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1 A toy example

We use a toy example similar to Lee et al (2018) to compare the performance
of Algorithm 2 in our paper (we refer to this as the AIS sampler) and the IS
sampler in Lee et al (2018) as the dimension of the observation yobs varies. It is
inevitable that there exist regimes where AIS outperforms IS (on larger harder
problems typically). The IS sampler breaks as the dimension of yobs grows and
we take poor importance proposal distributions. AIS uses the same initialis-
ing distribution as IS but uses a sequential procedure to march the particle
distribution onto the target.

The parameter φ is a draw from the prior φ ∼ N (0, 1). The data are iid
observations {y1, ..., yd} ∼ N (φ, 1). The exact posterior is

π(φ|y1, ..., yd) ∼ N

(∑d
i=1 yi
d+ 1

,
1

d+ 1

)
.

Following Lee et al (2018), who consider this setup with d = 1, consider
an approximation in which we replace the exact likelihood with a tempered
likelihood p̃(y|φ) = N (y|φ)v for some v > 0. The corresponding approximate
posterior

π̃(φ|y1, ..., yd) ∝ N (0, 1)

d∏
i=1

N (yi|φ)v,

that is,

π̃(φ|y1, ..., yd) = N

(
φ;
v
∑d

i=1 yi
vd+ 1

,
1

vd+ 1

)
.

When v = 1 the approximate posterior is exact.
Let C̃Y be a level α credible interval computed for the approximate posterior.

Since both the exact and approximate posterior are normally distributed, the
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true value of the operational coverage b(y) = Pr(φ ∈ C̃Y |Y = y) can be exactly
computed. In this example we set α = 0.95

Consider estimating b(y) using IS and AIS samplers. We start from a scalar
observation y (i.e. d = 1). Both algorithms work well when 0 < v < 2, which
agrees with results in Lee et al (2018) who prove (for the case where d = 1)
that the weight variance is finite. However, the performance of the IS sampler
declines for v > 2 since in this case the approximate likelihood p̃(y|φ), which is
the importance sampling proposal distribution, is more concentrated than the
true likelihood. In Figure 1, we set v = 2 and estimate b(y) at 100 equidistant
points ys over the interval (−3, 3). We can see that bIS(y), the IS sampler
estimate of the true coverage, has significantly higher variance, while bAIS(y)
performs much better and is closer to the true values.
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Figure 1: y vs Coverage b(y), the solid line corresponds to the true coverage
b(y), the IS and AIS estimate are represented by red and blue points respectively.
The dashed line is the nominal coverage α = 0.95

We extend the comparison to higher dimensions (d > 1). For each d =

3, 6, 9, .., 30, we sample Nreps = 100 synthetic parameters {φi}
Nreps

i=1 , from the

prior distribution and d-component data vectors y(i) = {y(i)1 , ..., y
(i)
d }

iid∼ N (φi, 1)
for i = 1, ..., Nreps as synthetic observations. We compute the corresponding
estimate bIS(y(i)) and bAIS(y(i)) and the associated Effective Sample Size (ESS)

values ESS
(i)
IS and ESS

(i)
AIS for particle weights using the two algorithms for each
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i = 1, ..., Nreps with NAIS = NIS = 1000 particles, then report the MSE R̄IS =
1
N

∑Nreps

i=1 (bIS(y(i))− b(y(i)))2 and R̄AIS = 1
Nreps

∑Nreps

i=1 (bAIS(y(i))− b(y(i)))2,

and the corresponding average effective sample sizes.
We set v = 5, well above the safety zone given by Lee et al (2018). The

approximate posterior is heavily under-dispersed with respect to the true pos-
terior here and indeed, this choice (ie v = 5) causes IS to fail, in the sense that
the ESS is often consistent with an ESS equal one. We report the naive average
ESS for IS, which is about 35 at NIS = 1000, but this cannot be trusted. We
showed this by doubling the number of particles NIS ← 2NIS to 2000. The
ESS should (approximately) double if it is being reliably estimated. We find it
increases only slightly. In contrast doubling NAIS ← 2NAIS very nicely doubles
ESSAIS .

