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Abstract

Clustering is a fundamental task in unsupervised
machine learning. Lloyd’s 1957 algorithm for k-
means clustering remains one of the most widely
used due to its speed and simplicity, but the greedy
approach is sensitive to initialization and often
falls short at a poor solution. This paper explores
an alternative to Lloyd’s algorithm that retains
its simplicity and mitigates its tendency to get
trapped by local minima. Called power k-means,
our method embeds the k-means problem in a
continuous class of similar, better behaved prob-
lems with fewer local minima. Power k-means
anneals its way toward the solution of ordinary
k-means by way of majorization-minimization
(MM), sharing the appealing descent property and
low complexity of Lloyd’s algorithm. Further, our
method complements widely used seeding strate-
gies, reaping marked improvements when used
together as demonstrated on a suite of simulated
and real data examples.

1. Introduction

Clustering is a foundational task in unsupervised learning
and data analysis, and plays a key role in countless applica-
tions. Its purpose is to partition n objects into k similarity
classes based on a measure of similarity between pairs of
objects. Recent advances based on spectral formulations
(Ng et al., 2002), Bayesian and nonparametric approaches
(Heller & Ghahramani, 2005; Kulis & Jordan, 2012), mes-
sage passing (Frey & Dueck, 2007), subspace clustering
(Vidal, 2011), and continuous optimization (Chi & Lange,
2015; Shah & Koltun, 2017) continue to contribute to a
vast literature. A more complete overview is provided by
Mirkin (1998), Jain (2010), and Everitt et al. (2011). After
decades of innovation, none of these advances have man-
aged to displace k-means clustering and Lloyd’s algorithm
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for implementing it (Steinhaus, 1956; Lloyd, 1982). Lloyd’s
algorithm alternates between two steps of membership re-
assignment and cluster recentering. Unfortunately, it is
NP-hard to optimally partition n points in d-dimensional
Euclidean space into k sets (Aloise et al., 2009; Dasgupta &
Freund, 2009). Lloyd’s algorithm suffers well-documented
shortcomings such as sensitivity to initialization and deteri-
oration in high dimensions. Nonetheless, it persists because
of its speed and simplicity. In settings appropriate for k-
means, many competing algorithms underperform or offer
only marginal improvements while incurring higher compu-
tational cost, additional hyperparameters, or more opaque
objectives.

In this paper, we propose a generalization of Lloyd’s al-
gorithm that a) makes it more robust to initialization, b)
enhances its performance in high dimensions, and c) re-
tains its speed and simplicity. Power k-means embeds the
k-means problem in a continuum of better behaved prob-
lems. These smoothed intermediate problems have flatter
objective functions that tend to guide clustering toward the
global minimum of the k-means objective. Our method en-
joys the same O(nkd) per-iteration complexity as Lloyd’s
algorithm. Steady and stable progress along the solution
path is ensured by a majorization-minimization algorithm
(Lange, 2016), which guarantees a decrease in the k-means
objective at each step.

Our method can be considered an extension of the k-
harmonic means (KHM) algorithm of Zhang and colleagues
(Zhang et al., 1999). We give a proof of the descent property
for both the KHM algorithm and our extension of it. In
contrast to KHM, which implicitly replaces the k-means
objective by a proxy, our algorithm ultimately seeks to opti-
mize the same measure of quality. Instead, we simply anneal
our way to its minimum. In targeting the original k-means
objective, the considerable and growing body of theory rel-
evant to analyzing k-means applies to understanding our
method. These include recent developments such as new
fast learning rates (Dinh et al., 2016), empirical risk bounds
(Bachem et al., 2017), and statistical guarantees (Lu & Zhou,
2016). Power k-means addresses the algorithmic drawbacks
of Lloyd’s algorithm by proposing internal improvements
from an optimization perspective. On the other hand, exter-
nal “wrapper” methods such as well-designed initializations
for k-means (Arthur & Vassilvitskii, 2007; Celebi et al.,
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2013) have been successful strategies addressing some of
the same issues. Our approach is nicely complementary
to this line of work. As we will see in empirical studies,
seeding methods can be immediately applied together with
our algorithm, furthering the advantages it confers.

