, we need a few definitions. We
begin with a formal definition for the structured sparsity
modelMK and the sparse approximation algorithm M. For
a vector x ∈ Rd, let x|Ω ∈ R|Ω| be entries of x in the index
set Ω ∈ [d]. Let ΩC = [d]− Ω be the complement of set Ω.

Definition 1 ((Baraniuk et al., 2010)). A structured sparsity
model MK is defined as the union of mK canonical K-
dimensional subspaces

MK =

mK⋃
m=1

Xm s.t. Xm = {x : x|Ωm ∈ RK , x|ΩC
m

= 0},

(23)
where {Ω1, ...,ΩmK

} is the set containing all allowed sup-
ports, with |Ωm| = K for each m = 1, ...,mK , and each
subspace Xm contains all signals x with supp(x) ⊂ Ωm.

We define M(x,K) as the algorithm that obtains the best
K-term structured sparse approximation of x in the union
of subspacesMK:

M(x,K) = arg min
x̄∈MK

‖x− x̄‖2. (24)
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Dataset Depth Batch size Learning rate Nmax Nvalidation Nno improve

Toy 10 128 0.01 2e4 10 5
Synthetic1 10 128 0.01 2e4 10 5
Synthetic2 5 128 0.01 2e4 10 1
Synthetic3 5 128 0.01 2e4 10 1
Amazon 60 256 0.01 2e4 1 1

Wiki10-31K 10 256 0.001 5e3 10 1
RCV1 10 256 0.001 1e3 1 50

Table 4. Training parameters.

We next define an enlarged set of subspacesMB
K and the

associated sparse approximation algorithm.

Definition 2 ((Baraniuk et al., 2010)). The B-order sum for
the setMK , with B > 1 an integer, is defined as

MB
K =

{
B∑
r=1

x(r), with x(r) ∈MK

}
. (25)

We define MB(x,K) as the algorithm that obtains the best
approximation of x in the union of subspacesMB

K:

MB(x,K) = arg min
x̄∈MB

K

‖x− x̄‖2. (26)

Algorithm 1 presents the model-based CoSaMP with posi-
tivity constraint. Comparing Algorithm 1 with the original
model-based CoSaMP algorithm (Algorithm 1 of (Baraniuk
et al., 2010)), we note that the only different is that Algo-
rithm 1 has an extra step (Step 6). In Step 6 we take a ReLU
operation on b to ensure that x̂i is always nonnegative after
Step 7.

We now show that Algorithm 1 has the same performance
guarantee as the original model-based CoSaMP algorithm
for structured sparse signals. Speficially, we will show that
Theorem 4 of (Baraniuk et al., 2010) also applies to Algo-
rithm 1. In (Baraniuk et al., 2010), the proof of Theorem
4 is based on six lemmas (Appendix D), among which the
only lemma that is related to Step 6-7 is Lemma 6. It then
suffices to prove that this lemma is also true for Algorithm 1
under the constraint that the true vector x is nonnegative.

Lemma (Prunning). The pruned approximation x̂i =
M(b̂, K) is such that

‖x− x̂i‖2 ≤ 2‖x− b‖2. (27)

Proof. Since x̂i is the K-best approximation of b̂ inMK ,
and x ∈MK , we have

‖x−x̂i‖2 ≤ ‖x−b̂‖2+‖b̂−x̂i‖2 ≤ 2‖x−b̂‖2 ≤ 2‖x−b‖2,
(28)

where the last inequality follows from that b̂ = max{0, b},
and x ≥ 0.

The above lemma matches Lemma 6, which is used to prove
Theorem 4 in (Baraniuk et al., 2010). Since the other lem-
mas (i.e., Lemma 1-5 in Appendix D of (Baraniuk et al.,
2010)) still hold for Algorithm 1, we conclude that the
performance guarantee for structured sparse signals (i.e.,
Theorem 4 of (Baraniuk et al., 2010)) is also true for Algo-
rithm 1.

In Figure 4, we compare the recovery performance of two
decoding algorithms: 1) model-based CoSaMP algorithm
(Algorithm 1 of (Baraniuk et al., 2010)) and 2) model-based
CoSaMP algorithm with positivity constraint (indicated by
“Model-based CoSaMP pos” in Figure 4). We use random
Gaussian matrices as the measurement matrices. Since our
sparse datasets are all nonnegative, adding the positivity
constraint to the decoding algorithm is able to improve the
recovery performance.
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Figure 4. Incorporating the positivity constraint to the model-based
CoSaMP algorithm improves its recovery performance.

