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Abstract

Difference of convex (DC) functions cover a
broad family of non-convex and possibly non-
smooth and non-differentiable functions, and have
wide applications in machine learning and statis-
tics. Although deterministic algorithms for DC
functions have been extensively studied, stochas-
tic optimization that is more suitable for learning
with big data remains under-explored. In this
paper, we propose new stochastic optimization
algorithms and study their first-order convergence
theories for solving a broad family of DC func-
tions. We improve the existing algorithms and the-
ories of stochastic optimization for DC functions
from both practical and theoretical perspectives.
Moreover, we extend the proposed stochastic algo-
rithms for DC functions to solve problems with a
general non-convex non-differentiable regularizer,
which does not necessarily have a DC decomposi-
tion but enjoys an efficient proximal mapping. To
the best of our knowledge, this is the first work
that gives the first non-asymptotic convergence
for solving non-convex optimization whose objec-
tive has a general non-convex non-differentiable
regularizer.

1. Introduction
In this paper, we consider a family of non-convex non-
smooth optimization problems that can be written in the
following form:

min
x∈Rd

g(x) + r(x)− h(x), (1)
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where g(·) and h(·) are real-valued lower-semicontinuous
convex functions, r(·) is a proper lower-semicontinuous
function. We include the component r in order to capture
non-differentiable functions that usually play the role of
regularization, e.g., the indicator function of a convex set
X where r(x) = δX (x) is zero if x ∈ X and infinity
otherwise, and a non-differential regularizer such as the
convex `1 norm ‖x‖1 or the non-convex `0 norm and `p
norm ‖x‖pp with p ∈ (0, 1). We do not necessarily impose
smoothness condition on g(x) or h(x) and the convexity
condition on r(x).

A special class of the problem (1) is the one with r(x) being
a convex function - also known as difference of convex (DC)
functions. We would like to mention that even the family of
DC functions is broader enough to cover many interesting
non-convex problems that are well-studied, including an
additive composition of a smooth non-convex function and
a non-smooth convex function, weakly convex functions, etc.
We postpone this discussion to Section 2 after we formally
introduce the definitions of smooth functions and weakly
convex functions.

In the literature, deterministic algorithms for DC problems
have been studied extensively since its introduction by Pham
Dinh Tao in 1985 and are continuously receiving attention
from the community (Khamaru & Wainwright, 2018; Wen
et al., 2018). Please refer to (Thi & Dinh, 2018) for a sur-
vey on this subject. Although stochastic optimization (SO)
algorithms for the special cases of DC functions mentioned
above (smooth non-convex functions, weakly convex func-
tions) have been studied recently (Davis & Grimmer, 2017;
Davis & Drusvyatskiy, 2018b;a; Drusvyatskiy & Paquette,
2018; Chen et al., 2018b; Lan & Yang, 2018; Allen-Zhu,
2017; Chen & Yang, 2018; Allen-Zhu & Hazan, 2016; Reddi
et al., 2016b;a; Zhang & He, 2018), a comprehensive study
of SO algorithms with a broader applicability to the DC func-
tions and the problem (1) with a non-smooth non-convex
regularizer r(x) still remain rare.

The papers by (Mairal, 2013), (Nitanda & Suzuki, 2017)
and (Thi et al., 2017) are the most related works dedicated to
the stochastic optimization of special DC functions. Mairal
(2013) studied a special case of problem (1) with h is smooth
and proposed a stochastic majorization-minimization algo-



SO for DC Functions and Non-smooth Non-Convex Regularizers

rithm enjoying an asymptotic convergence result for finding
a stationary point. Thi et al. (2017) considered a special
class of DC problems and they reformulated the problem
into (1) such that h is a sum of n convex functions, and g
is a quadratic function and r is the first component of the
DC decomposition of the regularizer. Then, they proposed
a stochastic variant of the classical DCA (Difference-of-
Convex Algorithm) and established an asymptotic conver-
gence result for finding a critical point. To our knowledge,
the paper by (Nitanda & Suzuki, 2017) is the probably the
first result that gives non-asymptotic convergence for find-
ing an approximate critical point of a special class of DC
problems, in which both g and h can be stochastic functions
and r = 0. Their algorithm consists of multiple stages of
solving a convex objective that is constructed by lineariz-
ing h(x) and adding a quadratic regularization. However,
their algorithm and convergence theory have the following
drawbacks. First, at each stage, they need to compute an un-
biased stochastic gradient denoted by v(x) of∇h(x) such
that E[‖v(x) − ∇h(x)‖2] ≤ ε2, where ε is the accuracy
level imposed on the returned solution in terms of the gra-
dient’s norm. In reality, one has to resort to mini-batching
technique by using a large number of samples to ensure this
condition, which is impractical and not user-friendly. An
user has to worry about what is the size of the mini-batch in
order to find a sufficiently accurate solution while keeping
the computational costs minimal. Second, for each con-
structed convex subproblem, their theory requires running
a stochastic algorithm that solves each subproblem to the
accuracy level of ε, which could waste a lot of computations
at earlier stages. Third, their convergence analysis requires
that r(x) = 0 and g(x) is a smooth function with a Lipchitz
continuous gradient. In addition, they obtained fast con-
vergence result of the problem under Polyak-Łojasiewicz
condition, which is not considered in this paper.

Our Contributions - I. In Section 3, we propose new
stochastic optimization algorithms and establish their con-
vergence results for solving the DC class of the prob-
lem (1) that improves the algorithm and theory in (Nitanda &
Suzuki, 2017) from several perspectives. It is our intention
to address the aforementioned drawbacks of their algorithm
and theory. In particular, (i) our algorithm only requires un-
biased stochastic (sub)-gradients of g(x) and h(x) without
a requirement on the small variance of the used stochastic
(sub)-gradients; (ii) we do not need to solve each constructed
subproblem to the accuracy level of ε. Instead, we allow the
accuracy for solving each constructed subproblem to grow
slowly without sacrificing the overall convergence rate; (iii)
we improve the convergence theory significantly. First, our
convergence analysis does not require g(x) to be smooth
with a Lipchitz continuous gradient. Instead, we only re-
quire either g(x) + r(x) or h(x) to be differentiable with
a Hölder continuous gradient, under the former condition

h(x) can be a non-smooth non-differentiable function and
under the later condition r(x) and g(x) can be non-smooth
non-differentiable functions. Second, the convergence rate
is automatically adaptive to the Hölder continuity of the
involved function without requiring the knowledge of the
Hölder continuity to run the algorithm. Third, when adap-
tive stochastic gradient method is employed to solve each
subproblem, we establish an adaptive convergence similar
to existing theory of AdaGrad for convex problems (Duchi
et al., 2011; Chen et al., 2018a) and weakly convex prob-
lems (Chen et al., 2018b), which is missing in (Nitanda &
Suzuki, 2017).

Our Contributions - II. Moreover, in Section 4 we ex-
tend our algorithm and theory to the more general class of
non-convex non-smooth problem (1), in which r(x) is a
general non-convex non-differentiable regularizer that en-
joys an efficient proximal mapping. Although such kind of
non-smooth non-convex regularization has been considered
in literature (Attouch et al., 2013; Bolte et al., 2014; Bot
et al., 2016; Li & Lin, 2015; Yu et al., 2015; Yang, 2018;
Liu et al., 2018; An & Nam, 2017; Zhong & Kwok, 2014),
existing results are restricted to deterministic optimization
and asymptotic or local convergence analysis. In addition,
most of them consider a special case of our problem with
g − h being a smooth non-convex function. To the best of
our knowledge, this is the first work of stochastic optimiza-
tion with a non-asymptotic first-order convergence result
for tackling the non-convex objective (1) with a non-convex
non-differentiable regularization and a smooth function g
and a possibly non-smooth function h with a Hölder con-
tinuous gradient. Our algorithm and theory are based on
using the Moreau envelope of r(x) that can be written as
a DC function, which then reduces to the problem that is
studied in Section 3. By using the algorithms and their
convergence results established in Section 3 and carefully
controlling the approximation parameter, we establish the
first non-asymptotic convergence of stochastic optimization
for solving the original non-convex problem with a non-
convex non-differentiable regularizer. This non-asymptotic
convergence result can be also easily extended to the de-
terministic optimization, which itself is novel and could
be interesting to a broader community. A summary of our
results is presented in Table 1.

2. Preliminaries
In this section, we present some preliminaries. Let ‖ · ‖p
denote the standard p-norm with p ≥ 0. For a non-convex
function f(x) : Rd → R, let ∂̂f(x) denote the Fréchet
subgradient and ∂f(x) denote the limiting subgradient, i.e.,

∂̂f(x̄) =

{
v ∈ Rd : lim

x→x̄
inf

f(x)− f(x̄)− v>(x− x̄)

‖x− x̄‖ ≥ 0

}
,

∂f(x̄) = {v ∈ Rd : ∃xk
f−→ x̄, vk ∈ ∂̂f(xk),vk → v},
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Table 1. Summary of our results for finding a (nearly) ε-critical point of the problem (1), where g and h are assumed to be convex. HC
refers to Hölder continuous gradient condition; SM refers to the smooth condition; CX means convex; NC means non-convex and NS
means non-smooth; LP denotes Lipchitz continuous function; LB means lower bounded over Rd; FV means finite-valued over Rd; FVC
means finite-valued over a compact set. ν ∈ (0, 1] denotes the power constant of the involved function’s Hölder continuity. n denotes the
total number of components in a finite-sum problem. SPG denotes stochastic proximal gradient algorithm. SVRG denotes stochastic
variance reduced gradient algorithm. AdaGrad denotes adaptive stochastic gradient method. Complexity for SPG and AdaGrad means
iteration complexity, and for SVRG and AG means gradient complexity. Better results were obtained in the arXiv version after ICML.

g h r Algorithms for subproblems Complexity

- HC CX SPG, AdaGrad O(1/ε4/ν)
SM HC CX SVRG O(n/ε2/ν)
HC - CX, HC SPG, AdaGrad O(1/ε4/ν)
SM - CX, HC SVRG O(n/ε2/ν)

SM HC NC, NS, LP SPG, AdaGrad O(1/ε4(1+1/ν))
SM HC NC, NS, FV, LB SPG, AdaGrad O(1/ε4(1+2/ν))
SM HC NC, NS, LP SVRG O(n/ε2(1+1/ν))
SM HC NC, NS, FV, LB SVRG O(n/ε2(1+2/ν))
SM HC NC, NS, FVC SVRG O(n/ε2(1+2/ν))

where the notation x
f−→ x̄ means that x → x̄ and

f(x) → f(x̄). It is known that ∂̂f(x) ⊆ ∂f(x). If f(·)
is differential at x, then ∂̂f(x) = {∇f(x)}. Moreover, if
f(x) is continuously differentiable on a neighborhood of
x, then ∂f(x) = {∇f(x)}. When f is convex, the Fréchet
and the limiting subgradient reduce to the subgradient in
the sense of convex analysis: ∂f(x) = {v ∈ Rd : f(x) ≥
f(y) + v>(x− y),∀y ∈ Rd}. For simplicity, we use ‖ · ‖
to denote the Euclidean norm (aka. 2-norm) of a vector.
Let dist(S1,S2) denote the distance between two sets and
[K] = {1, . . . ,K}.

A function f(x) is smooth with a L-Lipchitz continuous
gradient if it is differentiable and the following inequality
holds ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x,y. A differen-
tiable function f(x) has (L, ν)-Hölder continuous gradient
if there exists ν ∈ (0, 1] such that ‖∇f(x) − ∇f(y)‖ ≤
L‖x − y‖ν ,∀x,y. Next, let us characterize the critical
points of the considered problem (1) that are standard in
the literature (Hiriart-Urruty, 1985; Horst & Thoai, 1999;
Thi & Dinh, 2018; An & Nam, 2017), and introduce the
convergence measure of an algorithm. First, let us consider
the DC problem:

min
x∈Rd

f(x) := g(x)− h(x), (2)

where g : Rd → R∪{∞} is a proper lower semicontinuous
convex function and h : Rd → R is convex. Any point x̄
such that ∂h(x̄)∩ ∂g(x̄) 6= ∅ is called a critical point of (2),
which is a necessary condition for x̄ to be a local minimizer.
For an iterative optimization algorithm, it is hard to find
an exactly critical point in a finite-number of iterations.
Therefore, we find an ε-critical point x that satisfies

dist(∂h(x), ∂g(x)) ≤ ε. (3)
Similarly, we can extend the above definition of criti-
cal points to the general problem (1) with r(x) being a

proper and lower semi-continuous (possibly non-convex)
function (An & Nam, 2017). In particular, any point x̄
such that ∂h(x̄) ∩ ∂̂(g + r)(x̄) 6= ∅ is called a critical
point of (1). When g is differentiable, ∂̂(g + r)(x̄) =

∇g(x) + ∂̂r(x) (Rockafellar & Wets, 1998)[Exercise 8.8],
and when both g and r are convex and their domains cannot
be separated ∂̂(g + r)(x̄) = ∂g(x) + ∂r(x) (Rockafellar
& Wets, 1998)[Corollary 10.9]. An ε-critical point of (1)
is a point x that satisfies dist(∂h(x), ∂̂(g + r)(x)) ≤ ε. It
is notable that when g + r is non-differentiable, finding an
ε-critical point could become a challenging task for an itera-
tive algorithm even under the condition that r is a convex
function. Let us consider the example of g = |x|, h = r = 0.
As long as x 6= 0, we have dist(0, ∂|x|) = 1. To address
this challenge when g+r is non-differentiable, we introduce
the notion of nearly ε-critical points. In particular, a point x
is called a nearly ε-critical point of the problem (1) if there
exists x̄ such that
‖x− x̄‖ ≤ O(ε), dist(∂h(x̄), ∂̂(g + r)(x̄)) ≤ ε. (4)

A similar notion of nearly critical points for non-smooth
and non-convex optimization problems have been utilized
in several recent works (Davis & Grimmer, 2017; Davis &
Drusvyatskiy, 2018b;a; Chen et al., 2018b).