Before continuing, we establish some notation. Vectors
and matrices appear in boldface type. The components
of a vector v are written as v; and the entries of a matrix
A as a;;, with ith column a;. A sequence of vectors v,
has components v,, ;, and a sequence of matrices A, has
entries ap, ;-

1.1. Center-based Clustering

Center-based methods encode each cluster by its center and
iteratively refine the center estimates and assignments of
points to clusters. Lloyd’s algorithm for k-means, expecta-
tion maximization (EM) for Gaussian mixture models, and
fuzzy k-means are examples of center-based methods (Jain,
2010). Let X € R%*™ denote the data matrix, ® € R¢**
the center matrix, and C; the membership set for cluster j.
The k-means objective is

k
fooe(®) = DY i -6, (1)
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At each iteration, Lloyd’s algorithm assigns each data point
x; to the cluster C; minimizing the Euclidean distance ||&; —
0;]|. It then redefines the center 6, by averaging the x;
in cluster C;. Although Lloyd’s algorithm is guaranteed to
converge to a local minimum, it is notoriously sensitive to its
starting point. Arthur & Vassilvitskii (2006) exhibit a super-
polynomial worst case running time for Lloyd’s algorithm
and demonstrate the empirical and theoretical advantages
of the now standard seeding scheme k-means++ (Arthur &
Vassilvitskii, 2007; Ostrovsky et al., 2006). Clever seeding
remains an active area of research (Celebi et al., 2013).
For instance, recent work accelerates k-means++ sampling
using Markov chain Monte Carlo (Bachem et al., 2016).

Apart from initialization schemes, several geometrically in-
spired efforts to address the sensitivity of Lloyd’s algorithm
have been made. Notably, the k-harmonic means (KHM) al-
gorithm (Zhang et al., 1999) replaces the k-means criterion
by

n k -
fa©) = Y (X0l L ®
i=1 j=1

The harmonic mean provides a smooth proxy to the min
function and leads to a simple iterative procedure that has

proven more robust to initialization in many examples. Its
extension KHM,, replaces ||z; — 0,2 by ||z; — 0, 7 in
criterion (3). Careful choice of the tuning parameter p can
improve performance (Zhang, 2001). Further attempts to en-
hance KHM range from gravitational search and simulated
annealing (Giingor & Unler, 2007; Yin et al., 2011) to hy-
brids using differential evolution and particle swarms (Tian
et al., 2009; Yang et al., 2009). These heuristics quickly be-
come complicated, and their effectiveness varies by case. It
is unclear when these alternative criteria are preferable to the
well-studied k-means criterion. Empirical studies suggest
that the benefits of KHM are confined to low dimensions
(Zhang, 2001; Hamerly & Elkan, 2002). Teboulle (2007)
provides an elegant formalism unifying several center-based
clustering algorithms by reformulating k-means exactly as a
smooth problem via support functions (Rockafellar, 1970),
and recovers several known soft clustering methods includ-
ing KHM through approximate smoothing via asymptotic
nonlinear means. Our work complements the theoretical
insights provided by this continuous optimization frame-
work. We will make the case that the family of power means
provides a nearly ideal approximation of k-means.

1.2. Generalized and Power Means

For any positive integer k£ and any continuous, strictly mono-
tone function g(y), one can define a generalized mean or
Kolmogorov mean (de Carvalho, 2016) through the formula

Mg(y) _ g—l g(yl)"’—'l'{:"’_g(yk) ) (4)

One can check that M (y) is continuous, symmetric, and
monotonic in its arguments. It also satisfies the identi-
ties My(y,...,y) =yand Mg(p, .., s Yrg1s -, Yg) =
My(y1, ..., yx), Where o = My(y1,...,y,). Kolmogorov
showed that any function satisfying these properties takes
the form (4) (Kolmogorov & Castelnuovo, 1930). The
choice g(y) = y*® on the domain (0, c0) yields the fam-
ily of Holder or power means. We will abbreviate the mean
M- (y) by M,(y). Within the class of power means, s > 1
corresponds to the usual /s-norm of y, s = 1 to the arith-
metic mean, and s = —1 to the harmonic mean. The geo-
metric mean {/y1 - - -y can be viewed as the special case
s = 0 after taking limits.

