
Zeno: Distributed Stochastic Gradient Descent with Suspicion-based
Fault-tolerance

Cong Xie 1 Oluwasanmi Koyejo 1 Indranil Gupta 1

Abstract
We present Zeno, a technique to make distributed
machine learning, particularly Stochastic Gradi-
ent Descent (SGD), tolerant to an arbitrary num-
ber of faulty workers. Zeno generalizes pre-
vious results that assumed a majority of non-
faulty nodes; we need assume only one non-faulty
worker. Our key idea is to suspect workers that are
potentially defective. Since this is likely to lead to
false positives, we use a ranking-based preference
mechanism. We prove the convergence of SGD
for non-convex problems under these scenarios.
Experimental results show that Zeno outperforms
existing approaches.

1. Introduction
In distributed machine learning, one of the hardest problems
today is fault-tolerance. Faulty workers may take arbitrary
actions or modify their portion of the data and/or models
arbitrarily. In addition to adversarial attacks on purpose, it is
also common for the workers to have hardware or software
failures, such as bit-flipping in the memory or communi-
cation media. While fault-tolerance has been studied for
distributed machine learning (Blanchard et al., 2017; Chen
et al., 2017; Yin et al., 2018; Feng et al., 2014; Su & Vaidya,
2016a;b; Alistarh et al., 2018), much of the work on fault-
tolerant machine learning makes strong assumptions. For
instance, a common assumption is that no more than 50% of
the workers are faulty (Blanchard et al., 2017; Chen et al.,
2017; Yin et al., 2018; Su & Vaidya, 2016a; Alistarh et al.,
2018).

We present Zeno, a new technique that generalizes the fail-
ure model so that we only require at least one non-faulty
(good) worker. In particular, faulty gradients may pretend
to be good by behaving similar to the correct gradients in

1Department of Computer Science, University of Illi-
nois, Urbana-Champaign, USA. Correspondence to: Cong Xie
<cx2@illinois.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

variance and magnitude, making them hard to distinguish. It
is also possible that in different iterations, different groups
of workers are faulty, which means that we can not simply
identify workers which are always faulty.

2: Gradient Computation

4: Aggregation

Server

Worker Worker ... Worker
3:

 P
us

h

1: Pull

Figure 1. Parameter Server architecture.

We focus on Stochastic Gradient Descent (SGD), and use
the Parameter Server (PS) architecture (Li et al., 2014a;b)
for distributed SGD. As illustrated in Figure 1, processes
are composed of the server nodes and worker nodes. In
each SGD iteration, the workers pull the latest model from
the servers, estimate the gradients using the locally sampled
training data, then push the gradient estimators to the servers.
The servers aggregate the gradient estimators, and update
the model by using the aggregated gradients.

Our approach, in a nutshell is the following. We treat each
candidate gradient estimator as a suspect. We compute a
score using a stochastic zero-order oracle. This ranking in-
dicates how trustworthy the given worker is in that iteration.
Then, we take the average over the several candidates with
the highest scores. This allows us to tolerate a large number
of incorrect gradients. We prove that the convergence is
as fast as fault-free SGD. Further, the variance falls as the
number of non-faulty workers increases.

To the best of our knowledge this paper is the first to the-
oretically and empirically study cases where a majority of
workers are faulty for non-convex problems. In summary,
our contributions are:

• A new approach for SGD with fault-tolerance, that works

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

with an arbitrarily large number of faulty nodes as long
as there is at least one non-faulty node.

• Theoretically, the proposed algorithm converges as fast
as distributed synchronous SGD without faulty workers,
with the same asymptotic time complexity.

• Experimental results validating that 1) existing majority-
based robust algorithms may fail even when the number
of faulty workers is lower than the majority, and 2) Zeno
gracefully handles such cases.

• The effectiveness of Zeno also extends to the case where
the workers use disjoint local data to train the model,
i.e., the local training data are not identically distributed
across different workers. Theoretical and experimental
analysis is also provided in this case.

2. Related Work
Many approaches for improving failure tolerance are based
on robust statistics. For instance, Chen et al. (2017); Su &
Vaidya (2016a;b) use geometric median as the aggregation
rule. Yin et al. (2018) establishes statistical error rates for
marginal trimmed mean as the aggregation rule. Similar
to these papers, our proposed algorithm also works under
Byzantine settings.

There are also robust gradient aggregation rules that are not
based on robust statistics. For example, Blanchard et al.
(2017) propose Krum, which select the candidates with
minimal local sum of Euclidean distances. DRACO (Chen
et al., 2018) uses coding theory to ensure robustness.

Alistarh et al. (2018) proposes a fault-tolerant SGD variant
different from the robust aggregation rules. The algorithm
utilizes historical information, and achieves the optimal
sample complexity.

Despite their differences, the existing majority-based meth-
ods for synchronous SGD (Blanchard et al., 2017; Chen
et al., 2017; Yin et al., 2018; Su & Vaidya, 2016a; Alistarh
et al., 2018) assume that the non-faulty workers dominate
the entire set of workers. Thus, such algorithms can trim
the outliers from the candidates. However, in real-world
failures or attacks, there are no guarantees that the number
of faulty workers can be bounded from above.

3. Model
We consider the following optimization problem:

min
x∈Rd

F (x),

where F (x) = Ez∼D[f(x; z)], z is sampled from some
unknown distribution D, d is the number of dimensions.

We assume that there exists a minimizer of F (x), which is
denoted by x∗.

We solve this problem in a distributed manner with m work-
ers. In each iteration, each worker will sample n indepen-
dent and identically distributed (i.i.d.) data points from the
distribution D, and compute the gradient of the local empir-
ical loss Fi(x) = 1

n

∑n
j=1 f(x; zi,j),∀i ∈ [m], where zi,j

is the jth sampled data on the ith worker. The servers will
collect and aggregate the gradients sent by the works, and
update the model as follows:

xt+1 = xt − γtAggr({gi(xt) : i ∈ [m]}),

where Aggr(·) is an aggregation rule (e.g., averaging), and

gi(x
t) =

{
∗ ith worker is faulty,
∇Fi(xt) otherwise,

(1)

where “∗" represents arbitrary values.