Examples and Applications of DC functions.

Example 1: Weakly convex functions. Weakly convex func-
tions have been recently studied in numerous papers (Davis
& Grimmer, 2017; Davis & Drusvyatskiy, 2018b;a; Chen
et al., 2018b; Zhang & He, 2018). A function f(x) is called
ρ-weakly convex if f(x) + ρ

2‖x‖
2 is a convex function.

More generally, f(x) is called ρ-relative convex with respect
to a strongly convex function ω(x) if f(x) + ρω(x) is con-
vex (Zhang & He, 2018). It is obvious that a weakly convex
function f(x) is a DC function. Examples of weakly con-
vex functions can be found in deep neural networks with a
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smooth active function and a smooth/non-smooth loss func-
tion (Chen et al., 2018b), robust learning (Xu et al., 2018),
robust phase retrieval (Davis & Drusvyatskiy, 2018a).

Example 2: Non-Convex Sparsity-Promoting Regulariz-
ers. Many non-convex sparsity-promoting regularizers in
statistics can be written as a DC function, including log-
sum penalty (LSP) (Candès et al., 2008), minimax con-
cave penalty (MCP) (Zhang, 2010a), smoothly clipped
absolute deviation (SCAD) (Fan & Li, 2001), capped `1
penalty (Zhang, 2010b), transformed `1 norm (Zhang &
Xin, 2018). For detailed DC composition of these regular-
izers, please refer to (Wen et al., 2018; Gong et al., 2013).
We also present the details in the supplement.

Example 3: Least-squares Regression with `1−2 Regulariza-
tion. Recently, a non-convex regularization in the form of
λ(‖x‖1 − ‖x‖2) was proposed for least-squares regression
or compressive sensing (Yin et al., 2015), which is naturally
a DC function.

Example 4: Positive-Unlabeled (PU) Learning. In
PU learning for binary classification, only positive data
{(zi,+1), i = 1, . . . , n+} are observed where zi ∈ Rm
denotes the feature vector of i-th positive example, conven-
tional empirical risk minimization becomes problematic. A
remedy to address this challenge is to use unlabeled data for
computing an unbiased estimation of Ez,y[`(x; z, y)], where
y ∈ {1,−1} denotes the label. In particular, the objective
in the following problem is an unbiased risk (Kiryo et al.,
2017): minx∈Rd

πp
n+

∑n+

i=1 (`(x; zi, 1)− `(x; zi,−1)) +∑m
j=1 `(x;zuj ,−1)

nu
, where {zui , i = 1, . . . , nu} is a set of un-

labeled data, and πp = Pr(y = 1) is the prior probability
of the positive class. It is obvious that if `(x; ·) is a convex
loss function in terms of x, the above objective function is a
DC function. In practice, an estimation of πp is used.

Examples of Non-Convex Non-Smooth Regularizers. Fi-
nally, we present some examples of non-convex non-smooth
regularizers r(x) that cannot be written as a DC function or
whose DC decomposition is unknown. Thus, the algorithms
and theories presented in Section 3 are not directly applica-
ble, but the algorithms discussed in Section 4 are applicable
when the proximal mapping of r(x) is efficient to compute.
Examples include `0 norm (i.e., the number of non-zero ele-
ments of a vector) and `p norm regularization for p ∈ (0, 1)

(i.e.,
∑d
i=1 |xi|p), whose proximal mapping can be effi-

ciently computed (Attouch et al., 2013; Bolte et al., 2014).
Let us consider a non-convex optimization problem with
domain constraint x ∈ C, where C is a non-convex set. Di-
rectly handling a non-convex constrained problem could be
difficult. An alternative solution is to convert the constraint
into a penalization r(x) = λ

2 ‖x − PC(x)‖2 with λ > 0
in the objective, where PC(·) denotes the projection of a
point to the set C. Note that when C is a non-convex set,

r(x) is a non-convex non-smooth function in general, and
its proximal mapping enjoys a closed-form solution (Li &
Pong, 2016).

3. New Stochastic Algorithms of DC functions
In this section, we present new stochastic algorithms for
solving the problem (1) when r(x) is a convex function and
their convergence results. We assume both g(x) and h(x)
have a large number of components such that computing a
stochastic gradient is much more efficient than computing
a deterministic gradient. Without loss of generality, we
assume g(x) = Eξ[g(x; ξ)] and h(x) = Eς [h(x; ς)], and
consider the following problem:

min
x∈Rd

F (x) := Eξ[g(x; ξ)] + r(x)− Eς [h(x; ς)]. (5)

where g and h are real-valued lower-semicontinuous convex
functions and r is a proper lower-semicontinuous convex
function. It is notable that a special case of this problem is
the finite-sum form:

min
x∈Rd

F (x) :=
1

n1

n1∑
i=1

gi(x) + r(x)− 1

n2

n2∑
j=1

hj(x), (6)

which allows us to develop faster algorithms for smooth
functions by using variance reduction techniques.

Since we do not necessarily impose any smoothness as-
sumption on g(x) and h(x), we will postpone the particular
assumptions for these functions in the statements of later the-
orems. For all algorithms presented below, we assume that
the proximal mapping of r(x) can be efficiently computed,
i.e., proxηr(y) = arg minx∈Rd

1
2η‖x− y‖2 + r(x) can be

easily computed for any η > 0. But it is not necessary for
developing subgradient methods when r is convex.

The basic idea of the proposed algorithm is similar to the
stochastic algorithm proposed in (Nitanda & Suzuki, 2017).
The algorithm consists of multiple stages of solving convex
problems. At the k-th stage (k ≥ 1), given a point xk, a con-
vex majorant function F γxk(x) is constructed as following
such that F γxk(x) ≥ F (x),∀x and F γxk(xk) = F (xk):

F γxk(x) =g(x) + r(x)− (h(xk) + ∂h(xk)>(x− xk))

+
γ

2
‖x− xk‖2, (7)

where γ > 0 is a constant parameter. Then a stochastic
algorithm is employed to optimize F γxk . The key difference
from the previous work lies at how to solve each convex
majorant function. An important change introduced to our
design is to make the proposed algorithms more efficient
and more practical. Roughly speaking, we only require
solving each function F γxk(x) up to an accuracy level of c/k
for some constant c > 0, i.e., finding xk+1 such that

E[F γxk(xk+1)− min
x∈Rd

F γxk(x)] ≤ c/k. (8)

In contrast, the results presented in (Nitanda & Suzuki,
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Algorithm 1 Stagewise Stochastic DC (SSDC) Algorithm
1: Initialize: x1 ∈ dom(r)
2: for k = 1, . . . ,K do
3: Let Fk(x) = F γxk as defined in (7)
4: xk+1 = A(F γxk ,Θk) �Θk denotes algorithm depen-

dent parameters
5: end for

2017) require solving each convex problem up to an ac-
curacy level of ε, which is the expected accuracy level on
the final solution. This change not only makes our algo-
rithms more efficient by saving unnecessary computations
but also more practical without requiring ε to run the al-
gorithm. We present a meta algorithm in Algorithm 1, in
which A refers to an appropriate stochastic algorithm for
solving each convex majorant function. The Step 4 means
thatA is employed for finding xk+1 such that (8) is satisfied
(or a more fine-grained condition is satisfied for a particular
algorithm as discussed later), where Θk denotes the algo-
rithm dependent parameters (e.g., the number of iterations).
Our convergence analysis also has its merits compared with
the previous work (Nitanda & Suzuki, 2017). We will di-
vide our convergence analysis into three parts. First, in
subsection 3.1 we introduce a general convergence measure
without requiring any smoothness assumptions of involved
functions and conduct a convergence analysis of the pro-
posed algorithm. Second, we analyze different stochastic
algorithms and their convergence results in subsection 3.2,
including an adaptive convergence result for using AdaGrad.
Finally, we discuss the implications of these convergence
results for solving the original problem in terms of finding a
(nearly) ε-stationary point in subsection 3.3.

3.1. A General Convergence Result
For any γ > 0, define Pγ(z) = arg minx∈Rd F

γ
z (x),

Gγ(z) = γ(z − Pγ(z)). It is notable that Pγ(z) is well
defined since F γz is strongly convex. The following proposi-
tion shows that when z = Pγ(z), then z is a critical point
of the original problem.
Proposition 1. If z = Pγ(z), then z is a critical point of
the problem minx∈Rd g(x) + r(x)− h(x).

The above proposition implies that ‖Gγ(z)‖ = γ‖Pγ(z)−
z‖ can serve as a measure of convergence of an algorithm
for solving the considered minimization problem. In sub-
section 3.3, we will discuss how the convergence in terms
of γ‖Pγ(z)− z‖ implies the standard convergence in terms
of the (sub)gradient norm of the original problem. We use
the following basic assumption for our analysis.
Assumption 1. For an initial solution x1 ∈ dom(r), as-
sume that F (x1)− infx∈Rd F (x) ≤ ∆ for some ∆ > 0.

The theorems below are the main results of this subsection.
Theorem 1. Suppose Assumption 1 holds and there exists
an stochastic algorithm A that when applied to F γxk(x)

can find a solution xk+1 satisfying (8), then we have
E[‖Gγ(xτ )‖2] ≤ (2γ∆ + 2γc(1 + log(K)))/K, where
τ ∈ [K] is uniformly sampled.

Remark: It is clear that when K → ∞, γ‖xτ −
Pγ(xτ )‖ → 0 in expectation, implying the convergence
to a critical point. Note that the log(K) factor will lead to
an iteration complexity ofO(log(1/ε)/ε4) for using stochas-
tic (sub)gradient method. Nevertheless, such a logarithmic
factor can be removed by exploiting non-uniform sampling
under a slightly stronger condition of the problem.

Theorem 2. Suppose there exists a stochastic algorithm
A that when applied to F γxk(x) can find a solution
xk+1 satisfying (8), and there exists ∆ > 0 such that
E[F (xk)−minx F (x)] ≤ ∆ for all k ∈ [K], then we have
E[‖Gγ(xτ )‖2] ≤ 2γ(∆+c)(α+1)

K , where τ ∈ [K] is sampled
according to probabilities p(τ = k) = kα/

∑K
k=1 k

α with
α ≥ 1.

Remark: Compared to Theorem 1, the condition
E[F (xk) − minx F (x)] ≤ ∆ for all k ∈ [K] is slightly
stronger than Assumption 1. However, it can be easily
satisfied if xk ∈ dom(r) resides in a bounded set (e.g.,
when r(x) is the indicator function of a bounded set), or
if E[F (xk)] is non-increasing (e.g., when using variance-
reduction methods for the case that g(x) is smooth). In
the following presentation, we assume this condition holds
without explicitly mentioned.

3.2. Convergence Results of Different Algorithms
In this section, we will present the convergence results of
Algorithm 1 for employing different stochastic algorithms
to minimize Fk(x) at each stage. In particular, we consider
three representative algorithms, namely stochastic proxi-
mal subgradient (SPG) method (Duchi et al., 2010; Zhao
& Zhang, 2015), adaptive stochastic gradient (AdaGrad)
method (Duchi et al., 2011; Chen et al., 2018a), and prox-
imal stochastic gradient method with variance reduction
(SVRG) (Xiao & Zhang, 2014). We refer to Algorithm 1 by
using SPG, AdaGrad, SVRG for solving each subproblem as
SSDC-SPG, SSDC-AdaGrad, SSDC-SVRG, respectively.

