Learning to Prove Theorems via Interacting with Proof Assistants
Supplementary Material

Kaiyu Yang ! Jia Deng'

A. Details on Constructing the Dataset
A.l. Building the Coq projects

We manually compile and install the Coq standard library
and a few projects (such as math-comp) that are frequently
required by other projects. For the rest, we try compil-
ing them automatically using simple commands such as
“./configure && make”, and we take whatever com-
piles, ending up with 123 projects and 3,061 Coq files (ex-
cluding the files that do not contain any proof).

A.2. Reconstructing the Proof Tree

After applying a tactic, the current goal disappears, and a
set of new goals emerge, which become the children of the
current goal in the proof tree. We can identify the edges of
the tree by tracking how goals emerge during the proof. For
example, if the list of goals changes from [2, 7] to [8, 9, 7],
we know that node 2 has two children: 8 and 9.

In certain cases, a tactic can affect more than one goal, and
it is unclear who should be the parent node. This can happen
when a tactic is applied to multiple goals using a language
feature called goal selectors (by default, a tactic is applied
only to the first goal). However, goal selectors are rarely
used in practice. We discard all such proofs and lose only
less than 1% of our data. For the remaining data, only one
goal disappears at each step, and we can build the proof
trees unambiguously.

"Department of Computer Science, Princeton University. Cor-
respondence to: Kaiyu Yang <kaiyuy@cs.princeton.edu>, Jia
Deng <jiadeng@cs.princeton.edu>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Learning to Prove Theorems via Interacting with Proof Assistants: Supplementary Material

A.3. Extracting Synthetic Proofs from Intermediate Goals

Given an intermediate goal, it is straightforward to treat it as a theorem by adding its local context to the environment. For
example, in Fig. A, the goal G2 can be a theorem (a + b) + ¢ = a + (b + ¢) in the environment augmented by a b and
c. Extracting synthetic proofs for the new theorem requires nontrivial processing. One straightforward proof would be
the sequence of tactics that follows G2 in the original human-written proof: “induction a as [|a’]. trivial.
simpl; rewrite IHa’. trivial.”. This proof corresponds to the sub-tree rooted at G2.

However, there are potentially shorter proofs for G2 using a trimmed sub-tree. For example, if we only apply the first tactic
to generates G3 and G4, then we can treat them as premises H3 and H4, and complete the proof by “apply H3. apply
H4.”. Equivalently, we can also use auto to complete the proof. This technique of converting unsolved sub-goals into
premises allows us to generate synthetic proofs of controllable lengths, by taking a sequence of tactics from the original
proof and appending an auto at the end.

We need to take extra care in converting a goal into a premise. For example, it is easy to treat G3 as a premise, but G4 needs
some care. G4 depends on a’, which is missing in G2’s context. In order to convert G4 into a well-formed term in G2’s
context, we apply the “generalize dependent” tactic to push a local premise into the statement of the goal. When
applied to G4, it generates H4 in Fig. A, which can be added to G2’s local context.

Vabe:nat,(a+b)+c=a+ (b+c) G1]
intros Synthetic proof
PSPk Al 1 1, b, ¢ : nat
I Original proof a,b, c: nat ! -
L. — ! H3:(0+b c=0+(b+c
i timmed sub-tree (a+b)+c=a+(b+c) G2 ! 14 Av(a/J.rm)z:rp A
1 | g g L,
! induction a as [|a’]\ ! (@ +b)+c=d +(b+c)—
| a’,b.}c:'r/mt) 1 (Sa +b)+c=Sd +(b+c)
:b7c:nat G3 IHd : (0’ +b)+c=a"+ (b+¢) G4: @t tc=—at®to
| O+0)+c=0+((+c) (Sa+b)+c=Sd+(b+c) \
Shuiatnt ettt Mt ! Proof.
trivial simple; rewrite IHa’ induction a as [|a'l.
?;}b.} Cé I/Latb)) auto.
a:(a+0)+c=a +(b+c
G5 Qed.

