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Abstract

Nowadays, many problems require learning a

model from data owned by different participants

who are restricted to share their examples due to

privacy concerns, which is referred to as multipar-
ty learning in the literature. In conventional mul-

tiparty learning, a global model is usually trained

from scratch via a communication protocol, ig-

noring the fact that each party may already have

a local model trained on her own dataset. In this

paper, we define a multiparty multiclass margin to

measure the global behavior of a set of heteroge-

neous local models, and propose a general learn-

ing method called HMR (Heterogeneous Model

Reuse) to optimize the margin. Our method reuses

local models to approximate a global model, even

when data are non-i.i.d distributed among parties,

by exchanging few examples under predefined

budget. Experiments on synthetic and real-world

data covering different multiparty scenarios show

the effectiveness of our proposal.

1. Introduction
In conventional machine learning problems, all the data are

collected from a single user. However, in some medical,

financial or biological scenarios, data are separately collect-

ed from different participants, who are unwilling to share

their confidential datasets. Despite the concern on privacy,

they want to cooperatively learn a global model from the

union of all the datasets. The above problem is referred to as

multi-party learning problem in the literature (Pathak et al.,

2010).

Existing approaches for multi-party learning usually assume

each party trains a homogeneous local model, that means
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they learn parameters of the same dimension, like neural net-

work with the same structure (Shokri & Shmatikov, 2015).

Therefore parties can communicate about the local model

parameters under a designed protocol and compute a sin-

gle global model. The homogeneous model assumption is

reasonable if the local data distribution is identical for all

parties. However, in reality the data are usually biasedly

collected among parties due to temporal/spatial differences,

such that using homogeneous local models is probably un-

realistic.

Take the flu detection problem as an example. Doctors want

to build a learning model to detect what type of virus one

patient is affected based on her symptoms, for appropriate

treatment. However, the types of influenza diverse geograph-

ically (Rejmanek et al., 2015), which means the distribution

of patient records collected by a hospital in California may

be different from those in Florida. In an extreme case, some

types are unknown to the other hospital.

Assume there are 4 types of influenza in the United States.

In California, 2 of 4 are commonly detected, while in Florida

3 of 4 types are often detected. We assume in the two states,

doctors separately trained two models hCA and hFL which

work locally well in California and Florida respectively.

However, a direct ensemble of the two local models may

not work well on all the patients. Let hUS denote the ideal

global model trained on the combination of local datasets.

When we input a patient record x, each model outputs its

prediction as shown in Table 1.

Table 1: Example of flu detection on a patient x affected

with type 2 flu. “−” means this model is not able to predict

the corresponding class. Taking the maximal score as pre-

diction, hFL is consistent with hUS, but the combination of

two local models h{CA,FL} is not since 3/4 > 4/7.

Type 1 2 3 4

hUS(x) 2/10 4/10 1/10 3/10
hCA(x) − − 1/4 3/4
hFL(x) 2/7 4/7 1/7 −

h{CA,FL}(x) 2/7 4/7 1/4 3/4

In this example, the output spaces among the two local mod-

els (hCA, hFL) and the global model (hUS) are all different.
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It is not straightforward to use a protocol on homogeneous

local models to address this problem. Besides, if we di-

rectly take the maximum score out of two local models as

h{CA,FL}, the predicted class will be inconsistent with the

ideal global model hUS.

Inspired by margin-based multiclass methods, we propose

multiparty multiclass margin (MPMC-margin) to measure

the correctness of an ensemble of local models. Instead of

learning from scratch, we trust what a local model already

learned on its own dataset, and try to slightly modify it to

match the hidden global groundtruth, i.e., the unavailable

combination of local datasets.

We design an iterative method called HMR (short for Hetero-

geneous Model Reuse) compatible with heterogeneous local

models to optimize MPMC-margin, when we are permitted

to share few examples under agreement. As illustrated in

Figure 1, we reuse local models to make a rough global

prediction, then check the MPMC-margin to find the defects

of local models. Due to the nice property of MPMC-margin,

the optimization can be decomposed to localized calibration

operations. Since the output scores of each local model

sums to 1, we also design to add a virtual “reserved” class,

which catches the remaining mass, to support the calibration

operation.