Formally, we define the failure model in synchronous SGD
as follows.

Definition 1. (Failure Model). In the tth iteration, let
{vti : i ∈ [m]} be i.i.d. random vectors in Rd, where
vti = ∇Fi(xt). The set of correct vectors {vti : i ∈ [m]}
is partially replaced by faulty vectors, which results in
{ṽti : i ∈ [m]}, where ṽti = gi(x

t) as defined in Equa-
tion (1). In other words, a correct/non-faulty gradient is
∇Fi(xt), while a faulty gradient, marked as “∗", is as-
signed arbitrary value. We assume that q out of m vectors
are faulty, where q < m. Furthermore, the indices of faulty
workers can change across different iterations.

We observe that in the worst case, the failure model in Defi-
nition 1 is equivalent to the Byzantine failures introduced
in Blanchard et al. (2017); Chen et al. (2017); Yin et al.
(2018). In particular, if the failures are caused by attack-
ers, the failure model includes the case where the attackers
collude.

To help understand the failure model in synchronous SGD,
we illustrate a toy example in Figure 2.

The notations used in this paper is summarized in Table 1.

Table 1. Notations
Notation Description
m Number of workers
n Number of samples on each worker
T Number of epochs
[m] Set of integers {1, . . . ,m}
q Number of faulty workers
b Trim parameter of Zeno
γ Learning rate
ρ Regularization weight of Zeno
nr Batch size of Zeno
‖ · ‖ All the norms in this paper are l2-norms

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Figure 2. A toy example of the failure model in synchronous SGD.
There are m = 7 candidate gradient estimators. The black dots
represent the correct gradients, where ṽi = ∇Fi(x

t), i ∈ [m− 1].
The red dot represents the faulty gradient, whose value (in the
worst case) is ṽm = ε∇Fm(xt), where ε < 0 is a large negative
constant. The blue dashed circle represent the expectation of the
true gradient∇F (xt). Thus, the averaged gradient, which will be
computed by the server, represented by the green dot, is far away
from the true gradient, which is harmful to the model training.

4. Methodology
In contrast to the existing majority-based methods, we com-
pute a score for each candidate gradient estimator by using
the stochastic zero-order oracle. We rank each candidate
gradient estimator based on the estimated descent of the loss
function, and the magnitudes. Then, the algorithm aggre-
gates the candidates with highest scores. The score roughly
indicates how trustworthy each candidate is.
Definition 2. (Stochastic Descendant Score) Denote
fr(x) = 1

nr

∑nr

i=1 f(x; zi), where zi’s are i.i.d. sam-
ples drawn from D, and nr is the batch size of fr(·).
E[fr(x)] = F (x). For any update (gradient estimator)
u, based on the current parameter x, learning rate γ, and a
constant weight ρ > 0, we define its stochastic descendant
score as follows:

Scoreγ,ρ(u, x) = fr(x)− fr(x− γu)− ρ‖u‖2.

The score defined in Definition 2 is composed of two parts:
the estimated descendant of the loss function, and the magni-
tude of the update. The score increases when the estimated
descendant of the loss function, fr(x) − fr(x − γṽi), in-
creases. The score decreases when the magnitude of the
update, ‖ṽi‖2, increases. Intuitively, the larger descendant
suggests faster convergence, and the smaller magnitude sug-
gests a smaller change. Even if a gradient is faulty, a smaller
change makes it less harmful and easier to be cancelled by
the correct gradients.

Using the score defined above, we establish the following
suspicion-based aggregation rule. We ignore the index of
iterations, t, for convenience.
Definition 3. (Suspicion-based Aggregation) Assume that
among the gradient estimators {ṽi : i ∈ [m]}, q elements
are faulty, and x is the current value of the parameters. We
sort the sequence by the stochastic descendant score defined
in Definition 2, which results in {ṽ(i) : i ∈ [m]}, where

Scoreγ,ρ(ṽ(1), x) ≥ . . . ≥ Scoreγ,ρ(ṽ(m), x).

Algorithm 1 Zeno

Server
Input: ρ (defined in Definition 2), b (defined in Defini-
tion 3)
x0 ← rand() {Initialization}
for t = 1, . . . , T do

Broadcast xt−1 to all the workers
Wait until all the gradients {ṽti : i ∈ [m]} arrive
Draw the samples for evaluating stochastic descendant
score f tr(·) as defined in Definition 2
Compute ¯̃vt = Zenob({ṽti : i ∈ [m]}) as defined in
Definition 3
Update the parameter xt ← xt−1 − γt ¯̃vt

end for

Worker i = 1, . . . ,m
for t = 1, . . . , T do

Receive xt−1 from the server
Draw the samples, compute, and send the gradient
vti = ∇F ti (xt−1) to the server

end for

In other words, ṽ(i) is the vector with the ith highest score
in {ṽi : i ∈ [m]}.

The proposed aggregation rule, Zeno, aggregates the gra-
dient estimators by taking the average of the first m − b
elements in {ṽ(i) : i ∈ [m]} (the gradient estimators with
the (m− b) highest scores), where m > b ≥ q:

Zenob({ṽi : i ∈ [m]}) =
1

m− b

m−b∑
i=1

ṽ(i).

Note that zi’s (in Definition 2) are independently sampled in
different iterations. Furthermore, in each iteration, zi’s are
sampled after the arrival of the candidate gradient estimators
ṽti on the server. Since the faulty workers are not predictive,
they cannot obtain the exact information of fr(·), which
means that the faulty gradients are independent of fr(·),
though the faulty workers can know E[fr(·)].

Using Zeno as the aggregation rule, the detailed distributed
synchronous SGD is shown in Algorithm 1.