In the family of power means M (y), an easy calculation
yields the gradient

0 1en 211,
oW = (Gw) it ©

This formula shows that M (y) is strictly increasing in
each of its entries. The class of power means enjoys other
properties relevant to our subsequent analysis. In addition
to the previous identities, power means are homogenous in
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the sense that M;(cy) = c¢M,(y) for all ¢ > 0 and y. This
is the only family of generalized means with this property
(Hardy et al., 1952). By continuity, one can extend the
domain of M(y) to boundary points where one or more
y; = 0; in particular, M,(0) = 0. The power mean family
also satisfies the limits

lim M(y) = max{y1,..., Yk},
S§—00
Jim M. (y) = min{yy, .} (6)

and obeys the well-known power mean inequality M (y) <
M;(y) for any s < t (Steele, 2004).

1.3. Majorization-minimization

The majorization-minimization (MM) principle (Lange
et al., 2000) provides a generic recipe for converting hard
optimization problems (non-convex or non-smooth) into a
sequence of simpler problems. MM algorithms have become
increasingly popular for large-scale optimization in statis-
tics and machine learning (Mairal, 2015; Lange, 2016). Re-
cent applications include stochastic optimization (Bietti &
Mairal, 2017), regression with constraints (Xu et al., 2017),
and clustering under missing data (Chi et al., 2016). All
EM algorithms for maximum likelihood estimation are in-
stances of MM (Becker et al., 1997). Given that Lloyd’s
algorithm can be interpreted as an EM algorithm for a Gaus-
sian mixture model (GMM) with vanishing variances or
as a variational EM approximation with isotropic GMMs
(Forster & Liicke, 2018), it is natural that the broader MM
principle underpins our own method.

An MM algorithm successively minimizes a sequence of
surrogate functions g(0 | 8,,) majorizing the objective
function f(0) at the current iterate 8,,,. The notion of ma-
jorization entails tangency ¢(0,, | 0,,) = f(0,,) at the
current iterate and domination g(0 | 8,,,) > f(6) for all 6.
The update rule

0,41 := arg mein 9(0]86.,,)

implies the descent property

f(0m+1) < g(0m+1 ‘ am) < g(@m | em) = f(em)~ 7

Note that minimizing g is not strictly necessary: the weaker
condition ¢g(6,,+1 | 0n) < g(6,, | 0,,) also decreases
£(6). Maximizing a function can be accomplished by an
analogous combination of sequential minorization and max-
imization.

2. The Power k-Means Algorithm

We will define the power k-means objective function for
given power s by the formula

£:(8) = Y My(l&i =61, l|lzi — 6ul*)  ®
=1

consistent with our previous notations f_..(©) and f_1(©)
for the k-means and k-harmonic means objectives. The lim-
iting relation lim,_, o, fs(0) = f_(O) follows from (6)
and suggests that we systematically decrease f,(©) while
gradually sending s to —oo. To this end, the MM frame-
work can be brought to bear in deriving a descent scheme.
We begin by examining the Hessian matrix of M(y), with

entries
k 1
1 521 1 ool s—
M;(y) = (Ezyz) ps(;—l)yj !
1

+1{j:l}( Zyl) s—l) 5=

Thus, the quadratic form generated by the Hessian satisfies
along direction v

82
dy; 0y,

v M,(y)v =

[@y ) () ()|

The second factor on the right is always nonpositive by
the Cauchy-Schwarz inequality, while the factor 1 — s is
nonnegative if and only if s < 1. Hence, M,(y) is con-
cave whenever s < 1 and convex otherwise. Because
My(y,...,y) =y, Ms(y) is neither strictly concave nor
strictly convex. Concavity and convexity do not carry over
to the composite function f,(©).

To derive an MM algorithm, we exploit the concavity of
M (y) for s < 1. Concavity supplies the linear majoriza-
tion

M(y) < ©)

~ 0,
at any anchor point y,,. The required partial derivatives
appear in equation (5). If we substitute ||z; — 6,2 for y;
and ||z; — 0., ;||* for y,,, ; and sum inequality (9) over 4,
the majorization

= Ym.j)

Cm,

n k
33l

i=1 j=1

O ;1

fs(©) <
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n k
DN Wil — 651

i=1 j=1
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follows. The constant c¢,,, does not depend on ® and is thus
irrelevant in minimizing this surrogate function. To mini-
mize the right-hand side, we solve its stationarity equation:

