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Abstract

We give a computational framework for estimat-
ing the bias in coverage resulting from making
approximations in Bayesian inference. Coverage
is the probability credible sets cover prior parame-
ter values. We show how to estimate the coverage
an approximation scheme achieves when the ideal
but intractable observation model and the prior
can be simulated, but have been replaced, in the
Monte Carlo, with approximations. Coverage esti-
mation procedures given in Lee et al. (2018) work
on simple problems, but do not scale well, as those
authors note. For example, Lee et al. (2018) cal-
ibrate a completely collapsed MCMC algorithm
for partition structure in a Dirichlet process model
for random effects in a hierarchical model and
a small data set, but they note it fails when the
model is applied to clustering on a larger dataset.
By exploiting the symmetry of the coverage er-
ror under permutation of low level group labels
and smoothing with Bayesian Additive Regres-
sion Trees, we show that the original approximate
inference had poor coverage for these data and
should not be trusted.

1. Introduction
Bayesian credible sets with stated nominal coverage are
a fundamental way to communicate statistical uncertainty.
However, we usually report approximate credible sets with
uncalibrated coverage as some approximation is inevitable
for large data sets and complex models. Approximation
comes in many forms. In MCMC samples are only asymp-
totically distributed according to the posterior. The precision
parameter is the run length. Approximate Bayesian Com-
putation (ABC, Pritchard et al. (1999)) typically has two
kinds of precision parameters, a distance threshold and a
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Monte Carlo sample. There are also “fixed” approxima-
tions with no precision parameters, in which a likelihood
evaluation is replaced by an approximation which cannot be
improved by varying a control parameter. Pseudo-likelihood
(Besag, 1975) and variational inference (Jordan et al., 1999;
Hoffman et al., 2013) often lead to a fixed approximation.

A number of methods have been developed to check the
approximation is acceptable. Recent new generic diagnostic
tools given in Talts et al. (2018) and Yao et al. (2018) are
related to earlier work in Prangle et al. (2014) and exploit
an idea, developed in Geweke (2004); Cook et al. (2006) as
a MCMC convergence diagnostic, and going back to Mona-
han & Boos (1992). In early related work, Menendez et al.
(2014) gives procedures for correcting credible sets under
conditions stronger than those required here and Rodrigues
et al. (2018) recalibrates ABC samples.

We consider an approximate Bayesian credible set with
given nominal level α. What coverage does the credible set
actually achieve? Wherever approximate Bayesian infer-
ence reports a credible set, an associated coverage measure
should be given. We do not build a new credible set with
improved coverage, although this is easy in our AIS method,
because we would then have to estimate the coverage of that
corrected credible set.

Let π(φ) be the prior for φ ∈ Ω, let p(y|φ) be the ob-
servation model (the likelihood) for data y ∈ Y and let
π(φ|y) ∝ π(φ)p(y|φ) be the posterior for φ given data
y. Let π̃(θ) and p̃(y|θ) be the approximate prior and like-
lihood for parameter θ ∈ Ω with approximate posterior
π̃(θ|y) ∝ π̃(θ)p̃(y|θ). This paper is motivated by problems
where we cannot in practice sample π(φ|y) using any known
Monte Carlo method. We assume a tractable approximation
π̃(θ|y) is available, and we assume it is possible to sample
φ ∼ π(·) and y′ ∼ p(·|φ) (just as in ABC).

The estimated credible set is computed for a posterior dis-
tribution π̃(θ|y) which approximates the exact posterior
π(φ|y). The exact level α credible set Cy for the exact
posterior π(φ|y) satisfies

α =

∫
Ω

1φ∈Cyπ(φ|y)dφ.

This set Cy has perfect Bayes coverage in the sense that, if
φ ∼ π(·) is a draw from the prior, and y ∼ p(·|φ) is a draw
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from the observation model, then Pr(φ ∈ CY |Y = y) = α.
The credible set covers the true parameter φ with probability
α if nature drew φ from the prior, and the data y really was
generated using the observation model we are using. This is
the definition of Bayesian coverage, not an assumption.

In practice we compute a credible set C̃y using the approxi-
mate posterior π̃(θ|y). This is a set C̃y satisfying

α =

∫
Ω

1θ∈C̃y
π̃(θ|y)dθ.

This will not in general have the right coverage for the
exact posterior. If φ ∼ π(·), and y ∼ p(·|φ), and we let
b(y) = Pr(φ ∈ C̃Y |Y = y), then

b(y) =

∫
Ω

1φ∈C̃y
π(φ|y)dφ (1)

is the operational coverage C̃Y achieves for φ a draw from
the exact posterior. This is not equal α in general. The
coverage bias b(y)− α can vary markedly over data space.
Cook et al. (2006) observe that coverage may be estimated,
but the quantity they mention is equivalent to

∫
Y p(y)b(y)dy,

an average over data space which may differ a great deal
from b(y), as we see in the example in Section 4.