In Figure 3, we visualize the intuition underlying Zeno. It
is illustrated that all the selected candidates (arrows pointing
inside the black dashed circle) are bounded by at least one
honest candidate. In other words, Zeno uses at least one
honest candidate to establish a boundary (the black dashed
circle), which filter out the potentially harmful candidates.
The candidates inside the boundary are harmless, no matter
they are actually faulty or not.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Figure 3. Zeno on loss surface contours. We use the notations in
Definition 2 and 3. The black dot is the current parameter x. The
arrows are the candidate updates {ṽi : i ∈ [m]}. Red arrows are
the incorrect updates. Green arrows are the correct updates. Taking
b = 3, Zeno filters out the 3 arrows pointing outside the black
dashed circle. These 3 updates have the least descendant of the loss
function, among all the updates. There are some incorrect updates
(the red arrow) remaining inside the boundary. However, since
they are bounded by the correct updates, the remaining incorrect
updates are harmless.

5. Theoretical Guarantees
In this section, we prove the convergence of synchronous
SGD with Zeno as the aggregation rule under our failure
model. We start with the assumptions required by the con-
vergence guarantees. The two basic assumptions are the
smoothness of the loss function, and the bounded variance
of the (non-faulty) gradient estimators.

5.1. Assumptions

In this section, we highlight the necessary assumption for
stochastic descendant score, followed by the assumptions
for convergence guarantees.

Assumption 1. (Unbiased evaluation) We assume that the
stochastic loss function, fr(x), evaluated in the stochastic
descendant score in Definition 2, is an unbiased estimator
of the global loss function F (x), i.e., E[fr(x)] = F (x).

Assumption 2. (Bounded Taylor’s Approximation) We as-
sume that f(x; z) has L-smoothness and µ-lower-bounded
Taylor’s approximation (also called µ-weak convexity):
〈∇f(x; z), y − x〉 + µ

2 ‖y − x‖2 ≤ f(y; z) − f(x; z) ≤
〈∇f(x; z), y − x〉+ L

2 ‖y − x‖
2, where µ ≤ L, and L > 0.

Note that Assumption 2 covers the case of non-convexity by
taking µ < 0, non-strong convexity by taking µ = 0, and
strong convexity by taking µ > 0.

Assumption 3. (Bounded Variance) We assume that in any
iteration, any correct gradient estimator vi = ∇Fi(x) has
the upper-bounded variance: E ‖vi − E [vi]‖2 ≤ V. Fur-
thermore, we assume that E‖vi‖2 ≤ G.

In general, Assumption 3 bounds the variance and the sec-

ond moment of the correct gradients of any sample loss
function f(x; z), ∀z ∼ D.
Remark 1. Note that for the faulty gradients in our failure
model, none of the assumptions above holds.

5.2. Convergence Guarantees

For general functions, including convex and non-convex
functions, we provide the following convergence guarantee.
The proof can be found in the appendix.
Theorem 1. For ∀x ∈ Rd, denote

ṽi =

{
∗ ith worker is faulty,
∇Fi(x) otherwise,

where i ∈ [m], with E[∇Fi(x)] = ∇F (x), and ¯̃v =

Zenob({ṽi : i ∈ [m]}). Taking γ ≤ 1
L , ρ = βγ2

2 , and
β > max(0,−µ), we have

E [F (x− γ ¯̃v)]− F (x) ≤ −γ
2
‖∇F (x)‖2

+
γ(b− q + 1)(m− q)V

(m− b)2
+

(L+ β)γ2G

2
.

Corollary 1. Take γ = 1
L
√
T

, ρ = βγ2

2 , and β >

max(0,−µ). Using Zeno, with E[∇Fi(xt)] = ∇F (xt)
for ∀t ∈ {0, . . . , T}, after T iterations, we have∑T−1

t=0 E‖∇F (xt)‖2

T

≤ O
(

1√
T

)
+O

(
(b− q + 1)(m− q)

(m− b)2

)
.

Now, we consider a more general case, where each worker
has a disjoint (non-identically distributed) local dataset for
training, which results in non-identically distributed gradient
estimators. The server is still aware of the the entire dataset.
For example, in volunteer computing (Meeds et al., 2015;
Miura & Harada, 2015), the server/coordinator can assign
disjoint tasks/subsets of training data to the workers, while
the server holds the entire training dataset. In this scenario,
we have the following convergence guarantee.
Corollary 2. Assume that

F (x) =
1

m

∑
i∈[m]

E [Fi(x)] ,E [Fi(x)] 6= E [Fj(x)] ,

for ∀i, j ∈ [m], i 6= j. For the stochastic descendant score,
we have E [fr(x)] = F (x). Assumption 1, 2, and 3 hold.
Take γ = 1

L
√
T

, ρ = βγ2

2 , and β > max(0,−µ). Using
Zeno, after T iterations, we have∑T−1

t=0 E‖∇F (xt)‖2

T

≤ O
(

1√
T

)
+O

(
b

m

)
+O

(
b2(m− q)
m2(m− b)

)
.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

These two corollaries tell us that when using Zeno as the
aggregation rule, even if there are failures, the convergence
rate can be as fast as fault-free distributed synchronous
SGD. The variance decreases when the number of workers
m increases, or the estimated number of faulty workers b
decreases.

Remark 2. There are two practical concerns for the pro-
posed algorithm. First, by increasing the batch size of
fr(·) (nr in Definition 2), the stochastic descendant score
will be potentially more stable. However, according to The-
orem 1 and Corollary 1 and 2, the convergence rate is inde-
pendent of the variance of fr. Thus, theoretically we can use
a single sample to evaluate the stochastic descendant score.
Second, theoretically we need larger ρ for non-convex prob-
lems. However, larger ρ makes Zeno less sensitive to the
descendant of the loss function, which potentially increases
the risk of aggregating harmful candidates. In practice, we
can use a small ρ by assuming the local convexity of the loss
functions.

5.3. Implementation Details: Time Complexity

Unlike the majority-based aggregation rules, the time com-
plexity of Zeno is not trivial to analyze. Note that the
convergence rate is independent of the variance of fr, which
means that we can use a single sample (nr = 1) to evalu-
ate fr to achieve the same convergence rate. Furthermore,
in general, when evaluating the loss function on a single
sample, the time complexity is roughly linear to the num-
ber of parameters d. Thus, informally, the time complexity
of Zeno is O(dm) for one iteration, which is the same
as Mean and Median aggregation rules. For comparison,
note that the time complexity of Krum is O(dm2).