Wm,ij

n
0 = —2) wpj(zi—0))
i=1
n
0 1
m+1,5 n7§ W, ijLi-
Zi:l wm,ij i=1

This results in a straightforward iterative procedure, and is
guaranteed to decrease f5(6) regardless of the choice of
s. By analogy to Lloyd’s algorithm, each step alternates
between updating the weights wy, ;; and recomputing the
centers. The MM updates fall within the convex hull of the
data points. The overall procedure, summarized in Steps 3
and 4 of Algorithm 1, has the same per-iteration complexity
O(nkd) as Lloyd’s algorithm. One can check that taking
s = —1 exactly recovers the KHM iterates (Zhang et al.,
1999), and for s fixed, the updates coincide with the SKM
steps suggested by Teboulle (2007) without approximate
smoothing parameter. In contrast, the KHM,, algorithm for
p # 2 does not operate on the class of objectives studied
here, nor is it consistent with Tebuolle’s formalism, dis-
cussed further in Section 3. Annealing enters in Step 5 of
the algorithm, discussed below.

Algorithm 1 Power k-means algorithm pseudocode

1: Initialize sg < 0 and @y, input data X € R¥*™ and
set constant > 1:
2: repeat

1
k sm
R O R

gmle2(sm71)

n -1 n
4 Ort1,5 < ( E wm,ij) g Wn,ij T
i=1 i=1

(optional)i

1
;i —

S: Sm+1 — n-Sm
6: until convergence

2.1. Annealing

As s tends to —oo, the power means surfaces f(@) provide
a family of progressively rougher landscapes. Figure 1
illustrates how more and more local valleys appear as s tends
to —oo. In the other extreme when s = 1, one can show
analytically that all optimal centers 6 ; collapse to the sample
mean X. In contrast to the heuristic annealing methods

applied with KHM (Giingor & Unler, 2007), moving along
a sequence of power mean objectives f(©®) automatically
provides a form of annealing, much like Gibbs distributions
naturally lend themselves to deterministic annealing with
EM algorithms (Ueda & Nakano, 1998). Such behavior
is intuitively desirable, guiding the solution path toward a
global minimizer as it threads its way across the landscapes.
This intuition is supported by empirical studies in Section 4.

In general, altering the objective function at each step of an
MM algorithm does not guarantee the descent property and
the advantages that follow from it. Fortunately, this is not
the case for the proposed algorithm.

Proposition 2.1. For any decreasing sequence s.,, < 1, the
iterates ©,,, produced by the MM updates (Alg. 1) gener-
ates a decreasing sequence of objective values fs, (©,,)
bounded below by 0. As a consequence, the sequence of
objective values converges.

Proof. The result follows immediately by combining the
MM inequalities (7) with the power mean inequality O

Proposition 2.1 allows one to freely choose a schedule for
decreasing s. In practice, the multiplicative schedule indi-
cated in Algorithm 1 works well. As we show in Section
4, a default rule s,,11 = 1s,, withn = 1.05 and sy < 0 is
successful across synthetic and real datasets from multiple
domains of varying size n and dimension d. A sensitivity
analysis to 7) reveals that this conclusion is stable to reason-
able perturbations of 7). In contrast, the initial value sy does
affect performance, but we will see in Section 4 that this
parameter does not require careful tuning; a broad range of
so values lead to marked improvements over k-means.

We now understand KHM as an attempt to optimize one
member f_1(®) of an entire family of objectives; this strat-
egy can be interpreted as early stopping along our solution
path. Comparison of Figures 1(a) and 1(c) illustrate why
KHM is more robust to initialization than Lloyd’s algorithm.
Although the global minimizers of f_1(®) and f_.,(®)
are similar, f_, (@) features fewer local minima that may
trap the algorithm. This phenomenon is partly explained
by the intuition originally motivating KHM; namely, the
harmonic average behaves similarly to the min function in
its sensitivity to small inputs. However, notice that off the
diagonal, é% min y is 1 if y; is minimal and 0 otherwise.
Examining the partial derivatives (5) when s = —1 re-
veals that the shape of M, (y) may differ substantially from
min y when many y; have similar values, suggesting that
f-1(©®) is a poor proxy for f_..(®) in some regimes. Prac-
titioners have indeed found that as d increases and there is
little difference in distances between pairs of sample points,
KHM suffers from the curse of dimensionality (Kriegel
et al., 2009). In contrast, as s — —oo, the derivatives (5)
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tend to (%j min y where the latter is defined. Though harder
to visualize in high dimensions, we will see in Section 4
that power k-means retains the benefits of annealing as di-
mension d increases, remaining successful in settings where
both KHM and Lloyd’s algorithm deteriorate.

o
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Figure 1. Cross-sections of the k-means and power means objec-
tive surfaces for varying powers s. Here — f5(®) is plotted for
n = 100 simulated data points from k = 3 clusters in dimension
d = 1. Two cluster centers vary along the axes, holding the third
fixed at its true value.