S (@ +(b+c)=5(d+(b+c)
trivial

Figure A. Extracting a synthetic proof from the intermediate goal G2. Goals G3 and G4 are converted into premises in G2’s local context.
The synthetic proof corresponds to a trimmed sub-tree rooted at G2.

Learning to Prove Theorems via Interacting with Proof Assistants: Supplementary Material

B. The Space of Tactics for ASTactic

Below is the context-free grammar in extended Backus-Naur form for the tactic space. The start symbol is tactic_expr.

tactic_expr : intro
‘apply’ term_commalistl reduced_in_clause
‘auto’ using_clause with_hint_dbs
‘rewrite’ rewrite_term_listl in_clause
‘simpl’ in_clause
‘unfold’ qualid_listl in_clause
destruct
induction
‘elim’ QUALID
‘split
‘assumption’
trivial
‘reflexivity
‘case’ QUALID

>

s

>

clear
‘subst’ local_ident_list
‘generalize ’ term_listl

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| ‘exists ° LOCALIDENT
| ‘red’ in_clause

| ‘omega’

| discriminate

| inversion

| simple_induction

| constructor

| ‘congruence’

| “left’

| ‘right

| ‘ring’

| ‘symmetry’
| ‘f-equal’
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s

’

‘tauto
‘revert’ local_ident_listl

‘specialize ’ ‘(’ LOCAL_IDENT QUALID *)’
‘idtac”’

‘hnf’ in_clause
inversion_clear
contradiction

‘“injection ’ LOCAL_IDENT

>

‘exfalso

’

‘cby
‘contradict ’ LOCAL_IDENT

“lia’

‘field”’

‘easy’

‘cbn’

‘exact’ QUALID
‘intuition’

s

‘eauto’ using_clause with_hint_dbs

LOCAL_IDENT : /[A—Za—z_][A—Za—z0-9_"]*/

Learning to Prove Theorems via Interacting with Proof Assistants: Supplementary Material

QUANTIFIED_IDENT : /[A—Za—z_][A—Za—z0—-9_"]x*/

INT : /1|2|3|4/

QUALID : /([A—Za—z_][A—Za—z0—9_]+ \.)*[A—Za—z_][A—Za—z0—9_ "]+/

HINT_DB : /arith|zarith|algebra|real|sets|core|bool|datatypes|coc|set|zfc/

local_ident_list
| LOCALIDENT local_ident_list

local_ident_listl : LOCAL_IDENT
| LOCALIDENT local_ident_listl

qualid_listl : QUALID
| QUALID *,’ qualid_listl

term_listl : QUALID
| QUALID term_listl

term_commalist]l : QUALID
| QUALID *,’ term_commalistl

hint_db_listl : HINT_-DB
| HINT-DB hint_db_listl

reduced_in_clause
| “in’ LOCAL_IDENT

in_clause
| “in’ LOCAL_IDENT

| “in — %

| :l-n) :*)
at_clause

| “at’ INT

using_clause
| ‘using’ qualid_listl

with_hint_dbs
| ‘with’ hint_db_listl
| ‘with’ ‘x’

intro : ‘intro’
‘intros ’

rewrite_term : QUALID

| ‘= QUALID
| ‘<’ QUALID
rewrite_term_list]l : rewrite_term

«

| rewrite_term °,’ rewrite_term_listl

Learning to Prove Theorems via Interacting with Proof Assistants: Supplementary Material

destruct : ‘destruct’ term_commalistl

induction : ‘induction’ LOCAL_IDENT
| “induction’ INT

trivial : ‘trivial’
,

clear : ‘clear
| ‘clear’ local_ident_listl

discriminate : ‘discriminate’
| ‘discriminate ° LOCAL_IDENT

inversion : ‘inversion ' LOCAL_IDENT
| “inversion ’ INT

simple_induction : ‘simple induction’ QUANTIFIED_ IDENT
| ‘simple induction’ INT

>

constructor : ‘constructor
| ‘constructor’ INT

inversion_clear : ‘inversion_clear ' LOCAL_IDENT
| ‘“inversion_clear ’ INT

contradiction : ‘contradiction’
| ‘contradiction’ LOCAL_IDENT