6. Experiments
In this section, we evaluate the fault tolerance of the pro-
posed algorithm. We summarize our results here:

• Compared to the baselines, Zeno shows better conver-
gence with more faulty workers than non-faulty ones.

• Zeno is robust to the choices of the hyperparameters,
including the Zeno batch size nr, the weight ρ, and the
number of trimmed elements b.

• Zeno also works when training with disjoint local data.

6.1. Datasets and Evaluation Metrics

We conduct experiments on benchmark CIFAR-10 image
classification dataset (Krizhevsky & Hinton, 2009), which is
composed of 50k images for training and 10k images for test-
ing. We use convolutional neural network (CNN) with 4 con-
volutional layers followed by 1 fully connected layer. The

detailed network architecture can be found in https://
github.com/xcgoner/icml2019_zeno. In each
experiment, we launch 20 worker processes. We repeat
each experiment 10 times and take the average. We use
top-1 accuracy on the testing set and the cross-entropy loss
function on the training set as the evaluation metrics.

6.1.1. BASELINES

We use the averaging without failures/attacks as the
gold standard, which is referred to as Mean without
failures. Note that this method is not affected by b or
q. The baseline aggregation rules are Mean, Median, and
Krum as defined below.

Definition 4. (Median (Yin et al., 2018)) We define the
marginal median aggregation rule Median(·) as med =
Median({ṽi : i ∈ [m]}), where for any j ∈ [d], the jth di-
mension of med is medj = median ({(ṽ1)j , . . . , (ṽm)j}),
(ṽi)j is the jth dimension of the vector ṽi, median(·) is the
one-dimensional median.

Definition 5. (Krum (Blanchard et al., 2017))

Krumb({ṽi : i ∈ [m]}) = ṽk, k = argmin
i∈[m]

∑
i→j
‖ṽi − ṽj‖2,

where i→ j is the indices of the m− b− 2 nearest neigh-
bours of ṽi in {ṽi : i ∈ [m]} measured by Euclidean dis-
tances.

Note that Krum requires 2b + 2 < m. Thus, b = 8 is the
best we can take.

6.2. No Failure

We first test the convergence when there are no failures. In
all the experiments, we take the learning rate γ = 0.1,
worker batch size 100, Zeno batch size nr = 4, and
ρ = 0.0005. Each worker computes the gradients on i.i.d.
samples. For both Krum and Zeno, we take b = 4. The
result is shown in Figure 4. We can see that Zeno converges
as fast as Mean. Krum converges slightly slower, but the
convergence rate is acceptable.

6.3. Label-flipping Failure

In this section, we test the fault tolerance to label-flipping
failures. When such failures happen, the workers compute
the gradients based on the training data with “flipped" labels,
i.e., any label ∈ {0, . . . , 9}, is replaced by 9− label. Such
failures/attacks can be caused by data poisoning or software
failures.

In all the experiments, we take the learning rate γ = 0.1,
worker batch size 100, Zeno batch size nr = 4, and ρ =
0.0005. Each non-faulty worker computes the gradients on
i.i.d. samples.

https://github.com/xcgoner/icml2019_zeno
https://github.com/xcgoner/icml2019_zeno

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean

Median

Krum
4

Zeno
4

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean

Median

Krum
4

Zeno
4

(b) Cross entropy on training set, with q = 8

Figure 4. Convergence on i.i.d. training data, without failures. Batch size on the workers is 100. Batch size of Zeno is nr = 4.
ρ = 0.0005. γ = 0.1. Each epoch has 25 iterations. Zeno performs similar to Mean.

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
9

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss
Mean without failures

Mean

Median

Krum
8

Zeno
9

(b) Cross entropy on training set, with q = 8

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
16

(c) Top-1 accuracy on testing set, with q = 12

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean without failures

Mean

Median

Krum
8

Zeno
16

(d) Cross entropy on training set, with q = 12

Figure 5. Convergence on i.i.d. training data, with label-flipping failures. Batch size on the workers is 100. Batch size of Zeno is nr = 4.
ρ = 0.0005. γ = 0.1. Each epoch has 25 iterations. Zeno outperforms all the baselines, especially when q = 12.

The result is shown in Figure 5. As expected, Zeno can
tolerate more than half faulty gradients. When q = 8, Zeno
preforms similar to Krum. When q = 12, Zeno preforms
much better than the baselines. When there are faulty gra-
dients, Zeno converges slower, but still has better conver-
gence rates than the baselines.

6.4. Bit-flipping Failure

In this section, we test the fault tolerance to a more severe
kind of failure. Here, the bits that control the sign of the
floating numbers are flipped, e.g., due to some hardware
failure. A faulty worker pushes the negative gradient instead

of the true gradient to the servers. To make the failure even
worse, one of the faulty gradients is copied to and overwrites
the other faulty gradients, which means that all the faulty
gradients have the same value.

In all the experiments, we take the learning rate γ = 0.1,
worker batch size 100, Zeno batch size nr = 4, and ρ =
0.0005. Each non-faulty worker computes the gradients on
i.i.d. samples.

The result is shown in Figure 6. As expected, Zeno can
tolerate more than half faulty gradients. Surprisingly, Mean
performs well when q = 8. We will discuss this phe-

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
9

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean without failures

Mean

Median

Krum
8

Zeno
9

(b) Cross entropy on training set, with q = 8

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
16

(c) Top-1 accuracy on testing set, with q = 12

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean without failures

Mean

Median

Krum
8

Zeno
16

(d) Cross entropy on training set, with q = 12

Figure 6. Convergence on i.i.d. training data, with bit-flipping failures. Batch size on the workers is 100. Batch size of Zeno is nr = 4.
ρ = 0.0005. γ = 0.1. Each epoch has 25 iterations. Zeno outperforms all the baselines, especially when q = 12.