SPG. We make the additional assumptions about the prob-
lem for developing SPG, which are typical in the litera-
ture (Zhao & Zhang, 2015; Duchi et al., 2010).

Assumption 2. Assume one of the following conditions:
(i) g(x) is L-smooth and E[‖(∇g(x; ξ) − ∂h(x; ς)) −
E[∇g(x; ξ) − ∂h(x; ς)]‖2] ≤ G2. (ii) E[‖∂g(x; ξ)‖2] ≤
G2, E[‖∂h(x; ς)‖2}] ≤ G2 for x ∈ dom(r), and either
r = δX (x) for a closed convex set X or ‖∂r(x)‖ ≤ G for
x ∈ dom(r).

Without loss of generality, we consider minimizing F γx1
by
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SPG. The key update of SPG is the following:

xt+1 = arg min
x∈Ω
{x>G(xt; ξt, ςt) + r(x) +

γ

2
‖x− x1‖2

+
1

2ηt
‖x− xt‖2}, t = 1, . . . , T (9)

where G(xt; ξt, ςt) = ∂g(xt; ξt)− ∂h(x1; ςt). For smooth
g, we set Ω = Rd, and for non-smooth g we set Ω = Bx1

=
{x ∈ Rd, ‖x − x1‖ ≤ 3G/γ}. Restricting the solution to
the ball Bx1

is to accommodate the proximal mapping of
r(x) when g(x) is non-smooth. When using the subgradient
of r(x) instead of the proximal mapping of r(x) in the
update or r(x) is the indicator function of a bounded convex
set, the projection onto Bx1

can be removed. The complete
steps of the SPG algorithm are presented in Algorithm 3 in
the supplement with the two options to handle smooth and
non-smooth g separately. The convergence of Algorithm 1
when using SPG to solve each subproblem is stated below.

Theorem 3. Suppose Assumption 2 (i) holds and Algo-
rithm 3 with (9) (Ω = Rd) is employed for solving Fk
with ηt = 1/(L(t + 1)), γ ≥ 3L and Tk = 4k/c
iterations where c ∈ (0, 1], then Algorithm 1 guaran-
tees E[‖Gγ(xτ )‖2] ≤ 8γ∆(α+1)

K + 8cG2γ(α+1)
LK . Simi-

larly, Suppose Assumption 2 (ii) holds and Algorithm 3
with (9) (Ω = Bxk−1

) is employed for solving Fk with
ηt = 4/(γt), and Tk = k/c iterations with c ∈ (0, 1],
then E[‖Gγ(xτ )‖2] ≤ 8γ∆(α+1)

K + 448c(α+1)
K , where τ is

sampled similarly as in Theorem 2.
Remark: Let us consider the iteration complexity of using
SPG for finding a solution that satisfies E[‖Gγ(xτ )‖2] ≤
ε2. For the non-smooth case, by setting γ < 1 and
c = γ, we need a total number of stages K = O(γ/ε2)

and total iteration complexity
∑K
k=1 Tk =

∑K
k=1 k/γ =

O(1/ε4). For the smooth case, by setting c = 1 we
have K = O(max(L, 1)/ε2) and total iteration complexity∑K
k=1 Tk =

∑K
k=1 4k = O(max(L, 1)/ε4).

AdaGrad. AdaGrad (Duchi et al., 2011) is an important
algorithm in the literature of stochastic optimization, which
uses adaptive step size for each coordinate. It has potential
benefit of speeding up the convergence when the cumulative
growth of stochastic gradient is slow. Next, we show that
AdaGrad can be leveraged to solve each convex majorant
function and yield adaptive convergence for the original
problem. Similar to (Duchi et al., 2011; Chen et al., 2018a),
we make the following assumption.

Assumption 3. For any x ∈ dom(r), there exists G > 0
such that max(‖∂g(x; ξ)‖∞, ‖∂h(x; ς)‖∞) ≤ G, either
r = δX (x) for a closed convex set X or ‖∂r(x)‖ ≤ Gr.
The convergence result of Algorithm 1 by using AdaGrad
to solve each problem is described by following theorem.

Theorem 4. Suppose Assumption 3 holds and Algorithm 2
is employed for solving Fk with ηk = c/

√
k, Tk being

the minimum number that is larger than Mk max{a(2G+

Algorithm 2 ADAGRAD(F γx1
,x1, η)

1: Initialize: t = 1, g1:0 = [], H0 ∈ Rd×d, Ω = {x ∈
dom(r) : ‖x− x1‖ ≤ 2

√
dG+Gr
γ }

2: while T doesn’t satisfy the condition in Thm. 4 do
3: Compute gt = ∂g(xt; ξt)− ∂h(x1; ςt)
4: Update g1:t = [g1:t−1,gt], st,i = ‖g1:t,i‖2
5: Set Ht = H0 + diag(st)

6: Let xt+1 = arg min
x∈Ω

x>
(

1
t

∑t
τ=1 gτ

)
+ r(x) +

γ
2 ‖x− x1‖2 + 1

tη
1
2 (x− x1)>Ht(x− x1)

7: end while
8: Output: x̂T =

∑T
t=1 xt/T

maxi ‖gk1:Tk,i
‖),
∑d
i=1 ‖gk1:Tk,i

‖/a, Grηk ‖x
k
1 − xkTk+1‖}

where Mkηk ≥ 4/(aγ), then Algorithm 1 guarantees
E[‖Gγ(xτ )‖2] ≤ 8γ∆(α+1)

K + 4γ2c2a(a+1)(α+1)
K , where

gk1:t,i denotes the cumulative stochastic gradient of the i-th
coordinate at the k-th stage, and τ is sampled similarly as
in Theorem 2.
Remark: a is a parameter used to balance the two involved
terms for minimizing the value of Tk. It is obvious that
the total number of iterations

∑K
k=1 Tk is adaptive to the

data. Next, let us present more discussion on the iteration
complexity. Note that Mk = O(

√
k). By the boundness

of stochastic gradient ‖gk1:Tk,i
‖ ≤ O(

√
Tk), therefore Tk in

the order of O(k) will satisfy the condition in Theorem 4.
Thus in the worst case, the iteration complexity for find-
ing E[‖Gγ(xτ )‖2] ≤ ε2 is in the order of

∑K
k=1O(k) ≤

O(1/ε4). We can show the potential advantage of adaptive-
ness similar to that in (Chen et al., 2018b). In particular,
let us consider r = δX and thus Gr = 0 in the above re-
sult. When the cumulative growth of stochastic gradient is
slow, e.g., assuming ‖gk1:Tk,i

‖ ≤ O(Tk
β) with β < 1/2.

Then Tk = O(k1/(2(1−β))) will work, and then the to-
tal number of iterations

∑K
k=1 Tk ≤ K1+1/(2(1−α)) ≤

O(1/ε2+1/(1−α)), which is better than O(1/ε4).

SVRG. Next, we discuss SVRG (a variance reduction
method) for solving each subproblem when it has a finite-
sum form (6) and g is a smooth function. It is notable that
the smoothness of h is not necessary for developing the
SVRG algorithm since at each stage we linearize h(x). We
can use the proximal SVRG proposed in (Xiao & Zhang,
2014) to minimize F γxk−1

, which is presented in Algorithm 4
in the supplement, whose convergence result is stated below.

Theorem 5. Suppose Assumption 1 and g is smooth, and
SVRG (Algorithm 4) is employed for solving Fk with ηk =
0.05/L, Tk ≥ max(2, 200L/γ), Sk = dlog2(k)e, then
Algorithm 1 guarantees E[‖Gγ(xτ )‖2] ≤ 12γ∆(α+1)/K,
where τ is sampled similarly as in Theorem 2.
Remark: For finding a solution such that E[‖Gγ(xτ )‖2] ≤
ε2, the total number of stages K = O(γ/ε2) and the total
gradient complexity is Õ((nγ + L)/ε2).
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3.3. Finding a (nearly) ε-critical point
We summarize below the convergence results of the pro-
posed algorithms for finding a (nearly) ε-critical point.

Theorem 6. Assume Algorithm 1 returns a solution xτ
such that E[‖Gγ(xτ )‖2] ≤ O (1/K) under appropri-
ate conditions. Then if g(x) + r(x) is differentiable
and has (L, ν)-Hölder continuous gradient, we have

E[dist(∂h(xτ ),∇(g(xτ ) + r(xτ ))] ≤ O
(

1
Kν/2 + 1√

K

)
.

If h(x) is differentiable and has (L, ν)-Hölder continu-
ous gradient, we have E[‖xτ − zτ‖] ≤ O(1/

√
K) and

E[dist(∇h(zτ ), ∂(g(zτ ) + r(zτ ))] ≤ O
(

1
Kν/2 + 1√

K

)
,

where zτ = Pγ(xτ ).

Remark: Note that the convergence of the proposed algo-
rithms can be automatically adaptive to the Hölder continu-
ous of the involved functions without requiring the value of
ν for running the algorithm. Both SSDC-SPG and SSDC-
AdaGrad have an iteration complexity (in the worst-case) of
O(1/ε4/ν) for finding a (nearly) ε-critical point. When the
problem has a finite-sum structure (6) and g(x) is smooth,
SSDC-SVRG has a gradient complexity of O(n/ε2/ν) for
finding a (nearly) ε-critical point.

4. Non-Smooth Non-Convex Regularization
In this section, we consider a more challenging class of
problem (1) where r(x) is a proper non-smooth and non-
convex lower-semicontinuous function that is not necessar-
ily a DC function (e.g., `0 norm). Even if r(x) is a DC
function such that both components in its DC decomposi-
tion r(x) = r1(x)− r2(x) are non-differentiable functions
without Hölder continuous gradients (e.g., `1−2 regulariza-
tion, capped `1 norm), the theories presented in this section
are useful to derive non-asymptotic convergence results in
terms of finding an ε-critical point. Please note that in this
case the results presented in section 3.3 are not applicable.
Similarly, we assume r(x) is simple such that its proximal
mapping exists and can be efficiently computed.

The problem is challenging due to the presence of non-
smooth non-convex function r. To tackle this function, we
introduce the Moreau envelope of r:

rµ(x) = min
y∈Rd

1

2µ
‖y − x‖2 + r(y),

where µ > 0. A nice property of the Moreau envelope
function is that it can be written as a DC function:

rµ(x) =
1

2µ
‖x‖2 − max

y∈Rd
1

µ
y>x− 1

2µ
‖y‖2 − r(y)︸ ︷︷ ︸

Rµ(x)

,

where Rµ(x) is a convex function because it is the max
of convex functions of x (Boyd & Vandenberghe, 2004).
The following properties about the Moreau envelope will be
useful for our analysis.

Lemma 1. 1
µproxµr(x) ⊆ ∂Rµ(x), and 1

µ (x − v) ⊆
∂̂r(v),∀v ∈ proxµr(x).

Given the Moreau envelope of r, the key idea is to solve the
following DC problem:

min
x∈Rd

g(x)− h(x) +
1

2µ
‖x‖2 −Rµ(x). (10)

By carefully controlling the value of µ and combining the re-
sults presented in previous section, we are able to derive non-
asymptotic convergence results for the original problem. It
is worth mentioning that using the Moreau envelope of r and
its DC decomposition for handling non-smooth non-convex
function is first proposed in (Liu et al., 2018). However,
their algorithms are deterministic and convergence results
are only asymptotic. To formally state our non-asymptototic
convergence results, we make the following assumptions.

Assumption 4. Assume g and h are smooth, and one of the
following conditions holds: (i) r is Lipchitz continuous; (ii)
r is lower bounded and finite-valued over Rd; (iii) g(x)−
h(x) + rµ(x) is level bounded for a small µ < 1, and r is
finite-valued on a compact set, and lower bounded over Rd.

Remark: The above assumptions on r capture many inter-
esting non-convex non-smooth regularizers. For example,
`1−2 regularization and capped `1 norm satisfy Assump-
tion 4 (i). The `0 norm satisfies Assumption 4 (ii). A
coersive function r usually satisfies Assumption 4 (iii), e.g.,
`p norm r(x) =

∑d
i=1 |x|p for p ∈ (0, 1). In Appendix K,

we further extend our results to handle a differntiable h that
has only a Hölder-continuous gradient.

When employing the presented algorithms in last section
to solve the problem (10), we let r = 1

2µ‖x‖
2, g ← g and

h ← h + Rµ. It is also notable that the new component
Rµ(x) is deterministic, whose subgradient can be computed
according to Lemma 1. Thus the condition in Assumption 2
(i) is sufficient for running SPG, and the smoothness condi-
tion of g is sufficient for running SVRG. Now we are ready
to present our results for solving the problem (1) with a
non-smooth and non-convex r.

