Learning a Prior over Intent via Meta-Inverse Reinforcement Learning

Appendix
A. SpriteWorld Experimental Details
A.1. Algoritmic Details

The input to our reward function for all experiments in this
domain is a 80 x 80 RGB image, with an output space of
400 in the underlying MDP state space. We parameterize
the reward function for all methods starting from the same
base learner whose architecture we summarize in Table 2.

Our LSTM (Hochreiter & Schmidhuber, 1997) implementa-
tion is based on the variant used in Zaremba et al. (2014).
The input to the LSTM at each time step is the location of
the agent, embedded as the (z, y)-coordinates. This is used
to predict an spatial map fed as input to the base CNN. We
also experimented with conditioning the initial hidden state
on image features from a separate CNN, but found that this
did not improve performance.

In our demo conditional model, we preserve the spatial
information of the demonstrations by feeding in the state
visitation map as a image-grid, upsampled with bi-linear
interpolation, as an additional channel to the image. In our
setup, both the demo-conditional models share the same con-
volutional architecture, but differ only in how they encode
condition on the demonstrations.

For all our methods, we optimized our model with
Adam (Kingma & Ba, 2014). We tuned over the learning
rate «, the inner learning rate 5 and ¢, weight decay on the
initial parameters. We initialize our models with the Glorot
initialization (Glorot & Bengio, 2010). In our LSTM learner,
we tuned over embedding sizes and dimensionality. A nega-
tive result we found was that bias transformation (Finn et al.,
2017b) did not help in our experimental setting.

Table 2. Hyperparameter summary on Spriteworld environment.
Curly brackets indicate the parameter was chosen from that set.

Value

Conv(256 — 8 x 8 — 2)
Conv(128 —4 x 4 — 2)
Conv(64 —3 x 3 —1)
Conv(64 —3 x 3 —1)
Conv(l —1x1—-1)

{0.0001, 0.00001}

Hyperparameters

Architecture

Learning rate «

Inner learning rate 8

{0.001, 0.0005}

Weight decay /2 {0, 0.0001}
Inner gradient steps {1, 3}

Max meta-test gradient steps {20}
LSTM hidden dimension {128, 256}
LSTM embedding sizes {64, 128}
Batch size 16

Total meta-training environments 1000

Total meta-val/test environments 32
Maximum horizon (T) 15

A.2. Environment Details

The underlying MDP structure of SpriteWorld is a grid,
where the states are each of the grid cells, and the actions
enable the agent to move to any one of its 8-connected neigh-
bors. The task visuals are inspired by Starcraft (e.g. (Syn-
naeve et al., 2016)), although we do not use the game engine.
The sprites in our environment are extracted directly from
the StarCraft files. We used in total 100 random units for
meta-training. Evaluation on new objects was performed
with 5 randomly selected sprites. For computational ef-
ficiency, we create a meta-training set of 1000 tasks and
cache the optimal policy and state visitations under the true
cost. Our evaluation is over 32 tasks. Our set of sprites was
divided into two categories: buildings and characters. Each
characters had multiple poses (taken from different frames
of animation, such as walking/running/flying), whereas
buildings only had a single pose. During meta-training
the units were randomly placed, but to avoid the possibility
that the agent would not need to actively avoid obstacles,
the units were placed away from the boundary of the image
in both the meta-validation and meta-test set.

The terrain in each environment was randomly generated
using a set of tiles, each belonging to a specific category (e.g.
grass, dirt, water). For each tile, we also specified a set of
possible tiles for each of the 4-neighbors. Using these con-
straints on the neighbors, we generated random environment
terrains using a graph traversal algorithm, where successor
tiles were sampled randomly from this set of possible tiles.
This process resulted in randomly generated, seamless envi-
ronments. The expert demonstrations were generated using
a cost (negative reward) of 8 for the obstacles, 2 for any
grass tile, and 1 for any dirt tile. The names of the units
used in our experiments are as follows (names are from the
original game files):

The list of buildings used is: academy, assim, barrack, bea-
con, cerebrat, chemlab, chrysal, cocoon, comsat, control, de-
pot, drydock, egg, extract, factory, fcolony, forge, gateway,
genelab, geyser, hatchery, hive, infest, lair, larva, mutapit,
nest, nexus, nukesilo, nydustpit, overlord, physics, probe,
pylon, prism, pillbox, queen, rcluster, refinery, research,
robotic, sbattery, scolony, spire, starbase, stargate, starport,
temple, warm, weaponpl, wessel.