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
9

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean without failures

Mean

Median

Krum
8

Zeno
9

(b) Cross entropy on training set, with q = 8

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o

p
-1

 a
cc

u
ra

cy

Mean without failures

Mean

Median

Krum
8

Zeno
16

(c) Top-1 accuracy on testing set, with q = 12

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o

ss

Mean without failures

Mean

Median

Krum
8

Zeno
16

(d) Cross entropy on training set, with q = 12

Figure 7. Convergence on disjoint (non-i.i.d.) training data, with label-flipping failures. Batch size on the workers is 100. Batch size of
Zeno is nr = 4. ρ = 0.0005. γ = 0.05. Each epoch has 25 iterations. Zeno outperforms all the baselines, especially when q = 12.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

1 2 4 8 16

n
r

0

0.2

0.4

0.6

0.8

T
op

-1
 a

cc
ur

ac
y

(a) Top-1 accuracy on testing set, with q = 8

1 2 4 8 16

n
r

0

0.2

0.4

0.6

0.8

L
o

s
s

(b) Cross entropy on training set, with q = 8

Figure 8. Convergence on i.i.d. training data, with label-flipping failures, q = 8. Batch size on the workers is 100. γ = 0.1. Each epoch
has 25 iterations. nr is tuned.

nomenon in Section 6.7. Zeno outperforms all the baselines.
When q = 12, Zeno is the only strategy which avoids catas-
trophic divergence. Zeno converges slower, but still has
better convergence than the baselines.

6.5. Disjoint Local Training Data

In volunteer computing (Meeds et al., 2015; Miura &
Harada, 2015), it is reasonable for the coordinator to as-
sign disjoint tasks/datasets to different workers. As a result,
each worker draws training samples from different datasets.
The server is still aware of the entire dataset. We conduct
experiments in such scenario, as discussed in Corollary 2.
We test Zeno under label-flipping failures. The results are
shown in Figure 7. Due to the non-i.i.d. setting, it is more
difficult to distinguish faulty gradients from non-faulty ones.
In such bad cases, Zeno can still make reasonable progress,
while the baselines, especially Krum, performs much worse.

6.6. Hyperparameter Sensitivity

In Figure 8, we show the performance of Zeno with differ-
ent batch size nr. Larger nr improves the convergence, but
the gap is not significant. nr = 1 still works. Zeno is also
robust to different choices of the other hyperparameters ρ
and b. The experiments can be found in the appendix.

6.7. Discussion

An interesting observation is that, when q = 8, Mean seems
to have good performance, while it is not supposed to be
fault-tolerant. The reason is that both label-flipping and
bit-flipping failures do not change the magnitude of the
gradients. When the number of faulty gradients q is less
than half, it is possible that the faulty gradients are cancelled
out by the non-faulty ones. However, when the magnitude is
enlarged, Mean will fail, as pointed out in Xie et al. (2018).

In general, we find that Zeno is more robust than the current
state of the art. When the faulty workers dominate, Zeno is
the only aggregator that converges in all experiments. When

the correct workers dominate, Median can be an alternative
with cheap computation.

The computational complexity of Zeno depends on the
complexity of inference and the Zeno batch size nr. These
additional hyperparameters make direct comparison to stan-
dard methods more challenging. If we take the approxi-
mation that the computational complexity of inference is
linear to the number of parameters, then we can roughly
compare the time complexity to the baselines. Compared to
Median, Zeno is computationally more expensive by the
factor of nr = 4. However, compared to Krum, which re-
quires 20×19/2 = 190 times ofO(d) operators, Zeno only
needs 21× 4 = 84 times of O(d) operators. Furthermore,
since the batch size on the workers is 100, the computation
required on the server is less than that of one worker, which
does not cancel out the computational improvements due to
data parallelism. The additional computation is the cost that
we have to pay for better robustness.

Another interesting observation is that, although Krum is
the state-of-the-art algorithm, it does not perform as well
as expected under our designed failures. The reason is
that Krum requires the assumption that cσ < ‖g‖ for con-
vergence, where c is a general constant, σ is the maximal
variance of the gradients, and g is the gradient. Note that
‖g‖ → 0 when SGD converges to a critical point. Thus,
such assumption is never guaranteed to be satisfied, if the
variance is large. Furthermore, the better SGD converges,
the less likely such assumption can be satisfied (more details
of this issue can be found in Xie et al. (2019)).

7. Conclusion
We propose a novel aggregation rule for synchronous SGD,
which requires a weak assumption that there is at least one
honest worker. The algorithm has provable convergence.
Our empirical results show good performance in practice.
We will apply the proposed method to asynchronous SGD
in future work.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Acknowledgements
This work was funded in part by NSF CNS 1409416, by
a gift from Microsoft, and by computational resources do-
nated by Intel, AWS, and Microsoft Azure.

References
Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochastic

gradient descent. arXiv preprint arXiv:1803.08917, 2018.

Blanchard, P., Guerraoui, R., Stainer, J., et al. Machine
learning with adversaries: Byzantine tolerant gradient
descent. In Advances in Neural Information Processing
Systems, pp. 118–128, 2017.

Chen, L., Wang, H., Charles, Z., and Papailiopoulos, D.
Draco: Byzantine-resilient distributed training via redun-
dant gradients. In International Conference on Machine
Learning, pp. 902–911, 2018.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. POMACS, 1:44:1–44:25, 2017.

Feng, J., Xu, H., and Mannor, S. Distributed robust learning.
arXiv preprint arXiv:1409.5937, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583–598, 2014a.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-
munication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, pp. 19–27, 2014b.

Meeds, E., Hendriks, R., al Faraby, S., Bruntink, M., and
Welling, M. Mlitb: machine learning in the browser.
PeerJ Computer Science, 1, 2015.

Miura, K. and Harada, T. Implementation of a practical dis-
tributed calculation system with browsers and javascript,
and application to distributed deep learning. CoRR,
abs/1503.05743, 2015.

Su, L. and Vaidya, N. H. Fault-tolerant multi-agent opti-
mization: Optimal iterative distributed algorithms. In
PODC, 2016a.