Our contributions are twofold. First, the proposed MPMC-

margin views the multiparty learning problem from a novel

perspective, serving a measurement on an ensemble of local

models. Second, we design a new algorithm HMR to show

the possiblity on optimizing MPMC-margin privacy friendly,

which keeps most of the local data safe.

The remainder of paper is organized as follows. Section 2

formally defines our problem setting. Section 3 describes

our HMR method, together with theoretical justifications.

Section 4 discusses on some related topics. Section 5 reports

experimental results. Finally, we conclude the paper in

Section 6.

2. Preliminaries
2.1. Notations

Suppose the global learning problem is defined on a dataset

S = (X,Y ) = {(x, y) ∈ X × Y}, where Y is a finite set

of classes, i.e., Y = {1, 2, · · · , k}. The underlying global

dataset S cannot be observed directly.

There are n participants and each observes a part of the

global data as her local dataset Si = (Xi, Yi) = {(x, y) ∈
X × Yi} ⊆ S, where the instances are from the same

input space X and the labels are in Yi ⊆ Y representing a

potentially biased class prior comparing to the full set Y .

Each participant is equiped with a local algorithm Ai to

calibrate

reuse reuse

calibrate

reuse reuse

check MPMC-margin

check MPMC-margin

calibrate calibrate

Figure 1: The illustration of running our method on the

flu example. The dashed bars denote the virtual reserved

classes, which are discarded at reuse step.

learn a local classifier fi : X → Yi on her local data Si.

fi is based on a scoring function hi : X × Yi → R. The

label assigned to x is the one gives the highest score hi(x, y)
where hi = Ai(Si):

fi(x) = argmax
y∈Yi

hi(x, y). (1)

Since the classifier fi can be easily induced from the pre-

dictor hi, we will mainly use hi afterwards. In our previ-

ous flu example, with a slight abuse of the notation, given

a specific patient x, we can say hCA(x) = (1/4, 3/4) or

hCA(x, 3) = 1/4 and hCA(x, 4) = 3/4.

2.2. Assumptions

Being consistent with previous multiparty learning litera-

ture (Bellet et al., 2018), we use the word “local” to denote

resources that is owned by a specific party i and cannot be

accessed by other parties without the permission from i. In

our setting, each party owns a local dataset, a local algorith-

m, and a local model. If one party receives local models

from others, she can only use them as black-box predictors

and is not permitted to access the model parameters or to



Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin

modify the model.

Handling distribution change is an important independent

research line in domain adaptation (Sugiyama et al., 2007).

Instead of the i.i.d assumption on data, we assume the distri-

bution of local data is not identical to the underlying global

data. In an extreme case, examples relevant to some classes

may be nonexistent in one’s dataset. This setting is more

reasonable in multiparty learning because data are usually bi-

asedly collected among participants due to temporal/spatial

differences.

We assume parties are honest-but-curious: they want to

know the examples in others’ datasets but they strictly fol-

low any pre-defined protocol. The local models are con-

sidered safe to be shared with other parties in a black-box

manner. In this work, we tackle the global classification

problem by reusing black-box heterogeneous local models,

with restrictions on exchanging examples. For instance, in

the flu detection problem, we can ask a small number of pa-

tients for sharing permission if they are willing to contribute

to the global interest.

2.3. The ensemble of local models

It seems straightforward to combine trained local models by

merging their confidence scores on each predictable class

and taking the maximum class out, like the following max-

model predictor:

Definition 1 (Max-Model Predictor). Given a set of multi-

class predictors H = {h1, · · · , hn}, with hi : X ×Yi → R,

the max-model predictor hH is defined as

hH(x, y) = max
y∈Yi,hi∈H

hi(x, y). (2)

However, as we have already seen in the example described

in Table 1, the max-model predictor h{CA,FL} may fail. Al-

though hFL(x) scores 4/7 on type 2, the merged prediction

is type 4 because hCA(x, 4) scores highest among all classes.