In practice we may not be able to compute an exact credible
set, even after making the approximation leading to π̃(θ|y).
In this case we would typically simulate θj ∼ π̃(·|y) for j =
1, . . . , J , set θ = (θ1, . . . , θJ) and compute an estimate,
Ĉy(θ), for C̃y based on J samples. There is an additional
Monte Carlo error in the coverage and so, with φ, y and
θ distributed as prior, observation model and approximate
posterior, we let

c(y) = Pr(φ ∈ ĈY (θ)|Y = y),

denote the realised coverage allowing for Monte Carlo error.
We give algorithms for estimation of b(yobs) and c(yobs).
We discuss the function c(y) by default, as estimation of
b(y) is a simpler special case.

The joint distribution of φ, y and θ in the generative model
is given by

m(φ, y, θ) = π(φ)p(y|φ)π̃(θ|y). (2)

The conditional distribution of φ, θ given y is

m(φ, θ|y) = π(φ|y)π̃(θ|y),

writing π̃(θ|y) for the joint distribution of θ ∈ ΩJ (an abuse
of notation). Now c(y) is an expectation over m,

c(y) =

∫
ΩJ

∫
Ω

1φ∈ĈY (θ)m(φ, θ|y)dφdθ.

The coverage is a posterior expectation in the exact distribu-
tion. Coverage estimation resembles the original problem

of estimating credible sets from the exact posterior, which
we have said we cannot do! However we can sample π(φ)
and the observation model p(y|φ), and it proves easier to
estimate c(y) than some general expectation in the posterior.

If it were possible to simulate φ ∼ π(·|y) then esti-
mation of b(y) and c(y) would be straightforward. For
i = 1, . . . ,M , we simulate φ(i) ∼ π(·|y) and θi,j ∼ π̃(·|y)
for j = 1, . . . , J . We then construct an α level approximate
credible set Ĉ(i) based on θi,1, . . . , θi,J , and define

ci = 1(φi ∈ Ĉi).

Now ĉ(y) = 1
M

∑M
i=1 ci is an unbiased and consistent es-

timator for c(y). See Algorithm 1. If we replace Ĉi by C̃i
then the procedure estimates b(y). We assume that Algo-
rithm 1 cannot be implemented. In the examples we give in
Section 4 we implement Algorithm 1 to assist understanding.
This will not in general be possible.

Algorithm 1 Estimation of operational coverage c(y)

Input: Observed data y; Exact posterior distribution
π(φ|y); Approximate posterior distribution π̃(θ|y); Num-
ber of samples J from the approximate posterior; Number
of samples M from the generative model.
for i in 1, . . . ,M do

Simulate φi ∼ π(φ|y) and θ(i) = {θi,1, . . . , θi,J}
where θi,j ∼ π̃(θ|y) for j = 1, . . . , J

Compute the approximate credible set Ĉi based on
θ(i). Set ci = 1(φi ∈ Ĉi)
end for
Return: Estimated coverage ĉ(y) = 1

M

∑M
i=1 ci

The paper is structured as follows. In Section 2 we discuss
previous work. We then outline two algorithms for the
estimation problem in Section 3. In Section 4 we apply the
algorithms to calibrate a pseudo-likelihood approximation.
In Section 5, we calibrate the approximate posterior of a
random partition in a hierarchical model with a Dirichlet-
Process prior on the distribution of random effects. We
finish with a brief discussion.

2. Relation to Previous Work
Lee et al. (2018) introduce the idea of estimating coverage
probabilities as a validation procedure, and give two proof-
of-concept estimators for c(y) when simulation from the
exact posterior π(θ|y) is not possible. Our own algorithms
are a qualitative improvement, as those earlier methods
completely fail on the examples we give in this paper.

Lee et al. (2018) give an importance sampling procedure
which targets an approximation to c(y). Let δ(x, y) be a
generic distance function on the data space Y , ρ > 0 a
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tolerance level and let ∆(y) = {y′ : δ(y, y′) ≤ ρ} be a
closed ball in Y centered at y. Let

d(y) = Pr(φ ∈ ĈY (θ)|Y ∈ ∆(y))

be an ABC-style approximation to c(y). In terms of the
density m(φ, y′, θ) in Equation 2,

d(y) =

∫
ΩJ

∫
Ω

∫
∆(y)

Iφ∈Ĉ(θ)

z(y, ρ)
m(φ, y′, θ)dφdθdy′ (3)

with z(y, ρ) = Pr(Y ∈ ∆(y)) a normalising constant. Lee
et al. (2018) estimate d(yobs) with d̂ =

∑M
i=1 w(φi, yi, θi)

using M samples (φi, yi, θi), i = 1, . . . ,M from the impor-
tance sampling distribution

m̃(φ, y, θ) ∝ π̃(φ|yobs)p(y|φ)π̃(θ|y)1y∈∆(yobs),

and weights w(φ, y, θ) ∝ m(φ, y, θ)/m̃(φ, y, θ). They use
d̂ as an estimate of c(yobs). This approach has two draw-
backs: d̂ → d as M → ∞, however d 6= c in general
so the method is asymptotically biased (in M ) unless we
additionally take ρ to zero. This would be impractical as
we simulate no data y ∈ ∆(yobs). Secondly, as the authors
observe, this estimator can be unstable due to high weight
variance. Our Annealed Importance Sampling (AIS) esti-
mate is also asymptotically biased, but AIS is a much more
powerful tool, and the bias can be made very small. Also
AIS gives a much higher Effective Sample Size (ESS) at
similar cost. We give examples in the Supplementary Ma-
terial illustrating this point for a simple normal example.
The issue is qualitative. When ESS estimates become small,
they cannot be trusted (for example, a poorly estimated ESS
may not increase when the sample size increases).