For a more extreme example, we repeated the simulation with ν = 10 and
d = 100 with NAIS = NIS = 1000 and 2000 particles. For 1000 particles, we
find averages ESSIS = 35 (again) and ESSAIS = 732. When we double the
number of particles to 2000, we get ESSIS = 44 and ESSAIS = 1323. Doubling
the number of particles doubles ESSAIS but does not improve ESSIS a great
deal, reflecting the fact that the IS sampler fails at these extreme v and d values,
and the true ESSIS ∼ 1 in this case.

We do not consider computation times here - we look at efficiency in the
next section using real data. Our point here is that IS has completely failed so
computation times are irrelevant.

Results are reported in Table 1. We can see that as d increases, the AIS sam-
pler outperforms the IS sampler in both MSE and average ESS. This supports
the effectiveness of our algorithm in high dimensional cases. Note that the MSE
for IS, though larger than AIS, is still reasonable, as the breakdown impacts
variance, and the tail behavior of estimates, though the mean is reasonably
stable.

d R̄IS R̄AIS ESSIS ESSIS ESSAIS ESSAIS

6 4.10e-02 3.11e-03 36 55 238 525
12 3.72e-02 1.69e-03 33 53 498 936
18 3.77e-02 3.39e-03 35 46 649 1258
24 4.12e-02 5.05e-03 34 50 726 1442

NIS = 1000 NAIS = 1000 NIS = 1000 NIS = 2000 NAIS = 1000 NAIS = 2000

Table 1: The average MSE and ESS of both Algorithms over Nreps = 100
repetitions under different dimensions d using NAIS = NIS = 1000, 2000. We
report the naive ESS for IS. This is around 35 for NIS = 1000 but is an upward
biased estimate (see text) and the actual value is consistent with one. This is
evidenced by re-estimation of the ESS at NIS = 2000
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2 Remark on Model Misspecification

Model misspecification does not enter the definition of coverage. The coverage
probability for a procedure is the probability a credible set computed from
data y covers a parameter φ when φ and y are a realisation of the generative
model π(φ)p(y|φ). This is how the level of a credible set is defined in Bayesian
inference. It would certainly be interesting to know if we are covering nature’s
true parameter. However we estimate the change in coverage as we move from
the exact to the approximate posterior, not the change coverage as we move
from nature’s generative model to the misspecified model.

However, model misspecification does have an impact on the difficulty of
forming reliable coverage estimates: if the model is misspecified, then the data
is an outlier, because the data is located in a part of data-space we don’t often
visit with our simulated {φi, yi} pairs from the generative model. This makes
estimation harder. In the regression approach, large extrapolation may lead to
unstable estimates.

3 Computational Efficiency, a comparison

Both the IS and AIS sampler sample from the observation model p(·|θ) and ap-
proximate posterior π̂(·|y). If T1 is the time to sample synthetic data y′ ∼ p(y′|φ)
(often fast), and T2 is the time to sample θ ∼ π̂(θ|y′), the approximate posterior
(often slow), then the IS sampler costs about M(T1 + T2) for M particles and
AIS costs about MJT1+T2 (J intermediate AIS steps, and we only need one set
of approximate posterior MCMC run for initialisation). For fixed M , simulation
studies show that AIS has a much bigger ESS. However there exist problems
where T1 is slow and T2 is fast. For example, in Section 4 of the main paper,
the approximate posterior for the Ising model can be evaluated exactly (so T2
is effectively 0), but sampling from the Ising model is time-consuming (T1 is
large). This means there exist problems where IS beats AIS, but not typically
big hard problems (where the ESS of AIS sampler is much greater than the ESS
of IS sampler and T2 is big, like the random effect partition model in Section 5).
Even on the Ising model where everything is in the IS sampler’s favor, we show
below that the IS sampler fails on large lattices where ESS estimates become
unreliable (like harmonic mean) while AIS gives reliable ESS estimates even on
large lattices.