It looks like hCA misleads the ensembled final prediction.

Why such a misleading behavior happens? Intuitively, we

can think one local model has never seen a specific type of

examples, and outputs very high scores on them. This is a

bigger issue when the correct class label is out of model’s

predictable label space (type 2 flu is out of hCA’s label

space). Claim 1 formally state this phenomenon in the next

section.

3. The HMR Method
In this section, we first propose the multiparty multiclass

margin, and then describe our method in detail. We finally

conclude this section with theoretical justifications proved

in simple linear cases.

3.1. Multiclass margin: from single to multiple parties

Recall that in (single-party) multi-class problems, we usual-

ly define the margin ρh(x, y) of the function h at a labeled

example (x, y) as (Mohri et al., 2012):

ρh(x, y) = h(x, y)−max
y′ �=y

h(x, y′). (3)

Thus, h misclassifies (x, y) if and only if ρh(x, y) ≤ 0. The

empirical margin loss of a hypothesis h on dataset S is

RS(h) =
1

|S|
∑

(x,y)∈S

�(ρh(x, y)), (4)

where � is the 0-1 margin loss function:

�(ρ) =

{
1 if ρ ≤ 0,

0 if ρ > 0.

Based on the definition of multiclass margin and margin

loss, we can now formally state the failure of max-model

predictor defined in Definition 1.

Claim 1 (Max-model predictor may fail). Suppose we have
a set of optimal local predictors H = {h1, · · · , hn}. Each
of them gets zero empirical margin loss, which means ∀i ∈
[n], RSi(hi) = 0. The max-model predictor hH based on
this set is not ensured to have zero margin loss (RS(hH) =
0) on the combined dataset S =

⋃n
i=1 Si.

Proof. It is sufficient to prove Claim 1 with a counterexam-

ple. Suppose there are two parties A and B, each with

optimal local models h�
A and h�

B . The following posi-

tive margin conditions ensure zero empirical margin loss

RSA
(h�

A) = RSB
(h�

B) = 0 on local datasets:

∀i ∈ {A,B}, ∀(x, y) ∈ Si, ∀y′ ∈ Yi\{y},
h�
i (x, y) > h�

i (x, y
′).

(5)

But a specific (xa, ya) ∈ SA can be incorrectly predicted

by h{A,B} if there exists y′ ∈ YB\{ya},

h�
B(xa, y

′) > h�
A(xa, ya). (6)

Because (6) does not violate (5), the max-model predictor

is likely not optimal on SA ∪ SB .

Claim 1 shows local optimal margin does not ensure the

performance of a combination of local models using the

maximum operator. We need a new metric to measure the

behavior of the ensembled predictor. Therefore we define

the multiparty multiclass margin:

Definition 2 (Multiparty Multiclass Margin). The multipar-

ty multiclass margin (MPMC-margin) on the local model
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function set H = {h1, · · · , hn} at a labeled example (x, y)
is defined as:

ρH(x, y) = max
i

hi(x, y)−max
j,y′

hj(x, y
′),

where y ∈ Yi, y
′ ∈ Yj\{y}.

(7)

Accordingly, the empirical MPMC-margin loss of H on

S =
⋃n

i=1 Si is:

RS(H) =
1

|S|
∑

(x,y)∈S

�(ρH(x, y))

Evidently, when there is only one party (n = 1), the MPMC-

margin degenerates to standard multiclass margin defined

in (3).

To the best of our knowledge, it is the first time the perfor-

mance of a multiparty learning problem over a set of local

models is measured by margin. MPMC-margin serves a

generalization of multiclass margin in multiparty scenario,

and the empirical MPMC-margin loss measures the fraction

of misclassified examples.

In the single-party setting, we are able to compute the multi-

class margin and minimize (4) on all the training examples.

However, considering that examples and local models are

separately stored in the multiparty scenario, the minimiza-

tion of MPMC-margin loss is nontrivial. We now present

an optimization algorithm.

3.2. The procedure

Algorithm 1 shows the brief procedure of our method. Ini-

tially, we require each party to broadcast her local model to

others while receiving others’ model for computing MPMC-

margin on her own data.