3. Properties

We have seen that the centers 8; stay within the convex
hull C' of the data points at each iteration. The following
propositions show that this a productive strategy for finding
global minima of the objectives. By symmetry, there are at
least k! equivalent global minimizers.

Proposition 3.1. For any s < 1, the global minimum of
fs(®) lies in the Cartesian product C*.

Proof. Let Po(6) denote the Euclidean projection of 6

onto C. For any v € C, the obtuse angle condition
[0 — Po(0)]'[v — Po(0)] < 0 holds. Since z; € C, it
follows that

lae; = 6517 = i — Pc(8;)I?

+2[x; — Po(0,))'[Pc(8;) — 0,1+ Pc(8;) — 6,
> @i — Po(6;)|1+[|Pc(8;) — 6.

Thus, ||z; — Pc(0;)|]? < ||z; — 0;]|* whenever 8; & C.

Given that M (y) is strictly increasing in each of its ar-

guments, one can strictly decrease each term M(||x; —

01|12, ..., ||z; — 01|?) contributing to f,(©) by substitut-

ing Pc(6;) for 0;. Furthermore, because C* is compact

and f4(©®) is continuous, fs(@®) attains its its minimum on
k

c*. O

Proposition 3.2. For any decreasing sequence s,, < 1

tending to —oc, the sequence [s, (©) converges uniformly

10 f—oo(®) on C*. Furthermore, lim m@infsm(G) =
m—00

rrgn [ (©).

Proof. For any O, the limit (6) and the power mean in-
equality imply that fs_(©) converges monotonically to the
continuous function f_.,(®). In view of Dini’s theorem,
monotonicity ensures that this convergence is in fact uni-
form on the compact set C*. As for the convergence of the
minimum values, Proposition 3.1 allows us to confine our
attention to C*. For any € > 0, uniform convergence entails
the existence of an integer M such that whenever m > M,

sup [f-oo(®) — f5,,(O®)] < e
©cCk

For any such m and ©,,, € argmin f;_(©), we have
min f_oo(0) < fooc(Onm) < [, (On) +¢€

®cC*k
< fsm(e) +e < ffoo(e) + 2e

forall ® € C*. Taking © € arg min f_..(©) and sending
€ — 0 establish the claim. O

Before proceeding, we make several remarks regarding con-
vergence. First, the MM iterates ©,,, need not minimize the
objectives f, (@). Second, while compactness implies the
existence of convergent subsequences of ®,,, their limits
do not necessarily minimize f_., (@) globally. Third, Al-
gorithm 1 terminates at some finite value of s* in practice.
If we continue iterating at s* until f,« (@) stabilizes, then
any limit points of the MM algorithm are stationary points
of fs«(®) (Teboulle, 2007; Lange, 2016). Alternatively,
if we switch to Lloyd’s algorithm when we reach s*, then
a finite number of further iterates will converge to a local
minimum. In our experience, the difference in solutions
between simply stopping at s* or continuing with either
of these alternatives is negligible. In contrast, the KHM,,
algorithm does not possess the descent property. We demon-
strate this in the Supplement through a new interpretation
of KHM,, as an approximate Newton’s method.

3.1. Membership and weighing functions

A number of studies have analyzed and designed algorithms
based on membership functions hj(xz; | @) > 0 and weigh-
ing functions a(© | x;) > 0 (Kearns et al., 1998; Medasani
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et al., 1998; MacKay, 2003). The former define the pro-
portion of point x; assigned to cluster j. The latter define
the influence of point a; on subsequent center updates. For
Lloyd’s algorithm, h;(x; | ®) = 1if x; is closest to center
j and 0 otherwise. For EM, h;(x; | ©) is a posterior proba-
bility under a Gaussian mixture model (Hamerly & Elkan,
2002). In contrast to Lloyd’s algorithm, EM, and fuzzy
clustering (Bezdek et al., 1984) which all have constant
a(® | z;), KHM,, features a dynamic weighing function
(Zhang, 2001) with

z; — 0]~ ®t2)
hj(zi | ©) = ,'J il (10)
Syl — 0]~ +2)