D. Additional experimental results
D.1. A toy experiment

We use a simple example to illustrate that the measurement
matrix learned from our autoencoder is adapted to the train-
ing samples. The toy dataset is generated as follows: each
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Algorithm 1 Model-based CoSaMP with positivity constraint
Inputs: measurement matrix A, measurements y, structured sparse approximation algorithm M
Output: K-sparse approximation x̂ to the true signal x, which is assumed to be nonnegative
x̂0 = 0 , r = y; i = 0 {initialize}
while halting criterion false do

1. i← i+ 1
2. e← AT r {form signal residual estimate}
3. Ω← supp(M2(e,K)) {prune residual estimate according to structure}
4. T ← Ω ∪ supp(x̂i−1) {merge supports}
5. b|T ← A†T y, b|TC ← 0 {form signal estimate by least-squares}
6. b̂ = max{0, b} {set the negative entries to be zero}
7. x̂i ←M(b̂, K) {prune signal estimate according to structure}
8. r ← y −Ax̂i {update measurement residual}

end while
return x̂← x̂i

vector x ∈ R100 has 5 nonzeros randomly located in the first
20 dimensions; the nonzeros are random values between
[0,1]. We train `1-AE on a training set with 6000 samples.
The parameters are T = 10, m = 10, and learning rate
0.01. A validation set with 2000 samples is used for early-
stopping.After training, we plot the matrix A in Figure 5.
The entries with large values are concentrated in the first 20
dimensions. This agrees with the specific structure in the
toy dataset.
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Figure 5. Visualization of the learned matrix A ∈ R10×100 on the
toy dataset: a color map of the matrix (upper), the column-wise
`2 norm (lower). Every sample in the toy dataset has 5 nonzeros,
located randomly in the first 20 dimensions.

D.2. Random partial Fourier matrices

Figure 6 is a counterpart of Figure 2. The only difference
is that in Figure 6 we use random partial Fourier matrices
in place of random Gaussian matrices. A random M ×
N partial Fourier matrix is obtained by choosing M rows
uniformly and independently with replacement from the
N ×N discrete Fourier transform (DFT) matrix. We then
scale each entry to have absolute value 1/

√
M (Haviv &

Regev, 2017). Because the DFT matrix is complex, to obtain

m real measurements, we draw m/2 random rows from a
DFT matrix to form the partial Fourier matrix.

A random partial Fourier matrix is a Vandermonde matrix.
According to (Donoho & Tanner, 2005), one can exactly re-
cover a k-sparse nonnegative vector from 2k measurements
using a Vandermonde matrix (Donoho & Tanner, 2005).
However, the Vandermonde matrices are numerically un-
stable in practice (Pan, 2016), which is consistent with our
empirical observation. Comparing Figure 6 with Figure 2,
we see that the recovery performance of a random partial
Fourier matrix has larger variance than that of a random
Gaussian matrix.

D.3. Precision score comparisons for extreme
multi-label learning

Table 5 compares the precision scores (P@1, P@3, P@5)
over two benchmark datasets. For SLEEC, the precision
scores we obtained by running their code (and combining 5
models in the ensemble) are consistent with those reported
in the benchmark website (Bhatia et al., 2017). Compared
to SLEEC, our method (which learns label embeddings via
training an autoencoder `1-AE ) is able to achieve better
or comparable precision scores. For our method, we have
experimented with three prediction approaches (denoted
as “`1-AE 1/2/3” in Table 5): 1) use the nearest neighbor
method (same as SLEEC); 2) use the decoder of the trained
`1-AE (which maps from the embedding space to label
space); 3) use an average of the label vectors obtained from
1) and 2). As indicated in Table 5, the third prediction
approach performs the best.

D.4. `1-minimization with positivity constraint

We compare the recovery performance between solving an
`1-min (4) and an `1-min with positivity constraint (15).
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Figure 6. Recovery performance of random partial Fourier matrices. Best viewed in color. Similar to Figure 2, the error bars represent
the standard deviation across 10 randomly generated datasets. We see that the recovery performance of a random partial Fourier matrix
(shown in this figure) has a larger variance than that of a random Gaussian matrix (shown in Figure 2).

The results are shown in Figure 7. We experiment with two
measurement matrices: 1) the one obtained from training
our autoencoder, and 2) random Gaussian matrices. As
shown in Figure 7, adding a positivity constraint to the
`1-minimization improves the recovery performance for
nonnegative input vectors.

10 20 30 40 50 60 70
Number of measurements

0

0.5

1

Fr
ac

tio
n 

of
 p

er
fe

ct
ly

re
co

ve
re

d 
te

st
 p

oi
nt

s Synthetic1

10 20 30 40 50 60 70
Number of measurements

0

0.5

1

Te
st

 R
M

SE

Synthetic1

AE + l1-min pos AE + l1-min Gaussian + l1-min pos Gaussian + l1-min

10 20 30 40 50 60 70
Number of measurements

0

0.5

1

Fr
ac

tio
n 

of
 p

er
fe

ct
ly

re
co

ve
re

d 
te

st
 p

oi
nt

s Synthetic2

10 20 30 40 50 60 70
Number of measurements

0

0.5

1

Te
st

 R
M

SE

Synthetic2

Figure 7. A comparison of the recovery performance between `1-
min (4) and the `1-min with positivity constraint (15). The sparse
recovery performance is measured on the test set. Best viewed
in color. We plot the mean and standard deviation (indicated by
the error bars) across 10 randomly generated datasets. Adding a
positivity constraint to the `1-minimization gives better recovery
performance than a vanilla `1-minimization.