To compare the effectiveness of the IS and AIS sampler, we rerun the Ising
model simulation using both algorithms on a NI ×NI lattice where the size of
lattice NI = 25, 50, 75, 100, 125. We initialise both algorithms with M = 500
particles. We report the effective sample size (per CPU second) for both algo-
rithms for different sizes d in Table 2. In Figures 2 and 3 we see that although
the IS sampler is more efficient than the AIS sampler on smaller lattices, the
performance of AIS sampler is much better when the size of lattice is greater
than about NI = 75. Actually the comparison is already kind to IS. Once the
ESS becomes small it becomes hard to measure and ESS estimates themselves
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become very noisy. The IS ESS estimates at large NI are probably consistent
with one, so although the IS efficiency curve appears to flatten in Figure 2, the
truth is very likely to be that it plummets out of the frame, as it is very unlikely
to remain constant at increasing NI . Larger ESS-values (like those seen for AIS)
are much more reliably estimated.

d ESSIS ESSAIS ESSIS/s ESSAIS/s
25 7.468e+01 2.039e+02 7.732e-03 7.272e-03
50 9.095e+01 2.085e+02 9.332e-03 7.041e-03
75 2.129e+01 1.677e+02 1.676e-03 5.367e-03
100 2.675e+01 1.203e+02 2.306e-03 3.642e-03
125 1.967e+01 1.120e+02 1.506e-03 3.230e-03

Table 2: Effective sample sizes for for different lattice size. The first two columns
are the actual ESS of the IS and AIS sampler, the third and forth columns are
the ESS per CPU second figures for the two algorithms. The ESS values for IS
above about NI = 75 are consistent with one, so the efficiencies reported above
for IS are overestimates.

4 Credible set for example in Section 5

Our purpose in the main paper is to demonstrate that we can reliably calibrate
the coverage probability of an HPD credible set over partitions. The credible
set itself would be of interest in the application, but is only of secondary interest
to us.

In Table 3 we give the credible set for the example considered in the main
paper Section 5. This is a partition of 12 levels of a treatment variable in a
complete design with four block variables and five covariates in all. The favored
partition (1, 2, 8, 12, 10, 5), (11, 4, 7, 9, 3, 6) splits the levels into two groups.

5 BART on the Ising model example

We run BART on the Ising model example in the main paper Section 4. We fit
two BART models using the natural sufficient statistics S(y) = f(y,Ef ) and the
raw 200× 200 binary image as input. The fitted curve is reported in Figure 4.
We see that the fitted curve of BART trained by the natural sufficient statistics
S(y) (left) agrees with the fitted curve of BART trained by the raw image (which
can be seen as a 40000×1 binary vector) . This learned the similar pattern and
reproduces a curve similar to the left with greater uncertainty (right).
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Figure 2: ESS per CPU second (efficiency) for both algorithms. IS efficiency
estimates for Lattice sizes above 75 are likely to be over-estimates.

Table 3: A 95% approximate credible set for partition S using π̃(S|yobs). Parti-
tions on the first column are sorted by their posterior probability in a decreasing
order. The second column records the cumulative sum of posterior probabilities
(i.e. G̃(S|yobs) is the CDF of π̃(S|yobs)).

Partition S G̃(S|yobs)
(1,2,8,12,10,5),(11,4,7,9,3,6) 0.13

(1,8,12),(2,10,5),(11,4,9,6),(7,3) 0.24
(1,2,8,12,10,5),(11,4,6),(7,9,3) 0.28
(1,2,8,12,10,5),(11,4,9,6),(7,3) 0.31

...
...

(1,8,11,4,9,6),(2,7,3),(12,10),(5) 0.95
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Figure 3: Actual ESS for both algorithms. The ESS values for IS above about
NI = 75 are consistent with one.
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Figure 4: Sufficient statistics S(y) vs Estimated coverage. Left: BART trained
by the sufficient statistics. Right: BART trained by the full 200 × 200 image.
Grey band indicates the 95% credible interval.
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