Our method is iteartive. At each iteration, we first choose a

party i with probability |Si|/
∑n

i=1 |Si|. Then party i ran-

domly selects one local example (x, y) ∈ Si, and compute

the MPMC-margin ρH(x, y). Meanwhile, party i selects

i+, i− via the selection criterion:

i+ = argmax
i

hi(x, y), where y ∈ Yi,

(i−, y−) = argmax
j,y′

hj(x, y
′), where y′ ∈ Yj\{y}.

(8)

Therefore, the MPMC-margin is now represented as

ρH(x, y) = hi+(x, y)− hi−(x, y
−) (9)

To minimize the empirical MPMC-margin loss, it is reason-

able to increase the margin if it is small or negative. As

(9) indicates, we can enlarge it by increasing the first term

and/or decreasing the second term.

Algorithm 1 HMR

input:
Parties 1, 2, · · · , n, each owns a local dataset Si and a

local model hi. Example communication budget N .

output:
Calibrated local models h1, · · · , hn.

procedure:
1: Each party broadcasts its local model to others.

2: Inner iteration counter T = 0
3: while T < N do
4: Sample a party i according to |Si|/

∑n
i=1 |Si|.

5: Party i randomly selects an example (x, y) ∈ Si.

6: Party i computes MPMC-margin ρH(x, y) accord-

ing to (7). Records the party i+, i− and maximum

incorrect class y− as in (8).

7: if ρH(x, y) ≤ 0 then
8: Party i sends (x, y, y−) to i+ and i−.

9: Party i+ calibrates hi+ with (x, y, y−).
10: Party i− calibrates hi− with (x, y, y−).
11: Party i+ and i− broadcast their updated model.

12: if i+ �= i or i− �= i then
13: T = T + 1.

14: end if
15: end if
16: end while

The first problem is, hi+ and hi− may be black-boxes

trained by other parties, so party i itself who owns the ex-

ample (x, y) and also computes the margin cannot modify

these functions. Thus we let party i dispatch the example

to the model owners i+ and i− then leave the modification

work to them. Line 9 and 10 describe the modification work

which is called calibration operation. We will talk about

it in detail later. After the calibration operation, MPMC-

margin is supposed to be enlarged (a simple justification

on linear predictors is presented in Theorem 1). At the end

of the iteration, party i+ and i− broadcast their updated

models to other parties, ready to be used for next iteration.

To protect local examples, the number of example com-

munications is restricted by a total budget N . Notice that

MPMC-margin can be safely evaluated as many times as we

need, and only the calibration operation may consume one

of the budget. It is possible that i+ = i− = i, which means

the model owner and the data owner are the same, where

no example is sent. Our algorithm stops if the budget runs

out. For simplification, we use a global budget here. Local

communication budgets can be easily applied with slight

modification on algorithm. We will see in the experiments

that a small budget (less than 1% of the global data) is suf-

ficient to reach satisfactory results. Early stopping before

using up the budget is also possible in practice by checking

the local convergence.
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3.3. The calibration operation

In Algorithm 1 Line 9-10, we use the word calibrate to

describe the operation that one party slightly modifies her

local model for global benefits. Specifically, we hope to

increase hi+(x, y) and decrease hi−(x, y
−) to enlarge the

MPMC-margin, when a non-positive margin violation is

found.

The calibration operation differs on different local models.

For a linear model or other models that supports online

update, the operation can be done by feeding the received

example into an update step. If the local models cannot be

updated online, we can augment the local dataset with the

newly received example and retrain the model on it. As

a classification problem, we assume each party uses any

surrogate loss of 0-1 classification loss, provided that the

loss decreases when the predicted score on correct class

increases, and vice versa. Common loss functions like logit

loss and cross entropy loss satisfy this mild condition.

Notice that y ∈ Yi+ , party i+ can add (x, y) to her local

dataset, and retrain h+ on the augmented dataset. The local

loss minimizer tends to increase the first term hi+(x, y)
in (9). However, for party i− the calibration operation is

more complicated. There is no off-the-shelf way to reduce

hi−(x, y
−) by augmenting data.