The list of characters used is: acritter, arbiter, archives,
archon, avenger, battlecr, brood, bugguy, carrier, civilian,
defiler, dragoon, drone, dropship, firebat, gencore, ghost,
guardian, hydra, intercep, jcritter, lurker, marine, missile,
mutacham, mutalid, sapper, scout, scv, shuttle, snakey, spi-
der, stank, tank, templar, trilob, ucereb, uikerr, ultra, vulture,
witness, zealot, zergling.

Learning a Prior over Intent via Meta-Inverse Reinforcement Learning

B. SUNCG Experimental Details

B.1. Algorithmic Details

Table 3. Hyperparamters on the SUNCG environment.

Curly

brackets indicate that the the parameter was chosen from that

set.

Hyperparameters

Value

Architecture

Conv(16 —5 x5 —1)
Conv(32 —3x3—1)
MLP(32)

MLP(1)

Max number of training steps

Number of seed

15000000
3

Learning rate «

Inner learning rate 3

Inner gradient steps

Max meta-test gradient steps
Momentum

{0.1,0.01,0.001, 0.0001}
{0.15,0.1,0.01, 0.0001}
{3.5}

{10}

{0.9,0.95,0.99}

Our per task MaxEnt IRL baseline is learned by using the
same base architecture. To provide a fair comparison, we do
not use an inner learning rule in the inner loop of ManDRIL
such as Adam (Kingma & Ba, 2014) and use regular SGD.
For our baseline however, we include a momentum term
over which we tune. We tune over the number of training
steps, learning rate and momentum parameters. We use
SGD with momentum. For ManDRIL, we tune over the
inner learning rate J and learning rate o and number of
gradient steps. At meta-test time, we experimented with
taking up to 10 gradient steps. For pretraining IRL, we first
train for 150,000 steps, freeze the weights, and fine tune
them for every separate task. For training from scratch, we
use the Glorot uniform initialization in the the convolutional
layers (Glorot & Bengio, 2010).

B.2. Environment Details

Table 4. Summary of SUNCG environment setup.

Hyperparameters Value
Discount () 0.99
Maximum horizon (T) 40
Initial random steps 30
Number of demonstrations 5
Training environments 1004
Test environments 236
Test-house environments 173
(PICK/NAV) split: 716/697

The MDP in each environment is discretized into a grid
where the state is defined by the grid coordinates plus
the agent’s orientation (N,S,E,W). The agent receives an
observation which is a first-person panoramic view. The

panoramic view consists of four 32 x 24 semantic image
observations containing 61 channels.

The only departure for the task setup of Fu et al. (2019)
that we make is to randomize the agent’s start location by
executing a random walk at the beginning of each episode.
In Fu et al. (2019), the agent’s start location was previously
deterministic which allows a trivial solution of memorizing
the provided demonstrations.

C. SpriteWorld Meta-Test Training
Performance

Meta-Test Training Performance

30
—e— MandRIL(ours)
251 ---- Conditional Model
—e— Recurrent Meta-Learner
20] From Scratch

Value Difference

Number of demonstrations

Figure 7. Meta-test “training” performance with varying numbers
of demonstrations (lower is better). This is the performance on the
environment for which demonstrations are provided for adaptation.
As the number of demonstrations increase, all methods are able to
perform well in terms of training performance as they can simply
overfit to the training environment without acquiring the right
visual cues that allow them to generalize. However, we find comes
at the cost comes of considerable overfitting as we discuss in
Section. 5.

D. SUNCG DAgger Performance

Table 5. DAgger success rate (%) on heldout tasks with 5 demon-
strations. ManDRIL values are repeat for viewing convenience.
Results are averaged over 3 random seeds.

METHOD TEST UNSEEN HOUSES
Pick | NAV | TOTAL | PICK |, NAV | TOTAL

DAGGER 1.0 | 12.8 7.5 7.4 | 15.5 11.8

MANDRIL(OURS) | 52.3 | 90.7 77.3 56.3 | 91.0 | 82.6

Here we show the performance of DAgger (Ross et al.,
2011), in the setting where the number of samples that is
equal to the number of demonstrations. Overall, while DAg-
ger slightly improves performance over behavioral cloning,
the performance still lags significantly behind ManDRIL
and other IRL methods.