We also take advantage of a simple but important simplifica-
tion not exploited by Lee et al. (2018). We replace Iφ∈ĈY (θ)

in Equation 3 with Iφ∈Ĉyobs
(θ). As Y → yobs, the distribu-

tion of φ changes in a complex way, but the limit of ĈY (θ)
as Y → yobs is computed from the approximate posterior,
so we simply substitute the limiting value. This avoids the
need to simulate θ for each simulated y-value, a big time-
saver in some settings. For comparison with the IS method
in Lee et al. (2018), we take their Ising Model example and
scale it up by a factor of 25. On this larger problem we
find AIS calibration far out-performs Importance Sampling,
yielding an ESS some 10 times larger in a comparable run
time. In the Supplementary Material we show the ESS for
IS falls off to small values as the Ising image size increases.

Lee et al. (2018) suggest an alternative regression procedure
for estimating c(y). If we simulate (φi, yi, θ(i)) ∼ m iid
for i = 1, . . . ,M then, at each y, we have (φi, θ(i)|yi) ∼
π(φi|yi)π̃(θ(i)|yi). It follows that if we compute Ĉi =

Ĉ(θ(i)) and a “response” ci = 1φi∈Ĉi
then the pairs

ci, yi are measurements of a Bernoulli process in which
ci ∼ Bernoulli(c(yi)), i = 1, . . . ,M . Lee et al. (2018)
suggest using a Generalised Additive Model (GAM) for
logistic regression in order to estimate c(y). Those au-
thors take as regression covariates the components of a
p-dimensional summary statistic s(y) = (s1(y), . . . , sp(y))
with p � dim(Y). This works when s(y) is sufficient, as
is the case in our Ising model example in Section 3. How-
ever the choice of summary statistics is not in general clear
and may bias results. However this is the sort of problem,
variable selection, in which random forest regression and
Bayesian Additive Regression Trees are very effective. For
comparison with previous work, we take an example where
the methods of Lee et al. (2018) fail, and show that estima-
tion via BART gives reproducible results.

We exploit a symmetry of the approximation that will hold
more widely: the approximation error is invariant under
permutation of labels of levels of categorical variables.
Let y ∈ Rn be a data vector and let L = {`1, . . . , `N}
be the levels of a variable x ∈ Ln. Suppose our data
are simply y, x. Let T (x) = {T1, . . . , TN} be a collec-
tion of subsets of {1, . . . , n} partitioning the indices of
x into groups of observations in the same level, so that
i ∈ Tj ⇔ xi = `j for each i = 1, . . . , n and each
j = 1, . . . , N . Let PR = {σ ∈ P : T (xσ) = T (x)}
be the set of permutations corresponding to level-relabeling.
If the approximation does not distinguish levels, we have
c(y) = c(yσ) for each σ ∈ PR (permuting y′s with x′s
fixed gives the same data set). This can be extended to
multiple categorical variables. In a complete balanced de-
sign every level of every covariate co-occurs with every
level of every other covariate the same number of times.
Levels are then exchangeable within each variable simulta-
neously. In this setting we can compute c(y) by computing
it on one special quadrant Y0 of Y and then mapping iden-
tical copies of c(y) out over Y by permutation. We take
Y0 = {y ∈ Y : ȳT1

≤ ȳT2
≤ . . . ȳTN

} (ie ordered on the
averages of y’s associated with each level, with additional
order constraints for each variable if there are multiple cat-
egorical variables). We simulate φ, y′ and θ, map y′ back
into Y0 and regress over this smaller space where y-values
are more dense and regression (using BART) is easier. We
map the function ĉ(y) back to the quadrant containing yobs.

3. Estimating the Operational Coverage
3.1. A Weighted-Sample Estimate for Coverage

In this section we estimate c(yobs) using Annealed Impor-
tance Sampling (AIS) (Neal, 2001) to approximately sample
the true posterior π(φ|yobs). This leverages our ability to
draw samples from the approximate posterior π̃(φ|yobs) as
a starting point for the AIS iteration.
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Let {γj}NAIS
j=1 and {βj}NAIS

j=1 be increasing sequences with
γ0 = 0, γN = 1 and β0 = 0. Define an initial distribution

p0(φ, y) = π̃(φ|yobs)× p(y|φ),

and, for j = 1, . . . , NAIS , intermediate distributions

pj(φ, y) ∝ π(φ)γj π̃(φ|yobs)1−γjp(y|φ) exp (−βjδ(y, yobs))
∝ π(φ)p̃(yobs|φ)1−γjp(y|φ) exp (−βjδ(y, yobs)).