Here we assume the outputs of hi− sums up to 1. When

y ∈ Yi− , it is clear that adding (x, y) into Si− will increase

hi−(x, y) but will decrease hi−(x, y
−). When y /∈ Yi− , we

propose to handle this issue by adding a virtual reserved
class into hi− . The received example is marked as (x,R) if

y /∈ Yi− , where R represents the reversed class. Party i−

then learns hi− on the augmented local dataset with expand-

ed label space. Although the reserved class will be ignored

in max-model prediction and computing MPMC-margin,

adding (x,R) will decrease hi−(x, y
−) as hi− tends to la-

bel x as R.

3.4. Properties

In this subsection, we present some theoretical insights

about HMR on simple linear local models, in order to ex-

plain the mathematical rationality behind our design.

We formally define the multiclass linear predictor first. Let

Y = {1, 2, · · · , k} and let X ∈ R
m. We define the class-

sensitive feature mapping Ψ : X×Y → R
d, where d = mk,

as follows

Ψ(x, y) = [0, · · · , 0︸ ︷︷ ︸
∈R(y−1)m

, x1, · · · , xm︸ ︷︷ ︸
∈Rm

, 0, · · · , 0︸ ︷︷ ︸
∈R(k−y)m

] (10)

Then a linear predictor h is defined by w ∈ R
d as h(x, y) =

〈w,Ψ(x, y)〉. We have the following claim to show learning

a combination of local models is no worse than learning a

single global model in terms of hypothesis class complexity:

Claim 2. In terms of the complexity of hypothesis class,
the complexity of a set of linear predictors is no less than
that of a single linear predictor with the same parameter
dimension.

Proof. It is straightforward to show the argument. For

each linear predictor hw(x, y) = 〈w,Ψ(x, y)〉, a max-

model predictor based on a set of same linear predictors

H = {hw, hw, · · · } performs the same as hw. Therefore, in

any measurement of hypothesis class complexity, e.g., fat-

shattering dimension (Bartlett et al., 1994), the max-model

predictor has at least the same level of richness.

Next we show our method enlarges MPMC-margin in the

setting of two parties with linear predictors being aware of

the full label space. The results on more parties are similar.

Suppose there are two parties A and B equipped with linear

predictors defined by wA and wB . Assume YA = YB = Y ,

the calibration operation of Algorithm 1 in Line 9-10 is:

w
(t+1)
i+ = w

(t)
i+ + ηΨ(x, y),

w
(t+1)
i− = w

(t)
i− − ηΨ(x, y−),

(11)

where η > 0 controls the step size.

Theorem 1. Assume ‖x‖ = 1, then the calibration opera-
tion described in (11) on linear predictors {hA, hB} defined
by {wA, wB} will increase the MPMC-margin on sent ex-
ample (x, y) by at least η.

Proof Sketch. Due to the space limit, we present the de-

tailed proof in Appendix A. The main idea of this proof

is to enumerate possible cases when computing MPMC-

margin and analyze the effect of the calibration operation on

ρH(x, y). The non-positive margin violation condition, and

properties of Ψ(x, y) are also important in analysis.

Theorem 1 shows the MPMC-margin increases after cal-

ibration operation on multiclass linear predictors, which

is a desirable property for improving the performance on

the global problem. Whether such a nice property holds

for other models depends on specfic calibration operations.

At least, we can conduct the calibration operation by aug-

menting local data and retrain the model as described in

Section 3.3. It is also possible to propose other algorithms

as long as the MPMC-margin can be increased.

4. Related Work
In this section, we discuss the relationships and differences

with related work.

Learning with rejection (Cortes et al., 2016): The goal

of this learning paradigm is to learn a function to produce
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{0, 1,Reject} predictions from data with {0, 1} labels, min-

imizing the misclassification rate (Chow, 1970; Fumera

et al., 2000) or rejection loss (Bartlett & Wegkamp, 2008).