D.5. Singular values of the learned measurement
matrices

We have shown that the measurement matrix obtained from
training our autoencoder is able to capture the sparsity struc-
ture of the training data. We are now interested in looking at
those data-dependent measurement matrices more closely.
Table 6 shows that those matrices have singular values close
to one. Recall that in Section 3.1 we show that matrices with
all singular values being ones have a simple form for the
projected subgradient update (12). Our decoder is designed
based on this simple update rule. Although we do not explic-
itly enforce this constraint during training, Table 6 indicates
that the learned matrices are not far from the constraint set.

D.6. Synthetic data with no extra structure

We conducted an experiment on a synthetic dataset with
no extra structure. Every sample has dimension 1000 and
10 non-zeros, the support of which is randomly selected
from all possible support sets. The training/validation/test
set contains 6000/2000/2000 random vectors. As shown
in Table 7, the learned measurement matrix has similar
performance as a random Gaussian measurement matrix.

D.7. Autoencoder with unrolled ISTA

Our autoencoder `1-AE is designed by unrolling the
projected subgradient algorithm of the standard `1-
minimization decoder. We can indeed design a different
autoencoder by unrolling other algorithms. One option
is the ISTA (Iterative Shrinkage-Thresholding Algorithm)
algorithm of the LASSO problem. Comparing the perfor-
mance of those autoencoders is definitely an interesting
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Table 5. Comparisons of precision scores: P@1, P@3, P@5.
Dataset EURLex-4K Wiki10-31K

# models in the ensemble 1 3 5 1 3 5
SLEEC 0.7600 0.7900 0.7944 0.8356 0.8603 0.8600
`1-AE 1 0.7655 0.7928 0.7931 0.8529 0.8564 0.8597
`1-AE 2 0.7949 0.8033 0.8070 0.8560 0.8579 0.8583
`1-AE 3 0.8062 0.8151 0.8136 0.8617 0.8640 0.8630
Dataset EURLex-4K Wiki10-31K

# models in the ensenble 1 3 5 1 3 5
SLEEC 0.6116 0.6403 0.6444 0.7046 0.7304 0.7357
`1-AE 1 0.6094 0.0.6347 0.6360 0.7230 0.7298 0.7323
`1-AE 2 0.6284 0.6489 0.6575 0.7262 0.7293 0.7296
`1-AE 3 0.6500 0.6671 0.6693 0.7361 0.7367 0.7373
Dataset EURLex-4K Wiki10-31K

# models in the ensemble 1 3 5 1 3 5
SLEEC 0.4965 0.5214 0.5275 0.5979 0.6286 0.6311
`1-AE 1 0.4966 0.5154 0.5209 0.6135 0.6198 0.6230
`1-AE 2 0.5053 0.5315 0.5421 0.6175 0.6245 0.6268
`1-AE 3 0.5353 0.5515 0.5549 0.6290 0.6322 0.6341

Dataset σlargest σsmallest

Synthetic1 1.117 ± 0.003 0.789 ± 0.214
Synthetic2 1.113 ± 0.006 0.929 ± 0.259
Synthetic3 1.162 ± 0.014 0.927 ± 0.141
Amazon 1.040 ± 0.021 0.804 ± 0.039

Wiki10-31K 1.097 ± 0.003 0.899 ± 0.044
RCV1 1.063 ± 0.016 0.784 ± 0.034

Table 6. Range of the singular values of the measurement matrices
A ∈ Rm×d obtained from training `1-AE . The mean and stan-
dard deviation is computed by varying the number of m (i.e., the
“number of measurements” in Figure 2).

# measurements 30 50 70
`1-AE + `1-min pos 0.8084 0.1901 0.0016

Gaussian + `1-min pos 0.8187 0.1955 0.0003

Table 7. Comparison of test RMSE on a synthetic dataset with no
extra structure.

direction for future work. We have performed some ini-
tial experiments on this. We designed a new autoencoder
ISTA-AE with a linear encoder and a nonlinear decoder
by unrolling the ISTA algrithm. On the Synthetic1 dataset,
`1-AE performed better than LISTA (we unrolled ten steps
for both decoders): with 10 measurements, the test RMSEs
are 0.894 (ISTA-AE), 0.795 (ISTA-AE + `1-min pos), 0.465
(`1-AE ) and 0.357 (`1-AE + `1-min pos).

D.8. Additional experiments of LBCS

We experimented with four variations of LBCS: two dif-
ferent basis matrices (random Gaussian matrix and DCT

matrix), two different decoders (`1-minimization and lin-
ear decoder). As shown in Figure 8, the combination of
Gaussian and `1-minimization performs the best.
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Figure 8. We compare four variations of the LBCS method pro-
posed in (Baldassarre et al., 2016; Li & Cevher, 2016): two basis
matrices (random Gaussian and DCT matrix); two decoders (`1-
minimization and linear decoding). The combination of “Gaussian
+ `1-minimization” performs the best. Best viewed in color. For
each method, we plot the mean and standard deviation (indicated
by the error bars) across 10 randomly generated datasets.