Sl — 6y~ @+
k 2°
(XK ||z — 6,])

When p > 2, a point near its closest center 8; is down-
weighted since (O | z;) = O(||z; — 0,]|P~2), a dynamic
weighing that Zhang (2001) calls a form of boosting. Sev-
eral authors have remarked that this analogy is yet to be
made precise (Freund & Schapire, 1997; Hamerly & Elkan,
2002), and the same observation also reveals increasing
sensitivity to outliers as the tuning parameter p increases.
Hamerly & Elkan (2002) test hybrid algorithms by methodi-
cally swapping membership and weighting functions among
several center-based algorithms, reporting empirical advan-
tages under those in (10). Algorithm 1 entails the following
membership and weighting functions:

a(®|x;) = (11

i — 6;]2¢Y
Sl — 0261

S llzi — 0|2V
(Ef:ﬂ‘wi _ GlHQS)(l—%).

These functions coincide with those under KHM,, when
2p = —s. Hence, the empirical strengths explored by
Hamerly & Elkan (2002) carry over to power k-means
clustering. Notice that in power k-means clustering,
lim,, oo a(® | ;) = O(1), as expected since our for-
mulation approaches k-means in the limit. Power k-means
therefore benefits from dynamic weighing as f(®) gradu-
ally transitions to f_..(®), yet the transition automatically
stabilizes, requiring no tuning parameter p to trade off de-
sirable “boosting” behavior against increasing sensitivity to
outliers.

hj(zi [ ©) =

a(®|x;) =

3.2. Non-Euclidean distances

Our exposition focuses on Euclidean distances and consid-
ers experimental settings ideal for Lloyd’s algorithm. It
is worth mentioning that the power means framework can
be broadened to accommodate alternative notions of dis-
tance. For instance, one can substitute ||a; — 6|, instead of

||l; — 0,||* for y; in majorization (9). The resulting MM up-
date then reduces to weighted medians. In Gaussian mixture
models, the Mahalanobis distance (z; — 8;)'Q " (z; — 6;)
leads to explicit updates for both the centers 8; and the
shared covariance matrix 2. Other measures such as ¢-
divergences or Bregman divergences may be desirable, for
instance with exponential family mixtures (Banerjee et al.,
2005; Lucic et al., 2016). Here, we would expect the power
means framework to confer similar benefits over Bregman
hard clustering (Banerjee et al., 2005) just as it improves
k-means under Euclidean distances. Derivative expressions
applicable to such extensions are readily available (Teboulle,
2007).

4. Results and Performance

In our simulation study, we generated n = 2500 multivari-
ate standard normal samples from k& = 50 clusters, whose
centers @; were initialized randomly in the hypercube with
entries 0;; ~ r - Unif(0,1) forl = 1,...,d. Whend = 2,
this experiment is the same as that considered in the original
KHM paper of Zhang (2001); a similar setting was investi-
gated by Pelleg & Moore (1999) and recreated by Hamerly
& Elkan (2002). Although these studies feature various
between-cluster variances controlled by the scale factor r,
they all generate data from well-separated Gaussians. Mod-
eled after these benchmarks, our simulations represent ideal
conditions for Lloyd’s algorithm, enabling a generous, con-
servative comparison. In each dataset, we randomly draw
r ~ Unif(30, 60) and repeat for various dimensions d. All
algorithms were run until relative change in objective fell
below ¢ = 1076//d.

We compare Lloyd’s algorithm, KHM, and power k-means
with initial power sy under matched initial centers, seeded
using k-means++. Table 1 reports performance in terms of
the quality ratio