In Perelló-Nieto et al. (2016), the reject option is used to

make classifers more reliable and versatile, which is high-

ly related to our technique. Nevertheless, “reject” class in

the literature usually used to describe a virtual class that

no datum in this class is observed, while in our work, one

party will mark the data point out of her label space to be

“reserved”. The term “reserved” indicates that a example is

likely not in one’s label space, and stores the predicted mass

to lower the confidence on other classes.

Private multi-party learning: In secure multi-party com-

putation (SMC) (Lindell & Pinkas, 2008), cryptographic

techniques are used to compute a function on multi-party

data, to ensure none of the parties learn anything about

others besides what may be inferred from the final result

of the computation. Unfortunately, in machine learning,

a learned model itself as the computed final result leaks

private information about the training data. To ease the

problem, differential privacy (Dwork, 2011) techniques are

proposed. Existing approaches for differential private multi-

party learning (Pathak et al., 2010; Rajkumar & Agarwal,

2012; Konecný et al., 2016) usually assume homogeneous

local models, which limits the usage in biased collected

multi-party data. Bellet et al. (2018) studied a problem sim-

ilar to ours where local data distribution differs, but they

require a prior similarity measure between parties. Ham-

m et al. (2016) and Bassily et al. (2018) proposed model

agnostic methods like ours, which requires pre-prepared

additional public data, while our method shares a limited

existing local data guided by evaluating the MPMC-margin

on the fly.

Dynamic classifier selection (Cruz et al., 2018): Dynamic

classifier selection (DCS) techniques usually estimate the

competence level of base models on a new test example,

and select the most competent one to predict. DCS methods

often take advantage of heterogeneous models to improve

performance. However, most DCS strategies require access-

ing (Ko et al., 2008) or manipulating (Soares et al., 2006)

all the data, which cannot be directly used in our multi-party

setting. Furthermore, in contrast to explicitly competence

estimation (Woods et al., 1997; Zhu et al., 2004), HMR can

be seen as a way to implicitly establish a competition mech-

anism and does not need extra computations to compete.

Model Reuse (Zhou, 2016): Model reuse methods aim at

reusing pre-trained models to help related learning tasks. In

the literature, it is also named as hypothesis transfer learning

(Kuzborskij & Orabona, 2013), or learning from auxiliary

classifiers (Duan et al., 2009). Besides the well-known

technique – finetuning pre-trained neural networks, many

model reuse methods like biased regularization (Tommasi

et al., 2014; Ye et al., 2018) and refining random forests

(Segev et al., 2017) are proposed. Theoretical study of mod-

el reuse also attracted attentions in recent years (Kuzborskij

& Orabona, 2017; Du et al., 2017; Zhao et al., 2018). Our

work fits in the model reuse paradigm for solving multiparty

learning problems.

5. Experiments
In this section, we validate our method on toy example,

benchmark data and real-world multi-lingual handwriting

data. The toy example serves as a visualization of our al-

gorithm. Experiments on benchmark data demonstrate our

method on various biased data distribution scenarios. Final-

ly, experiment on multi-lingual data shows that our method

can get satisfying performance on real problems, within lim-

ited budget. Heterogeneous local models are implemented

in these experiments.

5.1. Toy example for visualization

Here we create a 2D toy example with five classes as shown

in Figure 2a, including 1000/1000 points for train/test. As-

sume there are three parties equipped with different local

models. Party PLR uses logistic regression as her model,

party PSVM uses Gaussian kernel SVM, and PGBDT uses

gradient boosting decision tree. These three models may be

the most commonly used learning models besides deep neu-

ral nets. Implementations in scikit-learn (Pedregosa et al.,

2011) with default parameters are used for easy reproduc-

tion.

We denote the 5 classes by the color of points. Each party

sees partial data points, as their local datasets. PLR: {blue,

yellow}, PSVM: {green, purple} and PGBDT: {purple, or-

ange}. We set the example budget to 50, but we found

HMR converges and stops after 24 inner iterations, without

using up the budget.