If γNAIS
= 1, then pNAIS

(φ, y) converges to π(φ)p(yobs|φ)
as βNAIS

→ ∞ and so pNAIS
(φ) → π(φ|yobs), the true

posterior. The approximate posterior π̃(φ|yobs) is a useful
part of the initial distribution p0, as it supports φ values for
which typical synthetic data y ∼ p(y|φ) are relatively close
to the observed yobs from the start.

An update scheme for φ and y generates transitions from
pj(φ, y) to pj+1(φ, y). For each j = 1, . . . , NAIS , let

Qj((φ, y), (φ′, y′)) = qj((φ, y)→ (φ′, y′))αj((φ, y)→ (φ′, y′))

be a transition kernel with proposal distribution
qj({φj , yj} → {φ′, y′}) = fj(φj , φ

′)p(y′|φ′) based
on a simple local proposal distribution fj(φ, φ′) for φ, and
an acceptance probability

αj = 1 ∧ pj(φ
′, y′)qj({φ′, y′} → {φj , yj})

pj(φj , yj)qj({φj , yj} → {φ′, y′})

= 1 ∧ π(φ′)p̃(yobs|φ′)1−γjfj(φ
′, φj)

π(φj)p̃(yobs|φj)1−γjfj(φj , φ′)
(∗)

× exp(−βjδ(y′, yobs))
exp(−βjδ(yj , yobs))

which admits pj(φ, y) as an invariant distribution.

Let dNAIS
= EpNAIS

(1(φ ∈ Ĉyobs)). Let {wk, φk}Kk=1 be
a set of weighted samples generated by the AIS algorithm
described above. These are AIS-weighted samples from
pNAIS

(φ, y), so that

ĉ(yobs) =

K∑
k=1

wi1(φk ∈ Ĉyobs)

is a consistent estimate for dNAIS
and dNAIS

→ c(yobs) as
βNAIS

→∞.

Theorem 1 ĉ(yobs) is a consistent estimator of the true
realized coverage c(yobs) as K →∞ and βNAIS

→∞.

Proof: Since ĉ(yobs) is a self-normalised importance sam-
pling estimator for the quantity

PrpN (φ ∈ Ĉyobs) =

∫
1(φ ∈ Ĉyobs)pN (φ)dφ,

where pN (φ) is the marginal distribution of pN (φ, y), we
have that as K →∞,

ĉ(yobs)
p−→ PrpN (φ ∈ Ĉyobs). (4)

As βNAIS
→∞ and γNAIS

= 1 the target density pNAIS
(φ)

converges to the true posterior density π(φ|yobs). Hence by
Scheffé’s theorem, we must have

PrpNAIS
(φ ∈ Ĉyobs) −→ c(yobs), (5)

where c(y) = Pr(φ ∈ ĈY (θ)|Y = yobs) is the true poste-
rior probability. Combining (1) and (2), we conclude that
ĉ(yobs) is a consistent estimator for c(yobs) �

Algorithm 2 summarizes the procedure. In contrast to the
importance sampling approach in Lee et al. (2018), we
do not need to simulate θ(i) and compute the approximate

credible set for each synthetic data vector y(j)
i in Algorithm

2. This may speed up computation a great deal.

Algorithm 2 AIS Estimation of operational coverage c(y)

Input: Observed data yobs; Summary statistics s : Y →
Rp; Number of samples J from the approximate posterior;
Number of samples M from the generative model.
Simulate θ = {θ1, . . . , θJ} where θ1, . . . , θJ ∼
π̃(·|yobs); Compute the approximate credible set
Ĉyobs(θ).
for i in 1, . . . ,M do

Sample (φ
(1)
i , y

(1)
i ) ∼ p0(φ, y).

Compute w(1)
i ∝

p1(φ
(1)
i ,y

(1)
i )

p0(φ
(1)
i ,y

(1)
i )

.

for j in 2, . . . , NAIS do
Sample φ′i ∼ fj−1(·|φ(j−1)

i ), y′i ∼ p(y|φ′i).
Set φ(j)

i = φ′i, y
(j)
i = y′i with probability αj

defined in (∗) and set φ(j)
i = φ

(j−1)
i , y(j)

i = y
(j−1)
i

otherwise.
Compute w(j)

i ∝
pj(φ

(j)
i ,y

(j)
i )

pj−1(φ
(j)
i ,y

(j)
i )

end for
Compute ci = 1(φ

(NAIS)
i ∈ Ĉyobs)

Compute wi =
∏T
t=1 w

(t)
i

end for
Compute Wi = wi/

∑M
i=1 wi

Return: Estimated coverage ĉ(yobs) =
∑M
i=1Wici

3.2. A Regression Estimate for Coverage

In Lee et al. (2018), the authors also suggest estimating
c(y) via regression. Let {φi, yi}Mi=1 be samples from the
generative model π(φ)p(y|φ), let Ĉyi be an approximate
credible set for yi, and ci = 1φi∈Ĉyi

. Conditional on yi,

ci ∼ Bernoulli(c(yi)), c(yi) = Pr(φi ∈ ĈYi |Yi = yi).
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Let s(yi) ∈ Rp be a vector of summary statistics of yi. Lee
et al. (2018) use a regression model with response ci and
covariates s(yi) to learn the map from y to c(y). This is
logistic regression, though Lee et al. (2018) suggest a more
flexible GAM logistic regression. Raynal et al. (2018) and
Marin et al. (2018) observe that, for ABC work, Random
Forests allow us to handle a potentially large number of
summary statistics (even if some or many of them are poorly
informative) without preliminary selection. Inspired by their
ideas, we applied a Probit Bayesian Additive Regression
Tree (BART) model (Chipman et al., 2010) to estimate c(y)
when low-dimensional sufficient statistics are not available.