\/ffoo((:))/ffoo((;)optimal) (12)

considered by Zhang (2001); Hamerly & Elkan (2002) over
50 synthetic datasets. Though (12) is natural and clearly
relevant from an optimization perspective, lower values of
f-00(©®) do not directly translate into better clusterings.
Solutions are therefore also evaluated using the variation of
information (VI), an information-theoretic distance that is
agnostic to label permutations (Meild, 2007). Average VI
between outputs and the true clusters is reported in Table
2. Best performers for each d are marked with asterisks
and boldfaced. We observe that KHM is competitive with
Lloyd’s algorithm in low dimensions, consistent with pre-
vious findings (Zhang et al., 1999; Zhang, 2001; Hamerly
& FElkan, 2002); both break down as d grows. The differ-
ence in cluster quality is especially apparent in terms of VI.
Figure 2 provides a visual comparison of power means and
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Table 1. Average Root k-Means Quality Ratio, with (Standard Errors) Below

d=2 d=5 d=10 d=20 d=50 d=100 d =200
Lloyd 1.036 1.236 1.363 1.411 1.476 1.492 1.481
(0.018) (0.057) (0.122) (0.130) (0.123) (0.110) (0.123)
KHM 1.044 1.290 1.473 1.504 1.556 1.586 1.556
(0.029) (0.063) (0.115) (0.135) (0.154) (0.135) 0.147)
so=—1.0 *1.029 *1.164 1.185 1.221 1.178 1.181 1.149
(0.018) (0.047) (0.065) (0.079) (0.059) (0.067) (0.060)
sog = —3.0 1.030 1.187 *1.155 *1.110  *1.044 *1.054 *1.059
(0.017) (0.043) (0.058) (0.064) (0.055) (0.059) (0.056)
so=—9.0 1.032 1.220 1.293 1.296 1.192 1.086 1.069
(0.018) (0.054) (0.10) (0.104) (0.088) (0.070) 0.077)
so = —18.0 1.034 1.228 1.328 1.370 1.351 1.254 1.203
(0.018) (0.056) (0.118) (0.116) (0.107) (0.117) (0.104)
Table 2. Average Variation of Information, with (Standard Errors) Below
d=2 d=5 d=10 d=20 d=50 d=100 d=200
Lloyd 0.637 0.261 0.234 0.223 0.199 0.206 0.183
(0.160) (0.055) (0.077) (0.055) (0.057) (0.059) (0.044)
KHM 0.651 0.328 0.339 0.319 0.263 0.280 0.231
(0.153) (0.086) (0.086) (0.074) (0.072) (0.074) (0.052)
so=—1.0 *0.593  *0.199 0.133 0.136 0.084 0.087 0.069
(0.134) (0.046) (0.046) (0.054) (0.034) (0.035) (0.037)
so = —3.0 0.593 0.226 *0.111  *0.069  *0.022 *0.027 *0.026
(0.139) (0.054) (0.044) (0.039) (0.029) (0.029) (0.026)
so=—9.0 0.608 0.252 0.199 0.169 0.078 0.036 *0.026
(0.143) (0.053) (0.074) (0.055) (0.038) (0.031) 0.027)
sop=—18.0 | 0.615 0.259 0.218 0.208 0.140 0.101 0.077
(0.152) (0.056) (0.078) (0.057) (0.048) (0.049) (0.040)

Lloyd’s algorithm when d = 2. Though KHM preceded the
work of Arthur & Vassilvitskii (2007), it is noteworthy that
KHM performs slightly worse than Lloyd’s even in the plane
under k-means++ seeding. Remarkably, power k-means per-
forms best in all settings and under all choices of sy over
a broad range. Though this suggests that sy can be chosen
quite freely rather than requiring careful tuning, we see that
choosing sq judiciously only further improves performance.
As proof of concept, the bottom rows of each table verify
what we would expect intuitively. Namely, power k-means
behaves more like Lloyd’s as the initial power sg decreases,
though in practice there is no clear reason to initialize at a
very low sg.

The Supplement includes further comparisons on the
BIRCH (n = 100000,d = 2) and MNIST (n =
60000, d = 784) benchmark datasets, as well as additional
results in terms of adjusted Rand index (ARI) and under uni-
form random initializations. We advocate VI over the popu-
lar ARI because the latter is not a metric. Nonetheless, these
various measures indicate the same trends across settings, re-
vealing marked improvements under power k-means and re-

inforcing the finding that our method systematically reaches
better solutions and is more stable across initial guesses.
All simulations were implemented in Julia (Bezanson et al.,
2017) and conducted on a standard Macbook laptop. To
give a sense of runtimes absent a detailed comparison, the
power k-means algorithm typically converges in around 40
iterations on MNIST, or roughly 20 seconds, under half of
what Lloyd’s algorithm requires (with more details in the
Supplement). Recent work by Shah & Koltun (2017) shows
that Lloyd’s algorithm outperforms more complicated meth-
ods such as affinity propagation (Frey & Dueck, 2007) to
cluster the MNIST data, which requires roughly 40 hours
on a more powerful machine.