Learning a Prior over Intent via Meta-Inverse Reinforcement Learning

E. Detailed Meta-Objective Derivation

We define the quality of reward function rg parameterized
by 6 € R” on task 7 with the MaxEnt IRL loss, L}, (6),
described in Section 4. The corresponding gradient is

0 To (
00

where 019 /0 0 is the k x |S||.A|-dimensional Jacobian ma-
trix of the reward function rg with respect to the param-
eters 0. Here, . € RISIAl is the vector of state-action
visitations under the trajectory 7 (i.e. the vector whose
elements are 1 if the corresponding state-action pair has
been visited by the trajectory 7, and O otherwise), and
= ‘D—lﬂ > rep, M. is the mean state visitations over

VoLirL(0) = E-lp.] = o,),)

Hp,
all demonstrated trajectories in D. Let ¢ € R¥ be the
updated parameters after a single gradient step. Then

¢ =60 —aVel}(0). (10)
Let L7 be the MaxEnt IRL loss, where the expectation
over tra_]ectories is computed with respect to a test set that
is disjoint from the set of demonstrations used to compute
LF4(0) in Eq. 10. We seek to minimize

Z £ teit (1 1)
TeTtest

over the parameters 8. To do so, we first compute the
gradient of Eq. 11, which we derive here. Applying the
chain rule

Dy Drg, O LE

V £ test __ —

90 0¢y Org,
0 w/ v OTgy OLES
=50 (6 —aVeLf(0)) Gy g
- 0 a’l“g 8T¢T 8£7t9m
= (103 (Gg el =en))) 3250

12)

where in the last equation we substitute in the gradient of
the MaxEnt IRL loss in Eq. 9 for Vo £} (0). In Eq. 12, we
use the following notation:

e 0¢/00 denotes the k x k-dimensional vector of
partial derivatives 0 ¢ /0 0},

e Jr¢, /0 ¢y denotes the k x |S||.A|-dimensional ma-
trix of partial derivatives 0rg_ /0 ¢7

e and, L7'/0rg__ denotes the k-dimensional gradient
vector of 7% with respect to 7.

We will now focus on the term inside of the parentheses
in Eq. 12, which is a k x k-dimensional matrix of partial
derivatives.

88(%] MDT))
f[|~ o)i + mm(agglﬂ
éi[

2 7' “'D)J’_
ary T

(5%) (am,@ w) (%55)

where between the first and second lines, we apply the chain
rule to expand the second term. In this expression, we make
use of the following notation:

-
Il

e 92719/06? denotes the k x |S||.A|-dimensional ma-
trix of second-order partial derivatives of the form

82 7"071‘/8 05,

o (E-[w,]—pp,)i denotes the ith element of the |S||.A|-
dimensional vector (E; [p.] — pp_)i

e Jrg /00 denotes the k-dimensional matrix of partial

derivatives of the form Org;/080; for j = 1,2,... K,
e and, %&i (E.[w,])q is the partial derivative of the ith
element of the |S||.A|-dimensional vector E [] with
respect to the ith element of the |S||.A|-dimensional
vector rg of reward (i.e. the reward function).

When substituted back into Eq. 12, the resulting gradient
is equivalent to that in Eq. 8 in Section 4. In particular,
defining the |S||.A|-dimensional diagonal matrix D as

b dise ({ o (E, [m])i}ilﬁ)

then the final term can be simplified to

ISIIAl

> (5%) (rrmen) (55)

=1
- 0 Te D 0 Te T
~\ o6 00
In order to compute this gradient, however, we must take

the gradient of the expectation E[p, | with respect to the
reward function rg. This can be done by expanding the

Learning a Prior over Intent via Meta-Inverse Reinforcement Learning

expectation as follows

0 0 exp(p/ re)
—E, - _ TP\Pr8)
Brg el = E <Z e

-~ exp(piro)

exp(T 7o)) o exp(ule)
Z((S exp(l o) (1)) 5 exp(atra)] QZ ol) exp(plre)
_ZPT|T9 ,“"‘rlu"r ZPT|T0 ZPT |T9 iu’TH’T)

—F,

(o)) = > P(r | ro)(popa))

=B [p)] =B s [p,]]
=E [, p)] - B [p) (Br[pe,])"
= Covlp,].