We present the result at inner iteration (triggered when mar-

gin violation occurs) 0/1/5/10/20, together with the test

accuracy and decision boundaries in Figure 2b-2f. The ac-

curacy increased from 37.90% to 99.30% after sending 20

examples, and the decision boundaries are clearly moving

closer to the groundtruth. Notice that the selected examples

marked by red crosses are often located in wrong areas or

on incorrect boundaries, supporting our intuition that non-

positive MPMC-margin examples are helpful for optimizing

margin loss.

5.2. Benchmark data for understanding

Recall that our method can handle the multiparty learning

problem when the local data distribution is not idential to

the combined global data dsitribution. In order to show how

HMR works on various biased distribution scenarios, and
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(a) Five-class data (b) Iter 0: 37.90% (c) Iter 1: 71.60%

(d) Iter 5: 85.10% (e) Iter 10: 95.60% (f) Iter 20: 99.30%

Figure 2: (2a): The data distribution of five-class points.

(2b)-(2f): The decision boundaries and accuracy at plotted

iteration. Red cross shows the selected example to send

with non-positive MPMC-margin.

understand more about the strength and weakness of our

method, we conducted experiments on Fashion-MNIST1

(Xiao et al., 2017), which is a widely used benchmarking

dataset.

Fashion-MNIST contains 70,000 28×28 grayscale fashion

product images, each associated with a label from 10 classes.

10,000 out of 70,000 are used for testing. To simulate the

multiparty setting, we seperate the training data into differ-

ent parties according to Figure 3. For example, Figure 3d

represents the class label distribution of 3 parties, where the

first party sees all the data from class 0 and 1, 80%/50%/20%

data from class 2/3/4. From the 2 parties setting to 7 parties

setting, the data distirbution becomes more skewed, some

parties even see no data from most classes.

(a) 2 parties – A (b) 2 parties – B (c) 2 parties – C

(d) 3 parties – A (e) 3 parties – B (f) 7 parties

Figure 3: Six data distribution setting between parties. Bars

grouped together in the same color denote the amount of

each party’s local data. The proportion of the colored bar in

a column precisely denotes the ratio of per class data, from

class 0 to class 9.

Each party is equipped with a simple neural network with

1https://github.com/zalandoresearch/
fashion-mnist

3 conv-layers as the same structure in Google Colab 2. To

add the reserved class output on these models, we create a

new neuron at the last layer, and use the average weights of

other neurons at the same layer to initialize the weights of

this new neuron. At calibration operation, each local model

will be retrained with augmented data for one epoch. We set

the example communication budget to 200, and plot the test

performance of HMR. To ease the randomness, we run 10

times for each setting and show the variance band around.

Figure 4: The test accuracy curves over iterations.

Figure 4 reports the results. When each party has enough

local data with identical distribution to combined global

data (2 parties – A), the direct combination of local models

are fairly well. In that case, our algorithm can hardly detect

any violation of MPMC-margins, and keep the local models

intact. When one party is totally unaware of many classes (3

parties – B), our method can boost the overall performance

a lot.

It is shown that as the number of parties increases and each

party sees fewer classes, the initial performance (at iteration

0) of the max-model predictor is lower. This observation is

consistent to our intuition that these local models are more

severely uncalibrated because they are unaware of example

of less-seen or unseen classes. The lower final accuracy

on more skewed setting is reasonable as these local models

lacks data to learn a good representation over all classes,

which sets an upper limit of the proposed method.

5.3. Multi-lingual data for real-world problem

In this section, we demonstrate our method on multi-lingual

handwriting data. Researchers using different languages

often collect the handwriting data of their own scripts, and

build local recognition models on them. Now if they want

to cooperate to build a global model that can recognize a

2https://colab.research.google.com/
github/tensorflow/tpu/blob/master/tools/
colab/fashion_mnist.ipynb
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character from any script, but do not want to share too much

data with other researchers, our HMR method will be an

ideal choice.

Table 2 shows the information about the handwriting char-

acter datasets of 6 scripts. We collect them from differen-

t sources. The first three are different scripts about Jan-

panese3. Devanagari is collected from native Hindi speakers

(Bharath & Madhvanath, 2009). Hangul is the script of

Korean (Kim & Xie, 2015), we use 30% of the original data

because of memory restriction. Letter containing English

alphabet is from EMNIST (Cohen et al., 2017). We rescale

all the data into 64×64 grayscale images for convenience.