4.1. Protein data

We now analyze protein expression data collected in a
murine study of trisomy 21, more commonly known as
Down syndrome (Ahmed et al., 2015; Higuera et al., 2015).
The dataset contains 1080 expression level measurements of
77 proteins that signal in the nuclear fraction of the cortex.
The mice can be classified into eight classes (trisomic or not,
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Figure 2. Visualization of solutions obtained using Lloyd’s algo-
rithm compared to power k-means. Optimal centers (via running
Lloyd’s algorithm initialized at true centers) are depicted as trian-
gles. Even in two dimensions, Lloyd’s algorithm fails on several
visibly well-separated clusters that power means correctly identi-
fies. Tables 1 and 2 show in detail that this difference becomes
more pronounced as dimension increases.

conditioned to learn or not, received drug treatment or not).
Higuera et al. (2015) employ self-organizing maps (SOM) to
identify subsets of proteins that contribute to learning. These
authors cluster the trisomic and control mice using separate
SOMs and assess quality via quantization error f_oo((:)),
number of mixed class nodes (assigned mice from more
than one class), and total observations assigned to mixed
nodes. These measures are displayed in the columns of
Table 3. Comparison to the best results obtained by Higuera
et al. indicates that while SOM outperforms k-means++,
power k-means is superior to both under the same measures.
As scientific conclusions about critical protein responses de-
pend fundamentally on the clustering step, power k-means
presents the preferred alternative in terms of quality. While
SOMs additionally provide a low-dimensional visualization
of the data (Higuera et al., 2015), various methods such as
t-SNE (Maaten & Hinton, 2008) can be straightforwardly
applied if planar representations are desired. Additional
plots and further details of this case study appear in the
Supplement.

Table 3. Protein expression level clustering quality, mouse trisomy
learning study (Higuera et al., 2015)

Control mice

Error Mixed nodes Total mixed
SOM 0.579 8 110
Power 0.570 7 92
k-means++ | 0.592 11 164

Trisometric mice

Error Mixed nodes Total mixed
SOM 0.698 5 84
Power 0.693 4 70
k-means++ | 0.718 9 152

5. Discussion

We present power k-means, a novel algorithm for the clas-
sical task of k-means clustering. Based on incrementally
reducing a sequence of power means objectives, our new
method retains the simplicity and low time-complexity
of Lloyd’s algorithm. Capitalizing on the majorization-
minimization principle and the classical mathematical the-
ory behind power means, we derive several nice properties
of our algorithm that translate to practical merits. Power
k-means naturally benefits from annealing as the underlying
objective tends to the k-means objective, providing reduced
sensitivity to initialization and substantially improved per-
formance in high dimensions. The method generalizes and
extends k-harmonic means clustering, rescuing a good idea
from its limitations to low-dimensional problems.

Though power k-means requires an initial power sg to be
specified, it does not require careful tuning. We have shown
that even under ideal assumptions for Lloyd’s algorithm,
power k-means outperforms when sg is carelessly chosen
from a broad range. Therefore, as a drop-in replacement
for Lloyd’s algorithm, improved performance can be ex-
pected, and these gains can be further maximized by tuning
so if desired. Although we focus on the Euclidean case,
we have noted extensions via alternatives to the squared
Euclidean distance, and a closer look at these modified ver-
sions is warranted. Algorithms for k-means are not only
themselves widely used for clustering, but are useful for
dimension reduction and as subroutines or initializations
in more complex methods. Because power k-means copes
better as dimension increases, our contributions broaden
the extent to which such strategies are effective. Further
theoretical studies are a fruitful avenue for future research.
Convergence analyses may provide insights into designing
optimal annealing schedules and more rigorous guidance
for best choice of sg. In particular, a closer look at consis-
tency and statistical rates are warranted. While we have seen
that power k-means can benefit from k-means++ initializa-
tion, other wrapper methods such as geometric acceleration
approaches (Elkan, 2003; Rysavy & Hamerly, 2016) may
further improve performance and scalability. These direc-
tions remain open and ripe for further research.
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