BART is a sum-of-trees model where each tree is regular-
ized by a prior to be a weak learner. Let Y ∈ {0, 1} be a
generic binary output and x ∈ Rp be a generic input. In the
classification setting we wish to infer an unknown function
f such that Pr(Y = 1|x) = Φ(f(x)), with Φ(·) the stan-
dard normal CDF. The Probit BART model approximates
the function f(x) with a sum of NT trees, that is

f(x) ≈ h(x) =

NT∑
m=1

gi(x),

where each gi(x) is given by a separate regression tree. A
regularizing prior is imposed on the trees to keep individual
tree effects small and prevent overfitting. The posterior dis-
tribution over trees is sampled using a Bayesian backfitting
procedure. Details can be found in Chipman et al. (2010)
and Kapelner & Bleich (2016).

Let s(y) be a high dimensional vector of summary statis-
tics for y. We fit a probit BART model with p̃i =
Φ(h(s(yi))) and ci ∼ Bernoulli(p̃i) using {ci, s(yi)}Mi=1

as the training data. For sobs = s(yobs), we obtain
πB(h(sobs)|{ci, s(yi)}Mi=1), the posterior distribution of
h(sobs) in the fitted model, and estimate c(yobs) using

ĉ(yobs) = EπB
(Φ(h(sobs)|c1, . . . , cN , s1, . . . , sN )),

the (sample) posterior mean of Φ(h(sobs)).

We chose BART for two reasons. First, the tree structure is
capable of handling potentially high dimensional input s(y).
This is crucial when low dimensional sufficient statistics
for y ∈ Y are unavailable. Also, since BART is Bayesian,
we have a natural way to assess the uncertainty of our es-
timate. We fit Probit BART models using the R package
bartMachine (Kapelner & Bleich, 2016).

4. 2-D Ising Model
Figure 1 is a 200 by 200 binary image obtained by threshold-
ing a grey-level image of ice floes from Banfield & Raftery
(1992). We illustrate our method on the problem of fitting an
Ising model with smoothing parameter φ and free boundary

Algorithm 3 Estimation of operational coverage c(y) via
regression

Input: Observed data yobs; Summary statistics s : Y →
Rp; Number of samples J from the approximate posterior;
Number of samples M from the generative model; A
regression modelM.
for i in 1, . . . ,M do

Simulate φi ∼ π(φ), yi ∼ p(y|φi) and θ(i) =
{θi,1, . . . , θi,J} where θi,j ∼ π̃(θ|y) for j = 1, . . . , J

Compute the approximate credible set Ĉi based on
θ(i). Set ci = 1(φi ∈ Ĉi) and compute the p-dimensional
summary statistics s(yi).
end for
Fit the regression modelM : c ∼ h(s(y)) to learn the
relation between coverage c(i) and summary statistics
s(yi) using {ci, s(yi)}Mi=1 as training data.
Return: ĉ(yobs), the fitted value given s(yobs) based on
the regression modelM.

conditions to these data. The model with free boundary con-
ditions has an intractable likelihood so we approximate it
using a solveable model with toroidial boundary conditions.
We then calibrate the approximate credible interval for φ.
Lee et al. (2018) work on a 40 by 40 subset of the image.
We apply the Importance Sampler of Lee et al. (2018) to the
full problem in the supplement and find it breaks down at
around 100 by 100. However AIS works well as we show.

The Ising model is a Markov model on a binary lattice. Let
G = (V,E) be a graph with edge set E and vertices V .
For each v ∈ V , let yv ∈ {0, 1} be binary data at v and
y = yvv∈V , y ∈ {0, 1}|V | the collection of all yv. Let
< u, v >∈ E be an edge in G between vertices u, v. Let

f(y,E) =
∑

<u,v>∈E
1(yu 6= yv)

be the number of pairs of vertices with disagreeing neigh-
bours on G. In this example, G is a rectangular NI ×NI
lattice with NI = 200 and free boundary conditions. We
denote the graph by GF = (EF , V ). Interior vertices on
G have degree 4, edge vertices have degree 3 and corner
vertices have degree 2. We consider also the toroidal bound-
ary condition. The lattice GT = (ET , V ) is wrapped onto a
torus so all vertices in G have degree 4.

