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A. The spectrum of ∆̃sym

The normalized Laplacian defined on graphs with self-loops,
∆̃sym, consists of an instance of generalized graph Lapla-
cians and hold the interpretation as a difference operator, i.e.
for any signal x ∈ Rn it satisfies

(∆̃symx)i =
∑
j

ãij√
di + γ

(
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di + γ

− xj√
dj + γ

)
.

Here, we prove several properties regarding its spectrum.

Lemma 1. (Non-negativity of ∆̃sym) The augmented nor-
malized Laplacian matrix is symmetric positive semi-
definite.

Proof. The quadratic form associated with ∆̃sym is

x>∆̃symx =
∑
i

x2i −
∑
i

∑
j
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Lemma 2. 0 is an eigenvalue of both ∆sym and ∆̃sym.
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Proof. First, note that v = [1, . . . , 1]> is an eigenvector of
∆ associated with eigenvalue 0, i.e., ∆v = (D−A)v = 0.

Also, we have that ∆̃sym = D̃−1/2(D̃ − Ã)D̃−1/2 =

D̃−1/2∆D̃−1/2. Denote v1 = D̃1/2v, then

∆̃symv1 = D̃−1/2∆D̃−1/2D̃1/2v = D̃−1/2∆v = 0.

Therefore, v1 = D̃1/2v is an eigenvector of ∆̃sym associ-
ated with eigenvalue 0, which is then the smallest eigenvalue
from the non-negativity of ∆̃sym. Likewise, 0 can be proved
to be the smallest eigenvalues of ∆sym.

Lemma 3. Let β1 ≤ β2 ≤ · · · ≤ βn denote eigenvalues of
D−1/2AD−1/2 and α1 ≤ α2 ≤ · · · ≤ αn be the eigenval-
ues of D̃−1/2AD̃−1/2. Then,

α1 ≥
maxi di

γ +maxi di
β1, αn ≤

mini di
γ +mini di

. (2)

Proof. We have shown that 0 is an eigenvalue of ∆sym.
Since D−1/2AD−1/2 = I−∆sym, then 1 is an eigenvalue
of D−1/2AD−1/2. More specifically, βn = 1. In addition,
by combining the fact that Tr(D−1/2AD−1/2) = 0 =∑
i βi with βn = 1, we conclude that β1 < 0.

By choosing x such that ‖x‖ = 1 and y = D1/2D̃−1/2x,
we have that ‖y‖2 =

∑
i

di
di+γ

x2i and mini di
γ+mini di

≤ ‖y‖2 ≤
maxi di

γ+maxi di
. Hence, we use the Rayleigh quotient to provide
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a lower bound to α1:
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β1.

One may employ similar steps to prove the second inequality
in Equation 2.

Proof of Theorem 1. Note that ∆̃sym = I − γD̃−1 −
D̃−1/2AD̃−1/2. Using the results in Lemma 3, we show
that the largest eigenvalue λ̃n of ∆̃sym is

λ̃n = max
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B. Experiment Details
Node Classification. We empirically find that on Reddit
dataset for SGC, it is crucial to normalize the features into
zero mean and univariate.

Training Time Benchmarking. We hereby describe the
experiment setup of Figure 3. Chen et al. (2018) benchmark
the training time of FastGCN on CPU, and as a result, it is
difficult to compare numerical values across reports. More-
over, we found the performance of FastGCN improved with

a smaller early stopping window (10 epochs); therefore, we
could decrease the model’s training time. We provide the
data underpinning Figure 3 in Table 1 and Table 2.

Table 1. Training time (seconds) of graph neural networks on Cita-
tion Networks. Numbers are averaged over 10 runs.

Models Cora Citeseer Pubmed

GCN 0.49 0.59 8.31
GAT 63.10 118.10 121.74
FastGCN 2.47 3.96 1.77
GIN 2.09 4.47 26.15
LNet 15.02 49.16 266.47
AdaLNet 10.15 31.80 222.21
DGI 21.24 21.06 76.20
SGC 0.13 0.14 0.29

Table 2. Training time (seconds) on Reddit dataset.
Model Time(s) ↓
SAGE-mean 78.54
SAGE-LSTM 486.53
SAGE-GCN 86.86
FastGCN 270.45
SGC 2.70

Text Classification. Yao et al. (2019) use one-hot features
for the word and document nodes. In training SGC, we nor-
malize the features to be between 0 and 1 after propagation
and train with L-BFGS for 3 steps. We tune the only hy-
perparameter, weight decay, using hyperopt(Bergstra et al.,
2015) for 60 iterations. Note that we cannot apply this fea-
ture normalization for TextGCN because the propagation
cannot be precomputed.