Theorem 7. Suppose SSDC is employed for solving (10)
and returns xτ . Let wτ = proxµr(xτ ) be the fi-
nal output, we have the following results to ensure
E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ ε. (a) If Assump-
tion 4 (i) and Assumption 2 (i) hold, then we can set µ = ε,
use SPG for solving the subproblems, and have a total gra-
dient complexity of O(1/ε8). (b) If Assumption 4 (ii) and
Assumption 2 (i) hold, then we can set µ = ε2, use SPG for
solving the subproblems, and have a total gradient complex-
ity of O(1/ε12). (c) If g and h have a finite-sum form and
are smooth, then we can use SVRG for solving the subprob-
lems. Under assumption 4 (i), we can set µ = ε and have a
total gradient complexity of O(n/ε4). Under assumption 4
(ii) or (iii), we can set µ = ε2 and have a total gradient
complexity of O(n/ε6).
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Figure 1. Learning with DC (left two) and non-DC regularizers (right two) on different datasets for classification and regression.
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Figure 2. PU learning with different loss functions on different datasets.

5. Numerical Experiments
In this section, we perform some experiments for solving
different tasks to demonstrate effectiveness of proposed al-
gorithms by comparing with different baselines. We use
very large-scale datasets from libsvm website in experi-
ments, including real-sim (n = 72309) and rcv1 (n=20242)
for classification, million songs (n = 463715) for regression.
For all algorithms, the initial stepsizes are tuned in the range
of {10−6:1:4}, and the same initial solution with all zero en-
tries is used. The initial iteration number T0 of SSDC-SPG
is tuned in {101:1:4}.

First, we compare SSDC algorithms with SDCA (Thi et al.,
2017), SMM (Mairal, 2013), SGD (Davis & Drusvyatskiy,
2018b), SVRG (Reddi et al., 2016c), GIST (Gong et al.,
2013) and GPPA (An & Nam, 2017) for learning with a DC
regularizer: minimizing logistic loss with a SCAD regular-
izer for classification and huber loss with a MCP regularizer
for regression. The parameter in Huber loss is set to be 1.
The value of regularization parameter is set to be 10−4. We
used the form of weight in SMM following (Mairal, 2013).
Since these regularizers are weakly convex, SGD with step
size η0/

√
t is applicable (Davis & Drusvyatskiy, 2018b).

We set the inner iteration number of SVRG as n following
(Reddi et al., 2016c) and the same value is used as the inner
iteration number T of SSDC-SVRG. We set the values of
parameters in GIST with their suggested BB rule (Gong
et al., 2013). Similar to (Thi et al., 2017), we tune the batch
size of SDCA in a wide range and choose the one with the
best performance. GIST and GPPA are deterministic algo-
rithms that use all data points in each iteration. For fairness
of comparison, we plot the objective in log scale versus the
number of gradient computations in Figure 1 (left two).

Second, we consider minimizing `0 regularized non-linear
least square loss function 1

n

∑n
i=1(yi − σ(w>xi))

2 +
λ‖w‖0 with a sigmod function σ(s) = 1

1+e−s for classifica-

tion and `0 regularized truncated least square loss function
1

2n

∑n
i=1 α log(1 + (yi −w>xi)

2/α) + λ‖w‖0 (Xu et al.,
2018) for regression. We compare the proposed algorithms
with GPPA, APG (Li & Lin, 2015) and proximal version of
SGD (proxSGD), where GPPA and APG are deterministic
algorithms. We fix the truncation value as α =

√
10n. The

loss function in these two tasks are smooth and non-convex.
The value of regularization parameter is fixed as 10−6. For
APG, we implement both monotone and non-monotone ver-
sions following (Li & Lin, 2015), and then the better one
is reported. Although the convergence guarantee of prox-
SGD remains unclear for the considered problems, we still
include it for comparison. The results on two data sets are
plotted in Figure 1 (right two).

The results of these two experiments indicate that the pro-
posed stochastic algorithms outperform all deterministic
baselines (GITS, GPPA, APG) on all tasks, which verify the
necessity of using stochastic algorithms on large datasets.
In addition, our algorithms especially SSDC-AdaGrad and
SSDC-SPG also converge faster than stochastic algorithms
SGD, SDCA, and non-convex SVRG verifying that our
stochastic algorithms are more practical for the considered
problems. We also see that in most cases SSDC-AdaGrad is
more effective than SSDC-SPG and SSDC-SVRG.

Finally, we compare SSDC algorithms with two baselines
AdaSPD (Nitanda & Suzuki, 2017) and SGD (Davis et al.,
2018) for solving two `2 regularized positive-unlabeled (PU)
learning problems (Du Plessis et al., 2015) with non-smooth
losses, i.e., hinge loss and absolute loss. The `2 regular-
ization parameter is set to be 10−4. For SGD, we use the
standard stepsize η = η0/

√
t (Ghadimi & Lan, 2013) with

η0 tuned. The mini-batch size and the number of iterations
of each stage of AdaSPD are simply set as 104. The results
on two classification datasets are plotted in Figure 2, which
show that SSDC-SPG and SSDC-AdaGrad outperforms
SGD and AdaSPD.
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A. Proof of Proposition 1
According to the first-order optimality condition, we have

0 ∈ ∂(g(Pλ(z)) + r(Pλ(z)))− ∂h(z) + γ(Pγ(z)− z).

Since z = Pγ(z), we have
0 ∈ ∂(g + r)(z)− ∂h(z),

which implies that z is a critical point of the original minimization problem.

B. Proof of Theorem 2 and Theorem 1
The proof of Theorem 1 can be obtained by a slight change of the following proof. Define the following notations.

zk = Pγ(xk) = arg min
x∈Rd

Fk(x) := g(x) + r(x)− ∂h(xk)>(x− xk)︸ ︷︷ ︸
fk(x)

+
γ

2
‖x− xk‖2.

By the assumption of (8), we have E[Fk(xk+1) − Fk(zk)] ≤ εk = c/k. By the strong convexity of Fk, we have
Fk(xk) ≥ Fk(zk) + γ

2 ‖xk − zk‖2. Thus we have

E[fk(xk+1) +
γ

2
‖xk+1 − xk‖2] ≤ Fk(xk)− γ

2
‖xk − zk‖2 + εk

= g(xk) + r(xk)− γ

2
‖xk − zk‖2 + εk. (11)

Rearranging the terms, we have

E

[
γ

2
‖zk − xk‖2

]
≤ E[g(xk) + r(xk)− fk(xk+1)] + εk

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + ∂h(xk)>(xk+1 − xk)] + εk

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + h(xk+1)− h(xk)] + εk

= E[F (xk)− F (xk+1)] + εk,

where the last inequality follows the convexity of h(·). Multiplying both sides by wk = kα and taking summation over
k = 1, . . . ,K, we have

E

[
γ

2

K∑
k=1

wk‖zk − xk‖2
]
≤ E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
+

K∑
k=1

wkεk, (12)

The second term in the R.H.S of the above inequality can be easily bounded using simple calculus. For the first term, we use
similar analysis as that in the proof of Theorem 1 in (Chen et al., 2018b):

K∑
k=1

wk(F (xk)− F (xk+1)) =

K∑
k=1

(wk−1F (xk)− wkF (xk+1)) +

K∑
k=1

(wk − wk−1)F (xk)

= w0F (x1)− wKF (xK+1) +

K∑
k=1

(wk − wk−1)F (xk)

=

K∑
k=1

(ws − ws−1)(F (xk)− F (xK+1)) ≤
K∑
k=1

(wk − wk−1)(F (xk)−min
x
F (x)),

where we use w0 = 0. Taking expectation on both sides, we have

E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
≤

K∑
k=1

(wk − wk−1)E[(F (xk)−min
x
F (x))] ≤ ∆wK

Then, we have

E

[
γ

2
‖zτ − xτ‖2

]
≤ ∆(α+ 1)

K
+
c(α+ 1)

K
,

which can complete the proof by multiplying both sides by 2γ. The result in Theorem 1 for the uniform sampling can be
easily derived from the equality (16) by using the fact

∑K
k=1 1/k ≤ (1 + logK).
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Algorithm 3 SPG(F γx1
,x1, T )

1: Set step size ηt according to Proposition 2, Ω = {x ∈ dom(r) : ‖x− x1‖ ≤ 3G/γ}
2: for t = 1, . . . , T do
3: Compute ∂g(xt; ξt) and ∂h(x1; ςt)
4: Option 1: xt+1 = arg minx{x>(∂g(xt; ξt)− ∂h(x1; ςt)) + r(x) + γ

2 ‖x− x1‖2 + 1
2ηt
‖x− xt‖2}

5: Option 2: xt+1 = arg minx∈Ω{x>(∂g(xt; ξt)− ∂h(x1; ςt)) + r(x) + γ
2 ‖x− x1‖2 + 1

2ηt
‖x− xt‖2}

6: end for
7: Output: x̂T =

∑T+1
t=2 txt/

∑T+1
t=2 t (Option 1) or x̂T =

∑T
t=1 txt/

∑T
t=1 t (Option 2)

C. SPG Method
The detailed steps of SPG method are presented in Algorithm 3, with option 1 corresponding to smooth g and option 2
corresponding to non-smooth g.

The following proposition summarizes the convergence of SPG for solving each subproblem, whose proof is presented later.

Proposition 2. Suppose Assumption 2(i) hold, then by setting ηt = 1/(L(t+ 1)) and γ ≥ 3L, Algorithm 3 with Option 1
guarantees that

E[F γx1
(x̂T )− F γx1

(x∗)] ≤
4L‖x∗ − x1‖2

T (T + 3)
+

2G2

(T + 3)L
.

Suppose Assumption 2(ii) hold, then by setting ηt = 4/(γt), Algorithm 3 with Option 2 guarantees that

E

[
F γx1

(x̂T )− F γx1
(x∗)

]
≤ γ‖x∗ − x1‖2

4T (T + 1)
+

28G2

γ(T + 1)
,

where x∗ = arg minx F
γ
x1

(x).

C.1. Proof of Proposition 2

Option 1. Let us first prove the case of smooth g. Let f(x) = g(x)− ∂h(x1)>(x− x1) and r̂(x) = r(x) + γ
2 ‖x− x1‖2.

Then f(x) is L-smooth and r̂(x) is γ-strongly convex. A stochastic gradient of f(x) is given by ∂f(x; ξ, ς) = ∇g(x; ξ)−
∂h(x1, ς), which has a variance of G2 according to the assumption. Let ηt = 1/(L(t+ 1)) ≤ 1/L. In our proof, we first
need the following lemma, which is attributed to (Zhao & Zhang, 2015).

Lemma 2. Under the same assumptions in Proposition 2, we have

E[f(xt+1) + r̂(xt+1)− f(x)− r̂(x)] ≤‖xt − x‖2

2ηt
− ‖x− xt+1‖2

2ηt
− γ

2
‖x− xt+1‖2 + ηtG

2.

The proof of this lemma is similar to the analysis to proof of Lemma 1 in (Zhao & Zhang, 2015). For completeness, we will
include its proof later in this section.