Let φ > 0 be a scalar parameter. The likelihood under free
boundary conditions is

pF (y|θ) = ZF (θ)−1 exp(−θf(y,EF ))

where

ZF (θ) =
∑

x∈{0,1}|V |
exp(−θf(x,EF ))
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Figure 1. Ice floe image from Banfield & Raftery (1992)

is a normalizing constant. Similarly, let ZP (θ) be the
normalizing constant under toroidal boundary conditions.
When NI is large, ZF (θ) is computationally intractable.
However, ZP (θ) is given in closed form in Kaufman (1949).

Following Lee et al. (2018) we impose a uniform prior
π(θ) ∝ 1(θ ∈ (0, 2)) on θ. The posterior is

π(θ|y) ∝ ZF (θ)−1 exp(−θf(y,EF ))1(θ ∈ (0, 2)).

Although π(θ|y) is doubly intractable we can use an ex-
change algorithm (Murray et al., 2006) to get asymptotically
exact inference. Alternatively we can approximate ZF (θ)
by ZP (θ). Let

π̃(θ|y) ∝ ZP (θ)−1 exp(−θf(y,EF ))1(θ ∈ (0, 2))

denote the approximate posterior. The univariate approxi-
mate posterior density π̃(θ|y) can be evaluated pointwise
up to a normalising constant, and the corresponding CDF
is readily evaluated. We compute the equal-tail, 95% ap-
proximate credible set C̃y. We find C̃y = (0.899, 0.913).
We used an exchange algorithm (Murray et al., 2006) and
Algorithm 1 to estimate the coverage c(yobs) as a check.
This Monte Carlo estimate, which we treat as the truth, is
c(1)(yobs) = 0.518. Clearly we should be rejection this
approximation scheme.

We run Algorithm 2 to estimate the operational coverage.
We initialise the AIS sampler with M = 1000 samples
{φi, yi}Mi=1 with φi ∼ π̃(φ|yobs) and yi ∼ pF (yi|φi),
the true likelihood. We set the number of AIS itera-
tions NAIS = 60 with cooling schedule βj = 1.05j for
j = 1, . . . , NAIS , γj = 0.02j for j = 1, . . . 50 and γj = 1
for j = 51, . . . , NAIS at the jth iteration. We use the K-S
distance δ(yi, yobs) = |Gyi −Gyobs |∞, where Gyi the CDF
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Figure 2. Left: Algorithm 2; the estimated ĉ(yobs) based on the
intermediate distribution pj at each iteration j of the AIS sampler.
The grey ribbon represents the 2σ error bar for the true value. We
see that ĉ(yobs) converges to c(1)(yobs) while the standard error of
ĉ(yobs) increases due to decreasing effective sample size. Crosses
correspond to final results for 15 repeats of the algorithm (with
arbitary x-values). Right: Algorithm 3; the estimated c(y) as a
function of the natural sufficient statistics s(y). Vertical dotted
segment is the 2σ error bar of ĉ(yobs) based on Algorithm 2.

of the approximate posterior π̃(φ|yi), as the distance met-
ric. Algorithm 2 gives ĉ(yobs) = 0.545 with standard error
0.037 and an effective sample size (ESS) equal 180. In Fig-
ure 2 we see the estimated operational coverage at iteration
NAIS = 60 is close to the true value, indicating the effec-
tiveness of AIS here. We repeated the whole experiment 15
times with excellent consistency within uncertainty. The im-
portance sampler (Lee et al., 2018) gives a similar estimate
ĉIS(yobs) = 0.529 with the threshold ρ = 0.5 (varying ρ
gave no improvement). However, the ESS is just 22 for a
similar runtime. This ESS is likely to be an overestimate.
See the Supplementary material for details.

In Algorithm 3, we first simulate M = 1000 samples
{φi, yi} from π(φ)pF (y|φ), the joint prior distribution, for
i = 1, . . . ,M . Simulation of synthetic data from pF (y|φ)
is straightforward using MCMC. Figure 3 shows a BART
estimate with “covariate” S(yi) = f(y,EF ) and “response”
ci = 1φi∈Ĉyi

. This gives ĉ(yobs) = 0.565 with 95% cred-
ible set (0.420, 0.702), in good agreement with the AIS
estimate. This is an easy problem for the regression ap-
proaches as there is a scalar sufficient statistic. It is harder
for importance sampling, due to the sharply peaked target.
In the supplement we show that BART reproduces Figure 2
(right) using the raw N2

I = 40000 binary data.

5. Dirichlet Process Random Effect Model
Lee et al. (2018) show that their IS approach works for
calibration of a completely collapsed MCMC algorithm for
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partition structure in a Dirichlet process. However it is easy
to find problems on which the IS estimator performs poorly.
In this section, we use Algorithm 3 to estimate the realised
coverage c(yobs) for a dataset and approximation procedure
on which the methods of Lee et al. (2018) fail (no sufficient
statistic, output ESS close to one, estimated ĉ(y) values
close to zero or one). We show that credible sets based on
the Laplace approximation are unreliable in this example.