Semi-supervised User Geolocation. We replace the 4-
layer, highway-connection GCN with a 3rd degree propa-
gation matrix (K = 3) SGC and use the same set of hy-
perparameters as Rahimi et al. (2018). All experiments on
the GEOTEXT dataset are conducted on a single Nvidia
GTX-1080Ti GPU while the ones on the TWITTER-NA
and TWITTER-WORLD datasets are excuded with 10 cores
of the Intel(R) Xeon(R) Silver 4114 CPU (2.20GHz). In-
stead of collapsing all linear transformations, we keep two
of them which we find performing slightly better possibly
due to . Despite of this subtle variation, the model is still
linear.

Relation Extraction. We replace the 2-layer GCN with a
2nd degree propagation matrix (K = 2) SGC and remove
the intermediate dropout. We keep other hyperparameters
unchanged, including learning rate and regularization. Sim-
ilar to Zhang et al. (2018), we report the best validation
accuracy with early stopping.
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Figure 1. Validation accuracy with SGC using different propagation matrices.

Zero-shot Image Classification. We replace the 6-layer
GCN (hidden size: 2048, 2048, 1024, 1024, 512, 2048)
baseline with an 6-layer MLP (hidden size: 512, 512, 512,
1024, 1024, 2048) followed by a SGC with K = 6. Follow-
ing (Wang et al., 2018), we only apply dropout to the output
of SGC. Due to the slow evaluation of this task, we do
not tune the dropout rate or other hyperparameters. Rather,
we follow the GCNZ code and use learning rate of 0.001,
weight decay of 0.0005, and dropout rate of 0.5. We also
train the models with ADAM (Kingma & Ba, 2015) for 300
epochs.

C. Additional Experiments
Random Splits for Citation Networks. Possibly due to
their limited size, the citation networks are known to be
unstable. Accordingly, we conduct an additional 10 experi-
ments on random splits of the training set while maintaining
the same validation and test sets.

Table 3. Test accuracy (%) on citation networks (random splits).
†We remove the outliers (accuracy < 0.7/0.65/0.75) when calcu-
lating their statistics due to high variance.

Cora Citeseer Pubmed

Ours:
GCN 80.53± 1.40 70.67± 2.90 77.09± 2.95
GIN 76.94± 1.24 66.56± 2.27 74.46± 2.19
LNet 74.23± 4.50† 67.26± 0.81† 77.20± 2.03†

AdaLNet 72.68± 1.45† 71.04± 0.95† 77.53± 1.76†

GAT 82.29± 1.16 72.6± 0.58 78.79± 1.41
SGC 80.62± 1.21 71.40± 3.92 77.02± 1.62

Propagation choice. We conduct an ablation study with
different choices of propagation matrix, namely:

Normalized Adjacency: Sadj = D−1/2AD−1/2

Random Walk Adjacency Srw = D−1A

Aug. Normalized Adjacency S̃adj = D̃−1/2ÃD̃−1/2

Aug. Random Walk S̃rw = D̃−1Ã

First-Order Cheby S1-order = (I + D−1/2AD−1/2)

We investigate the effect of propagation steps K ∈ {2..10}
on validation set accuracy. We use hyperopt to tune
L2-regularization and leave all other hyperparameters un-
changed. Figure 1 depicts the validation results achieved by
varying the degree of different propagation matrices.

We see that augmented propagation matrices (i.e. those
with self-loops) attain higher accuracy and more stable per-
formance across various propagation depths. Specifically,
the accuracy of S1-order tends to deteriorate as the power K
increases, and this results suggests using large filter coef-
ficients on low frequencies degrades SGC performance on
semi-supervised tasks.

Another pattern is that odd powers of K cause a significant
performance drop for the normalized adjacency and random
walk propagation matrices. This demonstrates how odd pow-
ers of the un-augmented propagation matrix use negative
filter coefficients on high frequency information. Adding
self-loops to the propagation matrix shrinks the spectrum
such that the largest eigenvalues decrease from≈ 2 to≈ 1.5
on the citation network datasets. By effectively shrinking
the spectrum, the effect of negative filter coefficients on high
frequencies is minimized, and as a result, using odd-powers
ofK does not degrade the performance of augmented propa-
gation matrices. For non-augmented propagation matrices —
where the largest eigenvalue is approximately 2 — negative
coefficients significantly distort the signal, which leads to
decreased accuracy. Therefore, adding self-loops constructs
a better domain in which fixed filters can operate.

Data amount. We also investigated the effect of training
dataset size on accuracy. As demonstrated in Table 4, SGC
continues to perform similarly to GCN as the training dataset
size is reduced, and even outperforms GCN when there
are fewer than 5 training samples. We reason this study
demonstrates SGC has at least the same modeling capacity
as GCN.
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# Training Samples SGC GCN

1 33.16 32.94
5 63.74 60.68
10 72.04 71.46
20 80.30 80.16
40 85.56 85.38
80 90.08 90.44

Table 4. Validation Accuracy (%) when SGC and GCN are trained
with different amounts of data on Cora. The validation accuracy is
averaged over 10 random training splits such that each class has
the same number of training examples.
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