Let’s continue the proof by following Lemma 2 and letting wt = t, then
T∑
t=1

wt+1(f(xt+1) + r̂(xt+1)− f(x)− r̂(x))

≤
T∑
t=1

(
wt+1

2ηt
‖x− xt‖2 −

wt+1

2ηt
‖x− xt+1‖2 −

γwt+1

2
‖x− xt+1‖2

)
+

T∑
t=1

ηtwt+1G
2

≤
T∑
t=1

(
wt+1

2ηt
− wt

2ηt−1
− γwt

2

)
‖x− xt‖2 +

w1/η0 + γw1

2
‖x− x1‖2 +

T∑
t=1

ηtwt+1G
2

≤ L+ γ

2
‖x− x1‖2 +

T∑
t=1

G2/L

where the last inequality uses the fact wt+1

ηt
− wt

ηt−1
− γwt = L(t+ 1)2 − Lt2 − γt ≤ 0 due to γ ≥ 3L. Then we have

f(x̂T ) + r̂(x̂T )− f(x)− r̂(x) ≤ (L+ γ)‖x− x1‖2

T (T + 3)
+

2G2

(T + 3)L
.
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Option 2. Next, we prove the case when g is non-smooth. First, we need to show that x∗ = arg minF γx1
(x) in the set

‖x− x1‖ ≤ 3G/γ. By the optimality condition of x∗ we have
(∂g(x∗) + ∂r(x∗)− ∂h(x1) + γ(x∗ − x1))>(x− x∗) ≥ 0,∀x ∈ dom(r)

Plugging x = x1 into the above inequality, we have
γ‖x1 − x∗‖2 ≤ 3G‖x1 − x∗‖ ⇒ ‖x1 − x∗‖ ≤ 3G/γ,

where the first inequality uses Assumption 2 (ii). Let us recall the update

xt+1 = arg min
‖x−x1‖≤3G/γ

x>∂f(xt; ξt, ςt) + r̂(x) +
1

2ηt
‖x− xt‖2

By the optimality condition of xt+1 and the strong convexity of above problem, we have for any x ∈ Ω = {x ∈
dom(r); ‖x− x1‖ ≤ 3G/γ}

x>∂f(xt; ξt, ςt) + r̂(x) +
1

2ηt
‖x− xt‖2

≥ x>t+1∂f(xt; ξt, ςt) + r̂(xt+1) +
1

2ηt
‖xt+1 − xt‖2 +

1/ηt + γ

2
‖x− xt+1‖2

Rearranging the terms, we have
(xt − x)>∂f(xt; ξt, ςt) + r̂(xt+1)− r̂(x)

≤ (xt − xt+1)>∂f(xt; ξt, ςt)−
1

2ηt
‖xt+1 − xt‖2 +

1

2ηt
‖x− xt‖2 −

1/ηt + γ

2
‖x− xt+1‖2

≤ ηt‖∂f(xt; ξt, ςt)‖2

2
+

1

2ηt
‖x− xt‖2 −

1/ηt + γ

2
‖x− xt+1‖2

Taking expectation on both sides, we have
E[f(xt)− f(x) + r̂(xt+1)− r̂(x)]

≤ ηtE[‖∂f(xt; ξt, ςt)‖2]

2
+ E

[
1

2ηt
‖x− xt‖2 −

1/ηt + γ

2
‖x− xt+1‖2

]
.

Multiplying both sides wt and taking summation over t = 1, . . . , T and expectation, we have

E

[ T∑
t=1

wt(f(xt)− f(x) + r̂(xt+1)− r̂(x))

]

≤
T∑
t=1

2G2wtηt + E

[ T∑
t=1

wt
2ηt
‖x− xt‖2 −

wt/ηt + wtγ

2
‖x− xt+1‖2

]
.
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Thus,

E

[ T∑
t=1

wt(f(xt)− f(x) + r̂(xt)− r̂(x))

]

≤ E

[ T∑
t=1

wt(r(xt)− r(xt+1))

]
+

T∑
t=1

2G2wtηt + E

[ T∑
t=1

(
wt
2ηt
− wt−1/ηt−1 + wt−1γ

2

)
‖x− xt‖2

]

≤ w0r(x1)− wT r(xT+1) + E

[ T∑
t=1

(wt − wt−1)r(xt)

]
+

T∑
t=1

2G2wtηt

+ E

[ T∑
t=1

(
wt
2ηt
− wt−1/ηt−1 + wt−1γ

2

)
‖x− xt‖2

]

≤ E

[ T∑
t=1

(wt − wt−1)(r(xt)− r(xT+1))

]
+

T∑
t=1

2G2wtηt + E

[ T∑
t=1

(
wt
2ηt
− wt−1/ηt−1 + wt−1γ

2

)
‖x− xt‖2

]

≤ E

[ T∑
t=1

(wt − wt−1)G‖xt − xT+1‖
]

+

T∑
t=1

2G2wtηt + E

[ T∑
t=1

(
wt
2ηt
− wt−1/ηt−1 + wt−1γ

2

)
‖x− xt‖2

]

≤ E

[ T∑
t=1

(wt − wt−1)6G2/γ

]
+

T∑
t=1

2G2wtηt + E

[ T∑
t=1

(
wt
2ηt
− wt−1/ηt−1 + wt−1γ

2

)
‖x− xt‖2

]

Plugging the value wt = t, ηt = 4/(γt), and using the fact wt
2ηt
− wt−1/ηt−1+wt−1γ

2 ≤ 0,∀t ≥ 2, we have

E

[ T∑
t=1

wt(f(xt)− f(x) + r̂(xt)− r̂(x))

]
≤ wT 6G2

γ
+

8G2T

γ
+
γ‖x− x1‖2

8

Thus,

E

[
f(x̂T )− f(x) + r̂(x̂T )− r̂(x))

]
≤ 28G2

γ(T + 1)
+
γ‖x− x1‖2

4T (T + 1)
.

C.2. Proof of Lemma 2

First, we need the following lemma, which is attributed to (Zhao & Zhang, 2015).

Lemma 3. If r̂(x) is convex and

û = arg min
x

x>gu + r̂(x) +
1

2η
‖x− z‖2, v̂ = arg min

x
x>gv + r̂(x) +

1

2η
‖x− z‖2,

then we have

‖û− v̂‖ ≤ η‖gu − gv‖.

Proof. of Lemma 3. The proof can be found in the analysis of Lemma 1 in (Zhao & Zhang, 2015), but we still include it
here for completeness. By the optimilaty of û and v̂ we have

a :=
z− û

η
− gu ∈ ∂r̂(û)

b :=
z− v̂

η
− gv ∈ ∂r̂(v̂).

Since r̂(x) is convex, then

0 ≤ 〈a− b, û− v̂〉 =
1

η
〈ηgv − ηgu + v̂ − û, û− v̂〉,

which implies
1/η‖û− v̂‖2 ≤ 〈gv − gu, û− v̂〉 ≤ ‖gv − gu‖‖û− v̂‖.
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Thus
‖û− v̂‖ ≤ η‖gv − gu‖.

Then, let’s start the proof of Lemma 2. Since f(x) = g(x) − ∂h(x1)>(x − x1) and r̂(x) = r(x) + γ
2 ‖x − x1‖2, then

f(x) is L-smooth and r̂(x) is γ-strongly convex. Recall that a stochastic gradient of f(x) is given by ∂f(x; ξ, ς) =
∇g(x; ξ) − ∂h(x1, ς), which has a variance of G2 according to the assumption, and ηt = 1/(L(t + 1)) ≤ 1/L. By the
convexity of f(x) and strong convexity of r̂(x) we have

f(x) + r̂(x) ≥ f(xt) + 〈∂f(xt),x− xt〉+ r̂(xt+1) + 〈∂r̂(xt+1),x− xt+1〉+
γ

2
‖x− xt+1‖2.

By the smoothness of f(x), we also have

f(xt) ≥ f(xt+1)− 〈∂f(xt),xt+1 − xt〉 −
L

2
‖xt − xt+1‖2.

Combing the above two inequalities, we have
f(xt+1) + r̂(xt+1)− f(x)− r̂(x)

≤〈∂f(xt) + ∂r̂(xt+1),xt+1 − x〉 − γ

2
‖x− xt+1‖2 +

L

2
‖xt − xt+1‖2

=〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x〉+
1

ηt
〈xt − xt+1,xt+1 − x〉

− γ

2
‖x− xt+1‖2 +

L

2
‖xt − xt+1‖2

=〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x〉+
‖xt − x‖2

2ηt
− ‖xt − xt+1‖2

2ηt
− ‖xt+1 − x‖2

2ηt

− γ

2
‖x− xt+1‖2 +

L

2
‖xt − xt+1‖2, (13)

where the last second equality is due to the update and optimilaty of xt+1 (Option 1 in Algorithm 3); the last equality uses
the fact that 2〈x−y,y−z〉 = ‖x−z‖2−‖x−y‖2−‖y−z‖2. To deal with the term 〈∂f(xt)−∂f(xt; ξt, ςt),xt+1−x〉,
we define x̂t+1 = arg minx x

>∂f(xt) + r̂(x) + 1
2ηt
‖x− xt‖2, which is independent of ∂f(xt; ξt, ςt). Taking expectation

over ξt and ςt over this term we get
E[〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x〉]

=E[〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x̂t+1 + x̂t+1 − x〉]
=E[〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x̂t+1〉] + E[〈∂f(xt)− ∂f(xt; ξt, ςt), x̂t+1 − x〉]
=E[〈∂f(xt)− ∂f(xt; ξt, ςt),xt+1 − x̂t+1〉]
≤E[‖∂f(xt)− ∂f(xt; ξt, ςt)‖‖xt+1 − x̂t+1‖]
≤ηtE[‖∂f(xt)− ∂f(xt; ξt, ςt)‖2] ≤ ηtG2,

where the third equality is due to E[〈∂f(xt) − ∂f(xt; ξt, ςt), x̂t+1 − x〉|xt] = 0; the last third inequality uses Cauchy-
Schwartz inequality; the last second inequality is due to Lemma 3; the last inequality uses Assumption 2 (i). With above
inequality, taking the expectation on both sides of (13) and using the fact that ηt ≤ 1/L, we get

E[f(xt+1) + r̂(xt+1)− f(x)− r̂(x)] ≤‖xt − x‖2

2ηt
− ‖x− xt+1‖2

2ηt
− γ

2
‖x− xt+1‖2 + ηtG

2.

D. Proof of Theorem 3
One might directly use the result in Proposition 2 to argue that the condition (8) holds by assuming that ‖xk − zk‖ is
bounded, which is true in the non-smooth case due to the domain constraint x ∈ Ω in the update. In the smooth case, the
upper bound is not directly available for setting Tk such that the condition (8) holds. Fortunately, when we apply the above
result in the convergence analysis of Algorithm 1, we can utilize the strong convexity of Fk to cancel the term O(γ‖zk−xk‖

2

Tk(Tk+1) )

by setting Tk to be larger than a constant.
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Let us use the same notations as in the proof of Theorem 2 and prove the case of smooth g. By Proposition 2, we have

E[Fk(xk+1)− Fk(zk)] ≤ 4L‖xk − zk‖2

Tk(Tk + 3)
+

2G2

(Tk + 3)L
.

To continue the analysis, we have

E[fk(xk+1) +
γ

2
‖xk+1 − xk‖2] ≤ Fk(zk) +

4L‖xk − zk‖2

Tk(Tk + 3)
+

2G2

(Tk + 3)L

≤ Fk(xk)− γ

2
‖xk − zk‖2 +

4L‖xk − zk‖2

Tk(Tk + 3)
+

2G2

(Tk + 3)L

≤ g(xk) + r(xk) +
2G2

(Tk + 3)L

where we use Fk(xk) ≥ Fk(zk) + γ
2 ‖xk − zk‖2 due to the strong convexity of F (x), and γ ≥ 3L, Tk ≥ 4. On the other

hand, we have that
‖xk+1 − xk‖2 =‖xk+1 − zk + zk − xs‖2

=‖xk+1 − zk‖2 + ‖zk − xk‖2 + 2〈xk+1 − zk, zk − xk〉
≥(1− α̂−1)‖xk+1 − zk‖2 + (1− α̂)‖xk − zk‖2

where the inequality follows from the Young’s inequality with 0 < α̂ < 1. Thus we have that

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[g(xk) + r(xk)− fk(xk+1)] +

γ(α̂−1 − 1)

2
E[‖xk+1 − zk‖2]

+
2G2

(Tk + 3)L
.

On the other hand, by the convexity of h(·) we have
E[g(xk) + r(xk)− fk(xk+1)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + ∂h(xk)>(xk+1 − xk)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + h(xk+1)− h(xk)]

= E[F (xk)− F (xk+1)],

By the strong convexity of Fk(x), we also have
γ

2
E[‖xk+1 − zk‖2] ≤ E[Fk(xk+1)− Fk(zk)] ≤ 4L‖xk − zk‖2

Tk(Tk + 3)
+

2G2

(Tk + 3)L

Then we have

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] + (α̂−1 − 1)

(
4L‖xk − zk‖2

Tk(Tk + 3)
+

2G2

(Tk + 3)L

)
+

2G2

(Tk + 3)L

Let α̂ = 1/2, we have

E

[
γ

4
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

4L‖xk − zk‖2

Tk(Tk + 3)
+

4G2

(Tk + 3)L

≤ E[F (xk)− F (xk+1)] +
γ‖xk − zk‖2

8
+

4G2

(Tk + 3)L

where we use the fact γ ≥ 3L, Tk ≥ 4 and hence 4L/T 2
k ≤ γ/8. It then gives us

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

4G2

(Tk + 3)L

By setting Tk = 4k/c with 0 < c ≤ 1, we have

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

cG2

kL

Following similar analysis to the proof of Theorem 2, we can finish the proof. For completeness, we include the remaining



SO for DC Functions and Non-smooth Non-Convex Regularizers

analysis here. Multiplying both sides by wk = kα and taking summation over k = 1, . . . ,K, we have

E

[
γ

8

K∑
k=1

wk‖zk − xk‖2
]
≤ E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
+

K∑
k=1

wk
cG2

kL
, (14)

Similar to proof of of Theorem 2, we have

E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
≤

K∑
k=1

(wk − wk−1)E[(F (xk)−min
x
F (x))] ≤ ∆wK

Then, by
∑K
k=1 k

α ≥
∫K

0
xαdx = Kα+1

α+1 and
∑K
k=1 k

α−1 ≤ Kα, (α ≥ 1), we have

E

[
γ

8
‖zτ − xτ‖2

]
≤ ∆Kα∑K

k=1 k
α

+
cG2

∑K
k=1 k

α−1

L
∑K
k=1 k

α
≤ ∆(α+ 1)

K
+
cG2(α+ 1)

LK
,

which can complete the proof by multiplying both sides by 8γ.