Our dataset has the classical format of a complete design,
with five categorical variables, including Treatment (N =
12 levels), and four block variables, B1 (with q = 3 levels)
B2 (r = 2 levels), B3 (two levels) and B4 (seven levels) so
that we have n = 1008 observations, y = (y1, . . . , yn). In
our example we fit a hierarchical model with known fixed
effects B1 ∗ B2. Let X be the n × p design matrix for the
fixed effects (p = 6 here).

We take a Dirichlet process prior for the hierarchy of ran-
dom effects in our hierarchical model. Our aim here is not
to develop new models but to illustrate calibration. The
model is similar in structure to the model Malsiner-Walli
et al. (2018) fit, differing mainly in the choice of partition
model, a Chinese Restaurant Process (CRP) in our case. In
related work Pauger et al. (2018) cluster variances in the
marginal model. We suppose the scientist wants to cluster
the treatments into groups with similar interaction effects.
Each treatment has a vector of random effects, so the object
here is to estimate a partition of the N = 12 random effect
vectors for treatment. The output of the uncalibrated anal-
ysis is an approximate HPD credible set for the unknown
partition of treatment effects. We calibrate a credible set
here, not simply a credible interval, reflecting the ease of
application of our methods in more general settings.

Let A = {1, . . . , N} give the distinct levels of Treatment
and let A be the n× 1 covariate vector with Ai ∈ A giving
the level of Treatment in the i’th observation. These are
the levels we cluster. Let S = {S1, . . . , SK} be a partition
of A and let S be a n× 1 unobserved categorical covariate
giving the grouping, so that Si = k means Ai ∈ Sk. The
interaction between B1 and Treatment is a random effect
so we have a vector of random effects ηAj ∈ Rq, ηAj ∼
N(0,ΣA) iid for j = 1, . . . , N for the different levels of
A and another offset vector of random effects ηSk ∈ Rq,
ηSk ∼ N(0,ΣS) i.i.d. for k = 1, . . . ,K. Let Z be a n × q
matrix of indicators for the levels of B1. Denote by xi, zi
the ith row of X and Z, let β = (β1, . . . , βp) be the vector
of fixed effects, and let εi ∼ N(0, σ2) i.i.d. for i = 1, . . . , n.
The observation model is

yi = xiβ + ziη
S
Si

+ ziη
A
Ai

+ εi, i = 1, . . . , n

with likelihood p(y|ψ) for parameter ψ =
(β, ηA, ηS ,ΣA,ΣS , σ

2), ψ ∈ ΩS . The parameter
space ΩS of ψ depends on the partition S, as the dimension

of ηS is determined by S.

The partition S is an unknown parameter in the posterior
with a Chinese Restaurant Process (CRP) prior

π(S) =
αKΓ(α)

∏K
k=1 Γ(|Sk|)

Γ(α+ n)

for S ∈ P , where α is a model parameter, |Sk| is the num-
ber of elements in the set Sk and S ∈ P is the space of
partitions. We took α = 1. Our setup is equivalent to a
Dirichlet process prior GS ∼ DP(α,H), ηSk ∼ GS with
base distribution H(ηSk ) = N(ηSk ; 0,ΣS) for k = 1, . . . ,K
for the random effects ηS due to partition S. The joint prior
π(ψ, S) is

π(ψ, S) = π(ηS |S,ΣS)π(β, ηA,ΣA,ΣS , σ
2)π(S)

with π(ηS |S,ΣS) =
∏K
k=1N(ηSk ; 0,ΣS) and

π(β, ηA,ΣA,ΣS , σ
2) = N(β; 0, σ2

βIp)

N∏
j=1

N(ηAj ; 0,ΣA)

×IW(ΣA; νA, VA)IW(ΣS ; νS , VS)IG(σ2;ασ, βσ).

Here σβ , νA, VA, νS , VS , ασ, βσ are prior hyperparameters.
The joint posterior distribution is then

π(ψ, S|y) ∝ p(y|ψ)π(ψ, S). (6)

Estimation of S by sampling the joint posterior π(ψ, S|y)
using MCMC is a variable dimension problem. It is con-
venient to work with the marginal posterior π(S|y) ∝
p(y|S)π(S), where

p(y|S) =

∫
p(y|ψ)π(ψ|S)dψ (7)

is the marginal likelihood. However, p(y|S) is computation-
ally intractable. Suppose we approximate it with a Laplace
approximation. How much harm does this do? Let bS be
the Bayesian Information Criterion (BIC) of the model in
Equation 7 if the partition is S so that

p̃BIC(y|S) = exp(−bS/2)

approximates the marginal likelihood p(y|S). This corre-
sponds to a choice of unit information priors on model
parameters ψ ((Kass & Raftery, 1995; Raftery, 1999)) and
can be seen as part of the approximation we are calibrating.
Packages computing the BIC for complex models are avail-
able (we use the R-package lme4, see Bates et al. (2014)).
The approximate posterior for S is

π̃(S|y) ∝ p̃BIC(y|S)π(S).

We sample π̃(S|y) and construct an approximate credi-
ble set for S (see Supplementary Material) using standard
Metropolis-Hasting MCMC. Can we trust this credible set?
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Table 1. Estimate of c(yobs) and the corresponding 95% credible
interval based on two Probit BART models.