Su, L. and Vaidya, N. H. Defending non-bayesian
learning against adversarial attacks. arXiv preprint
arXiv:1606.08883, 2016b.

Xie, C., Koyejo, O., and Gupta, I. Phocas: dimensional
byzantine-resilient stochastic gradient descent. arXiv
preprint arXiv:1805.09682, 2018.

Xie, C., Koyejo, S., and Gupta, I. Fall of empires: Breaking
byzantine-tolerant sgd by inner product manipulation.
arXiv preprint arXiv:1903.03936, 2019.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.
Byzantine-robust distributed learning: Towards optimal
statistical rates. arXiv preprint arXiv:1803.01498, 2018.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Appendix

A. Proofs
A.1. Preliminaries

We use the following lemma to bound the aggregated vectors.

Lemma 1. (Bounded Score) Without loss of generality, we denote the m − q correct elements in {ṽi : i ∈ [m]} as
{vi : i ∈ [m− q]}. Sorting the correct vectors by the stochastic descendant score, we obtain {v(i) : i ∈ [m− q]}. Then, we
have the following inequality:

Scoreγ,ρ(ṽ(i), x) ≥ Scoreγ,ρ(v(i), x),∀i ∈ [m− q],

or, by flipping the signs on both sides, it is equivalent to

fr(x− γṽ(i))− fr(x) + ρ‖ṽ(i)‖2 ≤ fr(x− γv(i))− fr(x) + ρ‖v(i)‖2,∀i ∈ [m− q],

Proof. We prove the lemma by contradiction.

Assume that Scoreγ,ρ(ṽ(i), x) < Scoreγ,ρ(v(i), x). Thus, there are i correct vectors having greater scores than ṽ(i).
However, because ṽ(i) is the ith element in {ṽ(i) : i ∈ [m]}, there should be at most i− 1 vectors having greater scores than
it, which yields a contradiction.

A.2. Convergence guarantees

For general non-strongly convex functions and non-convex functions, we provide the following convergence guarantees.

Theorem 1. For ∀x ∈ Rd, denote

ṽi =

{
∗ ith worker is Byzantine,
∇Fi(x) otherwise,

where i ∈ [m], and ¯̃v = Zenob({ṽi : i ∈ [m]}). Taking γ ≤ 1
L , and ρ = βγ2

2 , where{
β = 0, if µ ≥ 0;
β ≥ |µ|, otherwise.

we have

E [F (x− γ ¯̃v)]− F (x) ≤ −γ
2
‖∇F (x)‖2 +

γ(b− q + 1)(m− q)V
(m− b)2

+
(L+ β)γ2G

2
.

Proof. Without loss of generality, we denote the m − q correct elements in {ṽi : i ∈ [m]} as {vi : i ∈ [m − q]}, where
E[vi] = ∇F (x). Sorting the correct vectors by the online descendant score, we obtain {v(i) : i ∈ [m− q]}. We also sort ṽi
by the online descendant score and obtain {ṽ(i) : i ∈ [m]}.

According to the definition, ¯̃v = Zenob({ṽi : i ∈ [m]}) = 1
m−b

∑m−b
i=1 ṽ(i). Furthermore, we denote v̄ = 1

m−b
∑m−b
i=1 v(i).

Using Assumption 2, we have

fr(x− γṽ(i)) ≥ fr(x− γ ¯̃v) +
〈
∇fr(x− γ ¯̃v), γ(¯̃v − ṽ(i))

〉
+
µγ2

2
‖¯̃v − ṽ(i)‖2,

for ∀i ∈ [m− b].

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

By summing up, we have

1

m− b

m−b∑
i=1

fr(x− γṽ(i)) ≥ fr(x− γ ¯̃v) +
µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2. (2)

Using Lemma 1, we have

fr(x− γṽ(i)) + ρ‖ṽ(i)‖2 ≤ fr(x− γv(i)) + ρ‖v(i)‖2,

for ∀i ∈ [m− b].

Combined with Equation 2, we have

fr(x− γ ¯̃v)

≤ 1

m− b

m−b∑
i=1

fr(x− γṽ(i))−
µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2

≤ 1

m− b

m−b∑
i=1

fr(x− γv(i)) +
ρ

m− b

m−b∑
i=1

[
‖v(i)‖2 − ‖ṽ(i)‖2

]
− µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2.

We take ρ = βγ2

2 , where {
β = 0, if µ ≥ 0;
β ≥ |µ|, otherwise.

Thus, if µ ≥ 0, we have ρ = 0, which implies that

ρ

m− b

m−b∑
i=1

[
‖v(i)‖2 − ‖ṽ(i)‖2

]
− µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2 ≤
βγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Also, if µ < 0, since β ≥ −µ, we have

ρ

m− b

m−b∑
i=1

[
‖v(i)‖2 − ‖ṽ(i)‖2

]
− µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2

=
βγ2

2(m− b)

m−b∑
i=1

[
‖v(i)‖2 − ‖ṽ(i)‖2

]
− µγ2

2(m− b)

m−b∑
i=1

[
‖ṽ(i)‖2 − ‖¯̃v‖2

]
=

βγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2 +
(−β − µ)γ2

2(m− b)

m−b∑
i=1

‖ṽ(i)‖2 +
µγ2

2(m− b)

m−b∑
i=1

‖¯̃v‖2

≤ βγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Thus, we have

fr(x− γ ¯̃v)

≤ 1

m− b

m−b∑
i=1

fr(x− γv(i)) +
ρ

m− b

m−b∑
i=1

[
‖v(i)‖2 − ‖ṽ(i)‖2

]
− µγ2

2(m− b)

m−b∑
i=1

‖¯̃v − ṽ(i)‖2

≤ 1

m− b

m−b∑
i=1

fr(x− γv(i)) +
βγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Using the L-smoothness, we have

fr(x− γv(i)) ≤ fr(x− γv̄) +
〈
∇fr(x− γv̄), γ(v̄ − v(i))