Similarly, we can prove the case of non-smooth g(x). For completeness, we include the details here. By Proposition 2 we
have

E[fk(xk+1) +
γ

2
‖xk+1 − xk‖2] ≤ Fk(zk) +

γ‖xk − zk‖2

4Tk(Tk + 1)
+

28G2

γ(Tk + 1)

≤ Fk(xk)− γ

2
‖xk − zk‖2 +

γ‖xk − zk‖2

4Tk(Tk + 1)
+

28G2

γ(Tk + 1)

= g(xk) + r(xk) +
28G2

γ(Tk + 1)

where we use Fk(xk) ≥ Fk(zk) + γ
2 ‖xk − zk‖2 due to the strong convexity of F (x), and Tk ≥ 1. On the other hand, we

have that
‖xk+1 − xk‖2 =‖xk+1 − zk + zk − xs‖2

=‖xk+1 − zk‖2 + ‖zk − xk‖2 + 2〈xk+1 − zk, zk − xk〉
≥(1− α̂−1)‖xk+1 − zk‖2 + (1− α̂)‖xk − zk‖2

where the inequality follows from the Young’s inequality with 0 < α̂ < 1. Thus we have that

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[g(xk) + r(xk)− fk(xk+1)] +

γ(α̂−1 − 1)

2
E[‖xk+1 − zk‖2] +

28G2

γ(Tk + 1)
.

On the other hand, by the convexity of h(·) we have
E[g(xk) + r(xk)− fk(xk+1)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + ∂h(xk)>(xk+1 − xk)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + h(xk+1)− h(xk)]

= E[F (xk)− F (xk+1)],

By the strong convexity of Fk(x), we also have
γ

2
E[‖xk+1 − zk‖2] ≤ E[Fk(xk+1)− Fk(zk)] ≤ γ‖xk − zk‖2

4Tk(Tk + 1)
+

28G2

γ(Tk + 1)

Then we have

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] + (α̂−1 − 1)

(
γ‖xk − zk‖2

4Tk(Tk + 1)
+

28G2

γ(Tk + 1)

)
+

28G2

γ(Tk + 1)

Let α̂ = 1/2, we have

E

[
γ

4
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

γ‖xk − zk‖2

4Tk(Tk + 1)
+

56G2

γ(Tk + 1)

≤ E[F (xk)− F (xk+1)] +
γ‖xk − zk‖2

8
+

56G2

γ(Tk + 1)
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where we use the fact Tk ≥ 1. It then gives us

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

56G2

γ(Tk + 1)

By setting Tk = k/c with 0 < c ≤ 1, we have

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

56cG2

kγ

Multiplying both sides by wk = kα and taking summation over k = 1, . . . ,K, we have

E

[
γ

8

K∑
k=1

wk‖zk − xk‖2
]
≤ E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
+

K∑
k=1

wk
56cG2

kγ
, (15)

Similar to proof of of Theorem 2, we have

E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
≤

K∑
k=1

(wk − wk−1)E[(F (xk)−min
x
F (x))] ≤ ∆wK

Then, by
∑K
k=1 k

α ≥
∫K

0
xαdx = Kα+1

α+1 and
∑K
k=1 k

α−1 ≤ Kα, (α ≥ 1), we have

E

[
γ

8
‖zτ − xτ‖2

]
≤ ∆Kα∑K

k=1 k
α

+
56cG2

∑K
k=1 k

α−1

γ
∑K
k=1 k

α
≤ ∆(α+ 1)

K
+

56cG2(α+ 1)

Lγ
,

which can complete the proof by multiplying both sides by 8γ.

E. Proof of Theorem 4
The convergence analysis of using AdaGrad is build on the following proposition about the convergence AdaGrad for
minimizing F γx , which is attributed to (Chen et al., 2018a), whose proof is presented later for completeness.

Proposition 3. Let H0 = 2GI with 2G ≥ maxt ‖gt‖∞, and iteration number T be the smallest integer satisfying
T ≥M max{a(2G+ maxi ‖g1:T,i‖),

∑d
i=1 ‖g1:T,i‖/a,Gr‖x1 − xT+1‖/η} for any a > 0. Algorithm 2 guarantees that

E[F γx1
(x̂T )− F γx1

(x∗)] ≤
1

2aMη
‖x1 − x∗‖2 +

(a+ 1)η

M
,

where x∗ = arg minx F
γ
x1

(x), and g1:t,i denotes the i-th row of g1:t.

Let us use the same notations as in the proof of Theorem 2. By Proposition 3, we have

E[Fk(xk+1)− Fk(zk)] ≤ ‖xk − zk‖2

2aMkηk
+

(a+ 1)ηk
Mk

To continue the analysis, we have

E[fk(xk+1) +
γ

2
‖xk+1 − xk‖2] ≤ Fk(zk) +

‖xk − zk‖2

2aMkηk
+

(a+ 1)ηk
Mk

≤ Fk(xk)− γ

2
‖xk − zk‖2 +

‖xk − zk‖2

2aMkηk
+

(a+ 1)ηk
Mk

≤ g(xk) + r(xk) +
(a+ 1)ηk
Mk

where we use Fk(xk) ≥ Fk(zk) + γ
2 ‖xk − zk‖2 due to the strong convexity of Fk(x), and Mkηk ≥ 4

aγ . On the other hand,
we have that

‖xk+1 − xk‖2 =‖xk+1 − zk + zk − xs‖2

=‖xk+1 − zk‖2 + ‖zk − xk‖2 + 2〈xk+1 − zk, zk − xk〉
≥(1− α̂−1)‖xk+1 − zk‖2 + (1− α̂)‖xk − zk‖2

where the inequality follows from the Young’s inequality with 0 < α̂ < 1. Thus we have that

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[g(xk) + r(xk)− fk(xk+1)] +

γ(α̂−1 − 1)

2
E[‖xk+1 − zk‖2] +

(a+ 1)ηk
Mk

.
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On the other hand, by the convexity of h(·) we have
E[g(xk) + r(xk)− fk(xk+1)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + ∂h(xk)>(xk+1 − xk)]

≤ E[g(xk) + r(xk)− g(xk+1)− r(xk+1) + h(xk+1)− h(xk)]

= E[F (xk)− F (xk+1)],

By the strong convexity of Fk(x), we also have
γ

2
E[‖xk+1 − zk‖2] ≤ E[Fk(xk+1)− Fk(zk)] ≤ ‖xk − zk‖2

2aMkηk
+

(a+ 1)ηk
Mk

Then we have

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] + (α̂−1 − 1)

(
‖xk − zk‖2

2aMkηk
+

(a+ 1)ηk
Mk

)
+

(a+ 1)ηk
Mk

Let α̂ = 1/2, we have

E

[
γ

4
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

‖xk − zk‖2

2aMkηk
+

2(a+ 1)ηk
Mk

≤ E[F (xk)− F (xk+1)] +
γ‖xk − zk‖2

8
+

2(a+ 1)ηk
Mk

where we use the fact Mkηk ≥ 4
aγ . It then gives us

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

2(a+ 1)ηk
Mk

By setting ηk = c/
√
k, we have

E

[
γ

8
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] +

a(a+ 1)γc2

2k

Multiplying both sides by wk = kα and taking summation over k = 1, . . . ,K, we have

E

[
γ

8

K∑
k=1

wk‖zk − xk‖2
]
≤ E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
+

K∑
k=1

wk
a(a+ 1)γc2

2k
, (16)

Similar to proof of of Theorem 2, we have

E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
≤

K∑
k=1

(wk − wk−1)E[(F (xk)−min
x
F (x))] ≤ ∆wK

Then, by
∑K
k=1 k

α ≥
∫K

0
xαdx = Kα+1

α+1 and
∑K
k=1 k

α−1 ≤ Kα, (α ≥ 1), we have

E

[
γ

8
‖zτ − xτ‖2

]
≤ ∆Kα∑K

k=1 k
α

+
γc2

∑K
k=1 k

α−1

2a2
∑K
k=1 k

α
≤ ∆(α+ 1)

K
+
a(a+ 1)γc2(α+ 1)

2K
,

which can complete the proof by multiplying both sides by 8γ.

F. Proof of Proposition 3
First, we need to show that x∗ = arg minF γx1

(x) in the set ‖x− x1‖ ≤ 2G+Gr
γ . By the optimality condition of x∗ we have

(∂g(x∗) + ∂r(x∗)− ∂h(x1) + γ(x∗ − x1))>(x− x∗) ≥ 0,∀x ∈ dom(r)

Plugging x = x1 into the above inequality, we have

γ‖x1 − x∗‖2 ≤ (2G+Gr)‖x1 − x∗‖ ⇒ ‖x1 − x∗‖ ≤
2G+Gr

γ
,

where the first inequality uses Assumption 3.

Denote by ψt(x) = 1
2 (x − x1)>Ht(x − x1), ψ0(x) = 0 and ‖x‖H =

√
x>Hx, then we can see that ψt+1(x) ≥ ψt(x)

for any t ≥ 0. Let f(x) = g(x)− ∂h(x1)>(x− x1) and r̂(x) = r(x) + γ
2 ‖x− x1‖2. Then f(x) is convex and r̂(x) is
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γ-strongly convex. Let zt =
∑t
τ=1 gt, ∆t = (∂f(xt)− gt)

>(xt − x) and

ψ∗t (g) = sup
x∈Ω

g>x− 1

η
ψt(x)− tr̂(x)

By the convexity of f(x), and then taking the summation over all iterations, we get
T∑
t=1

(f(xt)− f(x) + r̂(xt)− r̂(x))

≤
T∑
t=1

(∂f(xt)
>(xt − x) + r̂(xt)− r̂(x)) =

T∑
t=1

g>t (xt − x) +

T∑
t=1

∆t +

T∑
t=1

(r̂(xt)− r̂(x))

=

T∑
t=1

g>t xt −
T∑
t=1

g>t x−
1

η
ψT (x)− T r̂(x) +

1

η
ψT (x) +

T∑
t=1

∆t +

T∑
t=1

r̂(xt)

≤
T∑
t=1

g>t xt + sup
x∈Ω

{
−

T∑
t=1

g>t x−
1

η
ψT (x)− T r̂(x)

}
+

1

η
ψT (x) +

T∑
t=1

∆t +

T∑
t=1

r̂(xt)

=

T∑
t=1

g>t xt + ψ∗T (−zT ) +
1

η
ψT (x) +

T∑
t=1

∆t +

T∑
t=1

r̂(xt) (17)

On the other hand,

ψ∗T (−zT ) = −
T∑
t=1

g>t xT+1 −
1

η
ψT (xT+1)− T r̂(xT+1)

≤ −
T∑
t=1

g>t xT+1 −
1

η
ψT−1(xT+1)− (T − 1)r̂(xT+1)− r̂(xT+1)

≤ sup
x∈Ω

{
−z>T x−

1

η
ψT−1(x)− (T − 1)r̂(x)

}
− r̂(xT+1)

= ψ∗T−1(−zT )− r̂(xT+1)

≤ ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗

T−1
− r̂(xT+1)

where the last inequality is due to ψt(x) is 1-strongly convex w.r.t ‖ · ‖ψt = ‖ · ‖Ht and consequentially ψ∗t (x) is η-smooth
w.r.t. ‖ · ‖ψ∗

t
= ‖ · ‖H−1

t
. Then
T∑
t=1

g>t xt + ψ∗T (−zT )

≤
T∑
t=1

g>t xt + ψ∗T−1(−zT−1)− g>T∇ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗

T−1
− r̂(xT+1)

=

T−1∑
t=1

g>t xt + ψ∗T−1(−zT−1) +
η

2
‖gT ‖2ψ∗

T−1
− r̂(xT+1)

By repeating this process, we get
T∑
t=1

g>t xt + ψ∗T (−zT ) ≤ ψ∗0(−z0) +
η

2

T∑
t=1

‖gt‖2ψ∗
t−1
−

T∑
t=1

r̂(xt+1) =
η

2

T∑
t=1

‖gt‖2ψ∗
t−1
−

T∑
t=1

r̂(xt+1) (18)