Example images of each script are shown in Figure 5.

Table 2: Script datasets, with local model accuracies.

Script name #instances #classes Accuracy

Hiragana 9600 75 95.50

Katakana 6528 48 95.83

Kanji 112384 878 99.30

Devanagari 18357 111 92.96

Hangul 156000 520 96.58

Letter 124800 26 95.04

Hiragana
Katakana

Kanji
Devanagari

Hangul
Letter

Figure 5: Handwriting images of each script.

We seperately build a model on each script by convolutional

neural networks with different structures (implementation

details are in Appendix B.3), and these models’ accuracies

on own local test data are reported in the last column of

Table 2. Then we run HMR on the set of 6 local models.

The calibration operation is implemented by training one

additional epoch on augmented local data. To compare with

HMR, we also train a single neural network over all the

collected data, serving an upper bound of the prediction ac-

curacy. The best score that a DCS method can get assumes

an oracle to select corresponding local model when predict-

ing a test instance. The results are reported in Table 3.

Although all the local models perform well locally (above

90% as in Table 2), we can see from Table 3 that the direct

ensemble of these models using max-model predictor can

only reach about 72% before running our method. After

selectively sending 300 examples for calibration operation,

3http://etlcdb.db.aist.go.jp/

Table 3: Results of HMR after 0/50/100/300 iterations. Fol-

lowed with results of comparison methods.

Method
Iterations

0 50 100 300

HMR 72.16 76.40 84.51 94.32

Single model 96.38
DCS with oracle 95.86

the global performance significantly increased to 94.32%.

Notice that a single model trained over all local datasets are

not permitted in multiparty setting, and an ideal DCS local

model selector also requires a large amount of data, thus

they are not applicable under our limited budget setting. Our

method reaches a comparable result by exchanging merely

0.07% of the entire combined data, while keeping most of

our locally stored data unexposed.

Furthermore, comparing with the benchmark experiment,

accuracy of the multi-lingual recognition task is higher,

even when the class distribution is skewed among parties.

We conjecture this result is due to the common underlying

feature representing of handwriting strokes, which makes it

easier to learn a new script when a local model has already

known one (Lake et al., 2015).

6. Conclusion
In this paper, we revisit the multiparty learning prob-

lem from the perspective of margin theory and propose

the MPMC-margin to measure the inconsistency between

the ensemble prediction of local models and the global

groundtruth. We also design a novel method HMR to op-

timize MPMC-margin, which accepts heterogeneous local

models and handles biased data distributions. Experiments

reveal the difficulties and the potential of reusing local mod-

els for multiparty learning, which further demonstrate the

usefulness of our method.

Our method still sends a few examples across local parties,

which may be undesirable in security-sensitive applications.

In the future, it is important to design algorithms which has

better privacy guarantees when optimizing MPMC-margin.
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transfer learning via transformation functions. In NIPS,

pp. 574–584, 2017.

Duan, L., Tsang, I. W., Xu, D., and Chua, T. Domain

adaptation from multiple sources via auxiliary classifiers.

In ICML, pp. 289–296, 2009.

Dwork, C. Differential privacy. In Encyclopedia of Cryp-
tography and Security, pp. 338–340. Springer, 2011.

Fumera, G., Roli, F., and Giacinto, G. Reject option with

multiple thresholds. Pattern Recognition, 33(12):2099–

2101, 2000.

Hamm, J., Cao, Y., and Belkin, M. Learning privately from

multiparty data. In ICML, pp. 555–563, 2016.

Kim, I. and Xie, X. Handwritten hangul recognition using

deep convolutional neural networks. International Jour-
nal on Document Analysis and Recognition, 18(1):1–13,

2015.

Ko, A. H., Sabourin, R., and de Souza Britto Jr., A. From dy-

namic classifier selection to dynamic ensemble selection.

Pattern Recognition, 41(5):1718–1731, 2008.
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