〉
+
Lγ2

2
‖v̄ − v(i)‖2,

for ∀i ∈ [m− b]. By summing up, we have

1

m− b

m−b∑
i=1

fr(x− γv(i))

≤ fr(x− γv̄) +
Lγ2

2(m− b)

m−b∑
i=1

‖v̄ − v(i)‖2

≤ fr(x− γv̄) +
Lγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Thus, we have

fr(x− γ ¯̃v)

≤ 1

m− b

m−b∑
i=1

fr(x− γv(i)) +
βγ2

2(m− b)

m−b∑
i=1

‖v(i)‖2

≤ fr(x− γv̄) +
(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Again, using the L-smoothness and taking γ ≤ 1
L , we have

fr(x− γv̄)

≤ fr(x) + 〈∇fr(x),−γv̄〉+
Lγ2

2
‖v̄‖2

≤ fr(x) + 〈∇fr(x),−γv̄〉+
γ

2
‖v̄‖2

Thus, we have

fr(x− γ ¯̃v)− fr(x)

≤ fr(x− γv̄)− fr(x) +
(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2

≤ 〈∇fr(x),−γv̄〉+
γ

2
‖v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Conditional on ṽ(i)’s, taking expectation w.r.t. fr on both sides, we have

F (x− γ ¯̃v)− F (x)

≤ 〈∇F (x),−γv̄〉+
γ

2
‖v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2

= −γ
2
‖∇F (x)‖2 +

γ

2
‖∇F (x)− v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Now, taking the expectation w.r.t. ṽ(i)’s on both sides and using E‖v(i)‖2 ≤ G, we have

E [F (x− γ ¯̃v)]− F (x)

≤ −γ
2
‖∇F (x)‖2 +

γ

2
E‖∇F (x)− v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

E‖v(i)‖2

≤ −γ
2
‖∇F (x)‖2 +

γ

2
E‖∇F (x)− v̄‖2 +

(L+ β)γ2G

2
.

Now we just need to bound E‖∇F (x) − v̄‖2. For convenience, we denote g = ∇F (x). Note that for arbitrary subset
S ⊆ [m− q], |S| = m− b, we have the following bound:

E
∥∥∥∥∑i∈S(vi − g)

m− b

∥∥∥∥2
= E

∥∥∥∥∥
∑
i∈[m−q](vi − g)−

∑
i/∈S(vi − g)

m− b

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
∑
i∈[m−q](vi − g)

m− b

∥∥∥∥∥
2

+ 2E
∥∥∥∥∑i/∈S(vi − g)

m− b

∥∥∥∥2

=
2(m− q)2

(m− b)2
E

∥∥∥∥∥
∑
i∈[m−q](vi − g)

m− q

∥∥∥∥∥
2

+
2(b− q)2

(m− b)2
E
∥∥∥∥∑i/∈S(vi − g)

b− q

∥∥∥∥2
≤ 2(m− q)2

(m− b)2
V

m− q
+

2(b− q)2

(m− b)2

∑
i∈[m−q] ‖vi − g‖2

b− q

≤ 2(m− q)2

(m− b)2
V

m− q
+

2(b− q)2

(m− b)2
(m− q)V
b− q

=
2(b− q + 1)(m− q)V

(m− b)2
.

Putting all the ingredients together, we obtain the desired result

E [F (x− γ ¯̃v)]− F (x)

≤ −γ
2
‖∇F (x)‖2 +

γ(b− q + 1)(m− q)V
(m− b)2

+
(L+ β)γ2G

2
.

Corollary 1. Take γ = 1
L
√
T

, and ρ = βγ2

2 , where β is the same as in Theorem 1. Using Zeno, after T iterations, we have∑T−1
t=0 E‖∇F (xt)‖2

T

≤
[
2L
(
F (x0)− F (x∗)

)
+

(L+ β)G

L

]
1√
T

+
2(b− q + 1)(m− q)V

(m− b)2

= O
(

1√
T

)
+O

(
(b− q + 1)(m− q)

(m− b)2

)
.

Proof. Taking x = xt, x− γZenob({ṽi : i ∈ [m]}) = xt+1, using Theorem 1, we have

E
[
F (xt+1)

]
− F (xt)

≤ −γ
2
‖∇F (xt)‖2 +

γ(b− q + 1)(m− q)V
(m− b)2

+
(L+ β)γ2G

2
.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

By telescoping and taking total expectation, we have

E
[
F (xT)

]
− F (x0)

≤ −γ
2

T−1∑
t=0

E‖∇F (xt)‖2 +
γ(b− q + 1)(m− q)V T

(m− b)2
+

(L+ β)γ2GT

2
.

Taking γ = 1
L
√
T

, we have ∑T−1
t=0 E‖∇F (xt)‖2

T

≤
2L
[
F (x0)− F (xT)

]
√
T

+
2(b− q + 1)(m− q)V

(m− b)2
+

(L+ β)G

L
√
T

≤
2L
[
F (x0)− F (x∗)

]
√
T

+
2(b− q + 1)(m− q)V

(m− b)2
+

(L+ β)G

L
√
T

= O
(

1√
T

)
+O

(
(b− q + 1)(m− q)

(m− b)2

)
.

Corollary 2. Assume that

F (x) =
1

m

∑
i∈[m]

E [Fi(x)] ,

and

E [Fi(x)] 6= E [Fj(x)] ,

for ∀i, j ∈ [m], i 6= j. For the stochastic descendant score, we still have E [fr(x)] = F (x). Assumption 1, 2, and 3 still
hold. Take γ = 1

L
√
T

, and ρ = βγ2

2 , where β is the same as in Theorem 1. Using Zeno, after T iterations, we have∑T−1
t=0 E‖∇F (xt)‖2

T

≤
2L
[
F (x0)− F (x∗)

]
√
T

+
4V

m
+

4bG

m
+

2b2(m− q)G
m2(m− b)

+
(L+ β)G

L
√
T

= O
(

1√
T

)
+O

(
b

m

)
+O

(
b2(m− q)
m2(m− b)

)
.