Plugging the inequality (18) in the inequality (17), we have
T∑
t=1

(f(xt)− f(x) + r̂(xt)− r̂(x)) ≤ 1

η
ψT (x) +

η

2

T∑
t=1

‖gt‖2ψ∗
t−1

+

T∑
t=1

∆t + r̂(x1)− r̂(xT+1).
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Algorithm 4 SVRG(F γx1
,x1, T , S)

1: Input: x1 ∈ dom(r), the number of inner initial iterations T1, and the number of outer loops S.
2: x̄(0) = x1

3: for s = 1, 2, . . . , S do
4: ḡs = ∇g(x̄(s−1))− ∂h(x1), x(s)

0 = x̄(s−1)

5: for t = 1, 2, . . . , T do
6: Choose it ∈ {1, . . . , n1} uniformly at random.
7: ∇(s)

t = ∇git(x
(s)
t−1)−∇git(x̄(s−1)) + ḡs

8: x
(s)
t = arg minx{〈∇(s)

t ,x− x
(s)
t−1〉+ 1

2η‖x− x
(r)
t−1‖22 + r(x) + γ

2 ‖x− x1‖2}
9: end for

10: x̄(s) = 1
T

∑T
t=1 x

(s)
t

11: end for
12: Output: x̄(S)

It is known from the analysis in (Duchi et al., 2011) that
T∑
t=1

‖gt‖2ψ∗
t−1
≤ 2

d∑
i=1

‖g1:T,i‖2

Thus
T∑
t=1

(f(xt)− f(x) + r̂(xt)− r̂(x))

≤ 2G‖x− x1‖22
2η

+
(x− x1)>diag(sT )(x− x1)

2η
+ η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t + r̂(x1)− r̂(xT+1)

≤ 2G+ maxi ‖g1:T,i‖2
2η

‖x− x1‖22 + η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t + (∂r̂(x1))>(x1 − xT+1)

≤ 2G+ maxi ‖g1:T,i‖2
2η

‖x− x1‖22 + η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t +Gr‖x1 − xT+1‖2

where the last inequality holds by using the fact that ‖∂r̂(x1)‖ = ‖∂r(x1)‖ ≤ Gr. Dividing by T and taking the expecation
on both sides, then by using the convexity of f(x) + r̂(x) and E[

∑T
t=1 ∆t/T ] = 0 according to the stopping time

argument (Chen et al., 2018a)[Lemma 1, Supplement] we get
E[F γx1

(x̂T )− F γx1
(x∗)]

≤E

[
2G+ maxi ‖g1:T,i‖2

2ηT
‖x∗ − x1‖22 +

η

T

d∑
i=1

‖g1:T,i‖2 +
Gr‖x1 − xT+1‖2

T

]
≤ 1

2aMη
‖x1 − x∗‖2 +

(a+ 1)η

M
,

where the last inequality is due to T ≥M max{a(2G+ maxi ‖g1:T,i‖),
∑d
i=1 ‖g1:T,i‖/a,Gr‖x1 − xT+1‖/η}.

G. Analysis of using SVRG
The algorithm of SVRG for solving F γx1

is presented in Algorithm 4 and its convergence result is given below.

Proposition 4. By setting η < 1/(4L) and T is large enough such that ρ = 1
γη(1−4Lη)T + 4Lη(T+1)

(1−4Lη)T < 1, then

E[F γx1
(x̄(S))− F γx1

(x∗)] ≤ ρS [F γx1
(x1)− F γx1

(x∗)].

In particular, if we set η = 0.05/L, T ≥ max(2, 200L/γ), we have

E[F γx1
(x̄(S))− F γx1

(x∗)] ≤ 0.5S [F γx1
(x1)− F γx1

(x∗)].

Remark: The gradient complexity of SVRG is (n+ T )S, where n = n1 + n2.
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G.1. Proof of Theorem 5

Recall that F (x) = 1
n1

∑n1

i=1 gi(x) + r(x) − 1
n2

∑n2

j=1 hj(x) and Fk(x) = 1
n1

∑n1

i=1 gi(x) + r(x) − h(xk) −
1
n2

∑n2

j=1 ∂hj(xk)>(x− xk) + γ
2 ‖x− xk‖2. For any x, by the convexity of h(x) we know Fk(x) ≥ F (x) + γ

2 ‖x− xk‖2.
By applying the result in Proposition 4 to the k-th stage, we have

Ek[Fk(xk+1)− Fk(zk)] ≤ 0.5SkE[Fk(xk)− Fk(zk)],

where zk = arg minx Fk(x). Since Fk(xk+1)− Fk(zk) ≥ 0 and Fk(xk)− Fk(zk) ≥ 0, then Ek[Fk(xk+1)− Fk(zk)] ≤
E[Fk(xk)−Fk(zk)], which implies Ek[Fk(xk+1)] ≤ E[Fk(xk)]. Due to F (xk+1) ≤ Fk(xk+1) and Fk(xk) = F (xk), we
have Ek[F (xk+1)] ≤ F (xk). Hence E[F (xk)− F (x∗)] ≤ F (x0)− F (x∗) ≤ ∆ for all k. Since

Fk(xk)− Fk(zk) ≤ F (xk)− F (zk) ≤ F (xk)− F (x∗),

as a result, we have
Ek[Fk(xk+1)− Fk(zk)] ≤ 0.5Sk [F (xk)− F (x∗)].

To continue the analysis, we have

E[F (xk+1) +
γ

2
‖xk+1 − xk‖2] ≤ Fk(zk) + 0.5Sk [F (xk)− F (x∗)]

≤ Fk(xk)− γ

2
‖xk − zk‖2 + 0.5Sk [F (xk)− F (x∗)]

≤ F (xk) + 0.5Sk [F (xk)− F (x∗)],

where we use Fk(xk) ≥ Fk(zk) + γ
2 ‖xk − zk‖2 due to the strong convexity of F (x), and Fk(xk) = F (xk). On the other

hand, we have that
‖xk+1 − xk‖2 =‖xk+1 − zk + zk − xs‖2

=‖xk+1 − zk‖2 + ‖zk − xk‖2 + 2〈xk+1 − zk, zk − xk〉
≥(1− α̂−1)‖xk+1 − zk‖2 + (1− α̂)‖xk − zk‖2

where the inequality follows from the Young’s inequality with 0 < α̂ < 1. Thus we have that

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[F (xk)− Fk(xk+1)] +

γ(α̂−1 − 1)

2
E[‖xk+1 − zk‖2]

+ 0.5Sk [F (xk)− F (x∗)].

On the other hand, by the strong convexity of Fk(x), we also have
γ

2
E[‖xk+1 − zk‖2] ≤ E[Fk(xk+1)− Fk(zk)] ≤ 0.5Sk [F (xk)− F (x∗)]

Then we have

E

[
γ(1− α̂)

2
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] + (α̂−1 − 1)

(
0.5Sk [F (xk)− F (x∗)]

)
+ 0.5Sk [F (xk)− F (x∗)]

Let α̂ = 1/2, we have

E

[
γ

4
‖zk − xk‖2

]
≤ E[F (xk)− F (xk+1)] + 2× 0.5Sk [F (xk)− F (x∗)].

Multiplying both sides by wk = kα and taking summation over k = 1, . . . ,K, we have

E

[
γ

4

K∑
k=1

wk‖zk − xk‖2
]
≤ E

[ K∑
k=1

wk(F (xk)− F (xk+1))

]
+ 2E

[ K∑
k=1

wk0.5Sk [F (xk)− F (x∗)]

]
,

Then following the similar analysis as the proof of Theorem 2, we have

E

[
γ

4
‖zτ − xτ‖2

]
≤ ∆wK∑K

k=1 wk
+

2∆
∑K
k=1 wk0.5Sk∑K
k=1 wk

,

By noting that 0.5Sk ≤ 1/k,

E

[
γ

4
‖zτ − xτ‖2

]
≤ 3∆(α+ 1)

K
,

which can complete the proof by multiplying both sides by 4γ.
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H. Proof of Theorem 6
The key is to connect the convergence in terms of ‖Gγ(x)‖ to the convergence in terms of (sub)gradient. To this end, we
present the following result.

Proposition 5. If g(x) + r(x) is differentiable and has Lg+r-Hölder continuous gradient, we have

dist(∂h(x),∇g(x) +∇r(x)) ≤ Lg+r
γν
‖Gγ(x)‖ν + ‖Gγ(x)‖.

If h(x) is differentiable and has Lh-Hölder continuous gradient, we have

dist(∇h(x+), ∂g(x+) + ∂r(x+)) ≤ Lh
γν
‖Gγ(x)‖ν + ‖Gγ(x)‖.

where x+ = Pγ(x) and Gγ(x) = γ(x− x+).

Proof of Proposition 5. From the proof of Proposition 1, we have
0 ∈ ∂g(x+) + ∂r(x+)− ∂h(x) + γ(x+ − x),

When g(x) + r(x) is differentiable and has L-Hölder continuous gradient, there exists v ∈ ∂h(x) such that
‖∇g(x) +∇r(x)− v‖ = ‖∇g(x+) +∇r(x+)−∇g(x)−∇r(x)‖+ γ‖x− x+‖

≤ Lg+r‖x− x+‖ν + ‖Gγ(x)‖ =
Lg+r
γν
‖Gγ(x)‖ν + ‖Gγ(x)‖.

Similarly, we can prove the case when h is differentiable and had Hölder continuous gradient.

Next, let’s start with the proof of this theorem.

Proof of Theorem 6. By Jensen’s inequality we know for any random variable X and a convex function g(x),
E[g(X)] ≥ g(E[X]).

Let X = ‖Gγ(xτ )‖v and g(x) = x2/v , then g(x) is a convex function since 0 < v ≤ 1. Therefore, we have

(E[‖Gγ(xτ )‖v])2/v ≤ E[‖Gγ(xτ )‖2] ≤ O(1/K),

which implies
E[‖Gγ(xτ )‖v] ≤ O(1/Kv/2), (0 < v ≤ 1). (19)

We finish the proof by combining inequality (19) and the results in Proposition 5.

I. Proof of Lemma 1
The proof of the first fact can be found in (Liu et al., 2018)[Eqn. 7], and the second fact follows (Rockafellar & Wets,
1998)[Theorem 10.1 and Exercise 8.8].

Since r(·) is nonnegative proper closed, then Rµ(x) is convex continuous. By the definition of rµ(x) and proxµr(x) we
know the supremum in Rµ(x) is attained at any point in proxµr(x). Let v ∈ proxµr(x), then for any w we get

Rµ(w)−Rµ(x) = max
y∈Rd

{
1

µ
y>w − 1

2µ
‖y‖2 − r(y)

}
−max
y∈Rd

{
1

µ
y>x− 1

2µ
‖y‖2 − r(y)

}
≥
{

1

µ
v>w − 1

2µ
‖v‖2 − r(v)

}
−
{

1

µ
v>x− 1

2µ
‖v‖2 − r(v)

}
=

1

µ
v>(w − x),

which implies 1
µproxµr(x) ⊆ ∂Rµ(x).

By Theorem 1.25 of (Rockafellar & Wets, 1998), the set proxµr(x) := Arg miny∈Rd
{

1
2µ‖y − x‖2 + r(y)

}
is always

nonempty since r is proper lower-semicontinuous and bounded below. Let v ∈ proxµr(x), then by Exercise 8.8 (c) and
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Theorem 10.1 of (Rockafellar & Wets, 1998) we have
1

µ
(x− v) ∈ ∂̂r(v)

J. Proof of Theorem 7
Theorem 7 is a corollary of the following theorem.

Theorem 8. We have the following results:

a. If Assumption 4 (i) and Assumption 2 (i) hold, then we can use Algorithm 1 with Algorithm 3 (option 1) to solve (10)
with µ = ε, which returns a solution xτ after K = O(1/ε4) stages satisfying

E[‖xτ −wτ‖] ≤ O(ε),

E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(ε),

where wτ = proxµr(xτ ).

b. If Assumption 4 (ii) and Assumption 2 (i) hold, then we can use Algorithm 1 with Algorithm 3 (option 1) to solve (10)
with µ = ε2, which returns a solution xτ after K = O(1/ε6) stages satisfying

E[‖xτ −wτ‖] ≤ O(ε),

E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(ε),

where wτ = proxµr(xτ ).

c. If g and h have a finite-sum form and g is smooth, then we can use Algorithm 1 with Algorithm 4 to solve (10). We can
set µ = ε if Assumption 4 (i) holds or µ = ε2 if Assumption 4 (ii) or (iii) holds. The algorithm will return a solution xτ
after K = O(1/ε4) (corresponding to Assumption 4 (i)) or K = O(1/ε6) (corresponding to Assumption 4 (ii) or (iii))
stages satisfying

E[‖xτ −wτ‖] ≤ O(ε),

E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(ε),

where wτ = proxµr(xτ ).