Model ĉ(yobs) 95% Credible Interval
M1 0.262 (0.065,0.549)
M2 0.308 (0.124,0.552)
M21 0.285 (0.067,0.564)
M22 0.322 (0.086,0.618)
M23 0.347 (0.095,0.673)
M24 0.270 (0.056,0.565)

We apply Algorithm 3 to the problem. For i = 1, . . . ,M we
sample partitions S(i) ∼ π(S), ψ(i) ∼ π(·|S(i)), ψ ∈ ΩS
and y(i) ∼ p(·|ψ(i)), y(i) ∈ Rn. Low dimensional summary
statistics are not available, so we try two sets of high di-
mensional summary statistics. Covariates B3 and B4 do not
appear in the model, so e average data with Treatment,
B1 and B2 fixed. Denote by ȳ(i)

jkl the mean of observations
{yi′ : Ai′ = j, B2i′ = k, B3i′ = l} and let

T (y(i)) = {ȳ(i)
jkl}, j = 1, . . . , N ; k = 1, . . . , r; l = 1, . . . , q

denote these summary statistics, with N = 12, r = 2 and
q = 3 and dimension Nrq = 72. Tree-based BART has no
difficulty with summary statistics of this dimension.

As noted at the end of Section 2, level-labels are exchange-
able so we can permute the data vectors y(i), i = 1, . . . ,M
and map them into a ”tighter” subregion of Rn. Regres-
sion is easier on the more densely packed y(i)-values. Let
σ ∈ PR be the set of relabeling permutations for which
c(yσ) = c(y). In our setting with three categorical covari-
ates Treatment, B1 and B2 with N = 12, q = 3 and r = 2
levels respectively, and a complete design, the number of ”le-
gal” permutations of the collapsed data T is |PR| = N !q!r!.

We now define a second coarser set of summary statistics.
Consider the N = 12 treatment levels. For i = 1, . . . ,M ,
let HN (y(i)) = {ȳ(i)

j }Nj=1, where ȳ(i)
j is the sample mean

of {y(i)
i′ : i′ ∈ 1 : N,Ai′ = j}. Take the permutation σ ∈

PR such that HN (σ(y(i))) = {ȳ(i)
(1), . . . , ȳ

(i)
(N)} matches the

order statistics of {ȳ(i)
j }Nj=1. Let Hr(y

(i)) and Hq(y
(i))

give the corresponding sorted averages for B2 and B1. Let

H(y(i)) = (HN (σ(y(i))), Hr(y
(i)), Hq(y

(i)))

denote this collection of the p = 17 order statistics. We take
H(y) as a second set of summary statistics.

We simulate M = 810 pairs {c(i), y(i)}Mi=1 of training data
following Algorithm 3. We fit two probit BART models
M1 : c(i) ∼ T (y(i)) and M2 : c(i) ∼ H(y(i)) i.e. we
fit two models using Ti = T (y(i)) and Hi = H(y(i)) as
summary statistics. The estimated values ĉ(yobs) at yobs are

given in Table 1. Estimates based on the different summary
statistics M1 and M2 agree. In order to further test the
robustness of our method, we partition the full synthetic
dataset {c(i), y(i)}Mi=1 into four equal-size subsets and fit
a Probit BART model using formula M2 to each subset.
Let M21,M22,M23 and M24 label these models. Fitted
values at yobs are in line with fitted values determined on
the full training set, with wider credible intervals as training
sets are smaller. Our estimate of coverage is robust. The
estimated coverage ĉ(yobs) is far lower than the nominal
level α = 0.95, so the approximate marginal likelihood
p̃BIC(y|S) is a poor approximation here, and the credible
set should not be trusted.

6. Conclusion
In this paper we give a computational framework for esti-
mating the bias in coverage due to approximations made
in carrying out Bayesian inference. We provide estimators
for the calibration problem defined in Lee et al. (2018). We
demonstrate their effectiveness by diagnosing poor approxi-
mate coverage in two examples. The quality of the approxi-
mate coverage may depend on the data, so an approximation
may work well for some data sets and not others.

Our assumptions are similar to those of ABC (we can simu-
late the prior and observation model). A vanilla application
of ABC would give a natural though in general inefficient
estimator for b(y) in Equation 1. We have help from the ap-
proximate posterior π̃ and so our AIS method for estimating
coverage can be seen as a hybrid of the two approximation
schemes. Our BART based regression uses the same simu-
lation stage as ABC, but the regression is used to estimate a
probability function over data space, in a manner similar to
the model selection procedure in Pudlo et al. (2016).

The two coverage estimators we suggest, AIS and BART,
have complimentary strengths. AIS uses local information
without variable selection. Regression with BART can more
easily exploit global structure (such as the symmetry we
found in c(y)) and does not require careful specification
of summary statistics or related distance measures. Finally
we note that what we are offering is a consistency check:
a good outcome (ie an estimated coverage close to α) is a
necessary but not a sufficient condition for us to trust the
original estimated credible set.
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