Proof. Similar to the proof of Theorem 1, we define ¯̃v = Zenob({ṽi : i ∈ [m]}). Thus, reusing the proof in Theorem 1, we
have

F (x− γ ¯̃v)− F (x) ≤ −γ
2
‖∇F (x)‖2 +

γ

2
‖∇F (x)− v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

‖v(i)‖2.

Now, taking the expectation w.r.t. ṽ(i)’s on both sides and using E‖v(i)‖2 ≤ G, we have

E [F (x− γ ¯̃v)]− F (x)

≤ −γ
2
‖∇F (x)‖2 +

γ

2
E‖∇F (x)− v̄‖2 +

(L+ β)γ2

2(m− b)

m−b∑
i=1

E‖v(i)‖2

≤ −γ
2
‖∇F (x)‖2 +

γ

2
E‖∇F (x)− v̄‖2 +

(L+ β)γ2G

2
.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Now we just need to bound E‖∇F (x)− v̄‖2. We define that S1 = {∇Fi(x) : i ∈ [m]} \ {v(i) : i ∈ [m− b]}. Note that
|S1| = b.

E‖∇F (x)− v̄‖2

= E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

E [∇Fi(x)]− 1

m− b

m−b∑
i=1

v(i)

∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

E [∇Fi(x)]− 1

m

m−b∑
i=1

v(i)

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

m

m−b∑
i=1

v(i) −
1

m− b

m−b∑
i=1

v(i)

∥∥∥∥∥
2

≤ 4E

∥∥∥∥∥∥ 1

m

∑
i∈[m]

E [∇Fi(x)]− 1

m

m∑
i=1

∇Fi(x)

∥∥∥∥∥∥
2

+ 4E

∥∥∥∥∥ 1

m

∑
v∈S1

v

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

m

m−b∑
i=1

v(i) −
1

m− b

m−b∑
i=1

v(i)

∥∥∥∥∥
2

≤ 4V

m
+

4b2

m2
E

∥∥∥∥∥1

b

∑
v∈S1

v

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

m

m−b∑
i=1

v(i) −
1

m− b

m−b∑
i=1

v(i)

∥∥∥∥∥
2

≤ 4V

m
+

4b2

m2

mG

b
+ 2

[
1

m
− 1

m− b

]2
E

∥∥∥∥∥
m−b∑
i=1

v(i)

∥∥∥∥∥
2

≤ 4V

m
+

4bG

m
+ 2

[
b

m(m− b)

]2
(m− b)(m− q)G

≤ 4V

m
+

4bG

m
+

2b2(m− q)G
m2(m− b)

.

Thus, we have

E [F (x− γ ¯̃v)]− F (x)

≤ −γ
2
‖∇F (x)‖2 +

γ

2

[
4V

m
+

4bG

m
+

2b2(m− q)G
m2(m− b)

]
+

(L+ β)γ2G

2
.

Follow the same procedure in Corollary 1, taking γ = 1
L
√
T

, we have

∑T−1
t=0 E‖∇F (xt)‖2

T

≤
2L
[
F (x0)− F (x∗)

]
√
T

+
4V

m
+

4bG

m
+

2b2(m− q)G
m2(m− b)

+
(L+ β)G

L
√
T

= O
(

1√
T

)
+O

(
b

m

)
+O

(
b2(m− q)
m2(m− b)

)
.

B. Additional Experiments

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Mean

Median

Krum
4

Zeno
4

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

Mean

Median

Krum
4

Zeno
4

(b) Cross entropy on training set, with q = 8

Figure 9. Convergence on non-i.i.d. training data, without failures. Batch size on the workers is 100. Batch size of Zeno is nr = 4.
ρ = 0.0005. Learning rate γ = 0.05. Each epoch has 25 iterations.

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Mean without failures

Mean

Median

Krum
8

Zeno
9

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

Mean without failures

Mean

Median

Krum
8

Zeno
9

(b) Cross entropy on training set, with q = 8

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Mean without failures

Mean

Median

Krum
8

Zeno
16

(c) Top-1 accuracy on testing set, with q = 12

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

Mean without failures

Mean

Median

Krum
8

Zeno
16

(d) Cross entropy on training set, with q = 12

Figure 10. Convergence on non-i.i.d. training data, with label-flipping failures. Batch size on the workers is 100. Batch size of Zeno is
nr = 4. ρ = 0.0005. Learning rate γ = 0.05. Each epoch has 25 iterations.

Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Mean without failures

Mean

Median

Krum
8

Zeno
9

(a) Top-1 accuracy on testing set, with q = 8

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

Mean without failures

Mean

Median

Krum
8

Zeno
9

(b) Cross entropy on training set, with q = 8

10
0

10
1

10
2

Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Mean without failures

Mean

Median

Krum
8

Zeno
16

(c) Top-1 accuracy on testing set, with q = 12

10
0

10
1

10
2

Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

Mean without failures

Mean

Median

Krum
8

Zeno
16

(d) Cross entropy on training set, with q = 12

Figure 11. Convergence on non-i.i.d. training data, with bit-flipping failures. Batch size on the workers is 100. Batch size of Zeno is
nr = 4. ρ = 0.0005. Learning rate γ = 0.05. Each epoch has 25 iterations.

0.002 0.001 0.0005 0.00025ρ0

0.2

0.4

0.6

0.8

T
o
p
-1

 a
c
c
u
ra

c
y

Zeno
8

Zeno
10

Zeno
12

Zeno
14

Zeno
16

Zeno
18

(a) Top-1 accuracy on testing set, with q = 8

0.002 0.001 0.0005 0.00025

ρ

0

0.2

0.4

0.6

0.8

L
o
s
s

Zeno
8

Zeno
10

Zeno
12

Zeno
14

Zeno
16

Zeno
18

(b) Cross entropy on training set, with q = 8

Figure 12. Convergence on i.i.d. training data, with label-flipping failures, q = 8. Batch size on the workers is 100. Batch size of Zeno is
nr = 4. Learning rate γ = 0.1. Each epoch has 25 iterations. ρ and b are tuned.