Proof. In the following proof, ∂̂r(x) means there exists v ∈ ∂̂r(x). By applying the stochastic algorithms for DC functions
in last section, at each stage the following problem is solved approximately

zk = arg min
x∈Rd

ĝ(x) +
γ

2
‖x− xk‖2 − (∇h(xk) +

1

µ
proxµr(xk))>(x− xk).

Then we have

E[‖∇ĝ(xτ )−∇h(xτ )− 1

µ
proxµr(xτ )‖] ≤ E[‖∇ĝ(zτ )−∇ĝ(xτ )‖+ γ‖zτ − xτ‖]

≤ E[L‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ γ‖zτ − xτ‖],

for any τ ∈ {1, . . . ,K}. Denote by wτ = proxµr(xτ ). It is notable that 1
µ

(
xτ − proxµr(xτ )

)
∈ ∂̂r(wτ ). Then we have

∇ĝ(xτ )−∇h(xτ )− 1
µproxµr(xτ ) = ∇g(xτ )−∇h(xτ ) + ∂̂r(wτ ) and

E[‖∇g(xτ )−∇h(xτ ) + ∂̂r(wτ )‖] ≤ E[L‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ γ‖zτ − xτ‖],

which implies that

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(L+ γ)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ 2L‖xτ −wτ‖],

where uses the facts that g and h are smooth.

Next, we need to show that E[‖xτ −wτ‖] is small. The argument will be different for part (a), part (b) and part (c). For part
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(a), using
1

2µ
‖xτ −wτ‖2 + r(wτ ) ≤ r(xτ )

we have
1

2µ
‖xτ −wτ‖2 ≤ r(xτ )− r(wτ ) ≤ G‖xτ −wτ‖ ⇒ ‖xτ −wτ‖ ≤ 2Gµ,

where the second inequality with an appropriate G > 0 follows the Lipchitz continuity of r. Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ 4GLµ].

By setting µ = ε and K = O(1/ε4) and τ randomly sampled, we have E[‖xτ − zτ‖] ≤ ε2 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(ε).

For part (b), using
1

2µ
‖xτ −wτ‖2 + r(wτ ) ≤ r(xτ )

we have

‖xτ −wτ‖ ≤

√
2µ

(
r(xτ )− min

x∈Rd
r(x)

)
≤
√

2µM,

where M > 0 exists due to Assumption 4(ii). Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ 2L

√
2µM ].

By setting µ = ε2 and K = O(1/ε6) and τ randomly sampled, we have E[‖xτ − zτ‖] ≤ ε3 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(ε).

For part (c), we take expectation over the above inequality giving

E[‖xτ −wτ‖] ≤

√
2µ

(
E[r(xτ )− min

x∈Rd
r(x)]

)
.

Since using the SVRG, we can show E[f(xτ ) + rµ(xτ )] is bounded above, i.e., xτ is in a bounded set (in expectation),
which together with the assumption r is lower bounded implies that there exists a constant M > 0 such that E[r(xτ ) −
minx∈Rd r(x)] ≤M for τ = 1, . . . ,K. Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + 3L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ 2L

√
2µM ].

By setting µ = ε2 and K = O(1/ε6) and τ randomly sampled, we have E‖xτ − zτ‖ ≤ ε3 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(ε).

K. Additional Analysis of Section 4
We mentioned that our results in Section 4 can be extended without much efforts to handle a differentiable h that has only a
Hölder-continuous gradient. To formally state our new non-asymptototic convergence results, we rewrite Assumption 4 as
follows.

Assumption 5. Assume g is L-smooth and h has a Hölder-continuous gradient, and one of the following conditions holds:

(i) r is Lipchitz continuous.

(ii) r is lower bounded and finite-valued over Rd.

(ii) f(x) + rµ(x) is level bounded for a small µ < 1, and r is finite-valued on a compact set, and lower bounded over Rd.

Then our new convergence results for solving the problem (1) are presented in the following theorem.

Theorem 9. We have the following results:
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a. If Assumption 5 (i) and Assumption 2 (i) hold, then we can use Algorithm 1 with Algorithm 3 (option 1) to solve (10)
with µ = ε, which returns a solution xτ after K = O(1/ε4) stages satisfying

E[‖xτ −wτ‖] ≤ O(ε), E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(εν),

where wτ = proxµr(xτ ).

b. If Assumption 5 (ii) and Assumption 2 (ii) hold, then we can use Algorithm 1 with Algorithm 3 (option 1) to solve (10)
with µ = ε2, which returns a solution xτ after K = O(1/ε6) stages satisfying

E[‖xτ −wτ‖] ≤ O(ε), E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(εν),

where wτ = proxµr(xτ ).

c. If g and h have a finite-sum form and g is smooth, then we can use Algorithm 1 with Algorithm 4 to solve (10). We can
set µ = ε if Assumption 5 (i) holds or µ = ε2 if Assumption 5 (ii) or (iii) holds. The algorithm will return a solution xτ
after K = O(1/ε4) (corresponding to Assumption 5 (i)) or K = O(1/ε6) (corresponding to Assumption 5 (ii) or (iii))
stages satisfying

E[‖xτ −wτ‖] ≤ O(ε), E[dist(∇h(wτ ),∇g(wτ ) + ∂̂r(wτ ))] ≤ O(εν),

where wτ = proxµr(xτ ).

Proof. In the following proof, ∂̂r(x) means there exists v ∈ ∂̂r(x). By applying the stochastic algorithms for DC functions
in last section, at each stage the following problem is solved approximately

zk = arg min
x∈Rd

ĝ(x) +
γ

2
‖x− xk‖2 − (∂h(xk) +

1

µ
proxµr(xk))>(x− xk).

Then we have

E[‖∇ĝ(xτ )− ∂h(xτ )− 1

µ
proxµr(xτ )‖] ≤ E[‖∇ĝ(zτ )−∇ĝ(xτ )‖+ γ‖zτ − xτ‖]

≤ E[L‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ γ‖zτ − xτ‖],

for any τ ∈ {1, . . . ,K}. Denote by wτ = proxµr(xτ ). It is notable that 1
µ

(
xτ − proxµr(xτ )

)
∈ ∂̂r(wτ ). Then we have

∇ĝ(xτ )− ∂h(xτ )− 1
µproxµr(xτ ) = ∇g(xτ )− ∂h(xτ ) + ∂̂r(wτ ) and

E[‖∇g(xτ )− ∂h(xτ ) + ∂̂r(wτ )‖] ≤ E[L‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ γ‖zτ − xτ‖],

which implies that
E[‖∇g(wτ )− ∂h(wτ ) + ∂̂r(wτ )‖]

≤E[(L+ γ)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ L‖xτ −wτ‖+ L‖xτ −wτ‖ν ],

where uses the facts that g is L-smooth and h has L-Hölder-continuous gradient with parameter ν ∈ (0, 1].

Next, we need to show that E[‖xτ −wτ‖] is small. The argument will be different for part (a), part (b) and part (c). For part
(a), using

1

2µ
‖xτ −wτ‖2 + r(wτ ) ≤ r(xτ )

we have
1

2µ
‖xτ −wτ‖2 ≤ r(xτ )− r(wτ ) ≤ G‖xτ −wτ‖ ⇒ ‖xτ −wτ‖ ≤ 2Gµ,

where the second inequality with an appropriate G > 0 follows the Lipchitz continuity of r. Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ 2GLµ+ L(2Gµ)ν ].

By setting µ = ε and K = O(1/ε4) and τ randomly sampled, we have E[‖xτ − zτ‖] ≤ ε2 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(εν).
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For part (b), using
1

2µ
‖xτ −wτ‖2 + r(wτ ) ≤ r(xτ )

we have

‖xτ −wτ‖ ≤

√
2µ

(
r(xτ )− min

x∈Rd
r(x)

)
≤
√

2µM,

where M > 0 exists due to Assumption 4(ii). Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ L

√
2µM + L(2µM)ν/2].

By setting µ = ε2 and K = O(1/ε6) and τ randomly sampled, we have E[‖xτ − zτ‖] ≤ ε3 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(εν).

For part (c), we take expectation over the above inequality giving

E[‖xτ −wτ‖] ≤

√
2µ

(
E[r(xτ )− min

x∈Rd
r(x)]

)
.

Since using the SVRG, we can show E[f(xτ ) + rµ(xτ )] is bounded above, i.e., xτ is in a bounded set (in expectation),
which together with the assumption r is lower bounded implies that there exists a constant M > 0 such that E[r(xτ ) −
minx∈Rd r(x)] ≤M for τ = 1, . . . ,K. Then

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ E[(γ + L)‖xτ − zτ‖+
1

µ
‖xτ − zτ‖+ L

√
2µM + L(2µM)ν/2].

By setting µ = ε2 and K = O(1/ε6) and τ randomly sampled, we have E‖xτ − zτ‖ ≤ ε3 and hence

E[‖∇g(wτ )−∇h(wτ ) + ∂̂r(wτ )‖] ≤ O(εν).

L. DC decomposition of non-convex sparsity-promoting regularizers
We present the details of DC decomposition for several regularizers. The following examples are from (Wen et al., 2018;
Gong et al., 2013).

Example 1. The DC decomposition of log-sum penalty (LSP) (Candès et al., 2008) is given by

r(x) := λ

d∑
i=1

log(|xi|+ θ) = λ
‖x‖1
θ
− λ

d∑
i=1

(
|xi|
θ
− log(|xi|+ θ)

)
︸ ︷︷ ︸

r2(x)

,

where λ > 0 and θ > 0. It was shown that r2(x) is convex and smooth with smoothness parameter λ
θ2 .

Example 2. The DC decomposition of minimax concave penalty (MCP) (Zhang, 2010a) is given by

r(x) := λ

d∑
i=1

∫ |xi|
0

[
1− z

θλ

]
+
dz = λ‖x‖1 − λ

d∑
i=1

∫ |xi|
0

min
{

1,
z

θλ

}
dz︸ ︷︷ ︸

r2(x)

,

where λ > 0, θ > 0, [z]+ = max{0, z},

λ

∫ |xi|
0

[
1− z

θλ

]
+
dz =

{
λ|xi| − x2

i

2θ if |xi| ≤ θλ
θλ2

2 if |xi| > θλ

and

λ

∫ |xi|
0

min
{

1,
z

θλ

}
dz =

{
x2
i

2θ if |xi| ≤ θλ
λ|xi| − θλ2

2 if |xi| > θλ

Then r2(x) is a convex and smooth function, and the smoothness parameter 1
θ .



SO for DC Functions and Non-smooth Non-Convex Regularizers

Example 3. The DC decomposition of smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001) is given by

r(x) = λ

d∑
i=1

∫ |xi|
0

min

{
1,

[θλ− z]+
(θ − 1)λ

}
dz = λ‖x‖1 − λ

d∑
i=1

∫ |xi|
0

[min{θλ, z} − λ]+
(θ − 1)λ

dz︸ ︷︷ ︸
r2(x)

,

where λ > 0, θ > 2,

λ

∫ |xi|
0

min

{
1,

[θλ− z]+
(θ − 1)λ

}
dz =


λ|xi| if |xi| ≤ λ

−x2
i+2θλ|xi|−λ2

2(θ−1) if λ < |xi| ≤ θλ
(θ+1)λ2

2 if |xi| > θλ

and

λ

∫ |xi|
0

[min{θλ, z} − λ]+
(θ − 1)λ

dz =


0 if |xi| ≤ λ

x2
i−2λ|xi|+λ2

2(θ−1) if λ < |xi| ≤ θλ
λ|xi| − (θ+1)λ2

2 if |xi| > θλ

Then r2(x) was shown to be convex and smooth with modulus 1
θ−1 .

Example 4. The DC decomposition of transformed `1 norm (Zhang & Xin, 2018) is given by

r(x) :=

d∑
i=1

(θ + 1)|xi|
θ + |xi|

=
(1 + θ)‖x‖1

θ
−

d∑
i=1

[
(θ + 1)|xi|

θ
− (θ + 1)|xi|

θ + |xi|

]
︸ ︷︷ ︸

r2(x)

,

where θ > 0. The function r2(x) is smooth with parameter 2(1+θ)
θ2 .

Example 5. The DC decomposition of capped `1 penalty (Zhang, 2010b) is given by

r(x) := λ

d∑
i=1

min{|xi|, θ} = λ‖x‖1 − λ
d∑
i=1

[|xi| − θ]+︸ ︷︷ ︸
r2(x)

,

where λ > 0, θ > 0.


