Sample-Optimal Parametric Q-Learning with Linear Transition Models

A. Proofs of Propositions 1,2

Proof of Proposition 1. Let v™ be the value function of w. Since M € M "$(S, A, v, ¢), we have P(s'|s,a) =
2re(r) Vr(s) @k (s, a) for some ¢y,’s. We have

Q"(s,a) =7(s,a) +7 > P(s'|s,a)v™(s") =r(s,a) +v Y ¢rls,a) > vu(s)"(s)
s'E€S ke[K] s'€S

=r(s,a)+~ Z or(s,a)w™ (k)

ke[K]

where vector w”™ € R is specified by
Vk € [K]:w™(k) = (s (s").
s'eS
Therefore Q™ € Span(r, ¢). O
Proof of Proposition 2. “If” direction: Since M € M9 we have from the proof of Proposition 1 that for any Q € F,
TQ € F.
“Only if” direction: If d(TF, F) = 0, then for any ) € F We have

TQ=r+~PV(Q) € F.

We can then pick a maximum-sized set {Q1, Q2, ... Qr} C F such that V(Q1),V(Q2), ...V (Qy) are linear independent.
Note that £ < K. Denote A = [V (Q1),V(Q2),...V(Qk)], B=[TQ1,TQ2,...,TQx]and R = [r,r,r...,r] (with k
columns). We then have

B =R+~PA.

Hence we have
P=~"Y(B-R)AT(A4AT) L.

Since each column of B — R is a vector in F, we conclude that each column of P is a vector in F. ]

B. Proof of Theorem 1

Proof of Theorem 1. Let M’ be the class of all tabular DMDPs with state space S’, action space A’, and discount factor .
Let K’ be an algorithm for such a class of DMDPs with a generative model. Let

_ S
v =0( e i)

For each M’ € M’, let 75" -M".N pe the policy returned by K’ with querying at most N samples from the generative model.
The lower bound in Theorem B.3 in Sidford et al. (2018a)(which is derived from Theorem 3 in Azar et al. (2013)) states that
oK M N

’
inf sup ]P’{sup(v*’M (s)—w
K" Mrem |ses

)2 | = 173

where v*M' is the optimal value function of M’. Suppose, without loss of generality, K = |S'[|A’| + 1. We prove
Theorem 1 by showing that every DMDP instance M’ € M’ can be converted to an instance M € MU%(S, A, ~y) such

that any algorithm K for M29"$(S, A, ) can be used to solve M’.

For a DMDP instance M’ = (S’, A’, P/, r',v) € M’, we construct a corresponding DMDP instance M = (S, A, P,r,v) €
MiTans(S| A, ) with a feature representation ¢. We pick S and S to be supersets of S and A’ respectively, so that the
transition distributions and rewards remain unchanged on &’ x A’, i.e., P(- | s,a) = P'(- | s,a) and r(s,a) = 1/(s, a) for
s€ 8’ ae A From (s,a) € (S x A)/(S" x A’), the process transitions to an absorbing state s € S/S’ with probability
1 and stays there with reward 0.
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Now we show that M admits a feature representation ¢ : S x A — R as follows. Say (s, a) is the k-th element in S” x A,
we let ¢(s,a) = 1k, which is the unit vector whose kth entry equals one. For (s,a) ¢ S’ x A', we let ¢(s,a) = 1k.
Then we can verify that P(s’ | s,a) = >y g1 @x(s, a)ir(s") for some ¢;’s. Thus we have constructed an MDP instance
M' e Mizans (S, A, v) with feature representation ¢ .

Suppose that K is an algorithm that applies to M using N samples. Based on the reduction, we immediately obtained an
algorithm X’ that applies to M’ using N samples and the feature map ¢: K’ works by applying K to M and outputs the
restricted policy on &’ x A’. Tt can be easily verified that if 7 is an e-optimal policy for M then the reduction gives an
e-optimal policy for M. By virtue of the reduction, one gets

inf sup P(sup(v*(s) - v”’c'M'N(s)) > e) >inf sup P(sup(v*’M'(s) —p M N(s)) > e>
K AfEM%ans(S,A,V) SES K M’'eM’ seS
>1/3,
This completes the proof. O

C. Proof of Theorem 2.

Proof. Recall that P is a submatrix of P formed by the rows indexed by IC. We denote P in the same manner for P.
Recall that || P — P||1,00 < &. Let P,(Ct) be the matrix of empirical transition probabilities based on m := N/(K R) sample

transitions per (s,a) € K generated at iteration k. It can be viewed as an estimate of Py at iteration ¢. Since P admits a
context representation, it can be written as

P=®U where W =& !Pg.

Let () — @,2113,(5) be the estimate of W at iteration £. We can view ®U®) as an estimate of P.

We will show that each iteration of the algorithm is an approximate value iteration. We first define the approximate Bellman
operator, T as, Vv € RS :

[TMy](s) = max [r(s, a) + vqb(s,a)—r@,glﬁ,g)v :
Notice that, by definition of the algorithm,
Vi %(t)H[O,H] V-],

where w(®) = 0 € R¥ and w™® is the w at the end of the ¢-th iteration of the algorithm and H = (1 —v)~! and Iy z;(-)
denotes entrywise projection to [0, H]. For the rest of the proof, we denote

~

Vw(t—l) - H[(),H] [Vw(t—l)].

We now show the approximation quality of 7, i.e., estimate || 7V, -1, — TV, -1 ||so, Where T is the exact Bellman
operator. Notice that

Vs: |[TOV,e-](s) = [TVya-n](s)] < ’ymgx|¢(5,a)T<P,E1ﬁ,(Ct)‘A/w<f,_1) — P(|s,a) TV, 0.

It remains to show the right hand side of the above inequality is small.

Denote F; to be the filtration defined by the samples up to iteration ¢. Then, by the Hoeffding inequality and the fact that the
samples at iteration ¢ are independent with that from iteration ¢ — 1, we have

Pr ||ﬁl(ct)‘//\vw(f,f1) — P]C‘7w(t—1)||oo <eg

]-"t_l} >1-6/R

—1
¢ = cH flog(KR5—1)
m

where we denote
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for some generic constant c. Next, let £; be the event that,
A A ~
HPI(C)Vw(t*U - P’CVw(tfl) ||oo S €1.

We thus have Pr[&;|F;—1] > 1 — §/R and Pr[€|&1,Es, ... E—1] > 1 — d/R since &1, &, ... E— are adapted to Fy_1.
This lead to
Pr[& NéEN...N gR] = Pr[(‘:ﬂ Pr[&\gl] D

Now we consider event £ := £; N E N ... N Eg, on which we have, for all ¢ € [R],
[6(s,0) T POV, — 6(s,0) T O PV | < llo(s,0) @[l - &1 < Lea.
Note that, || Pc — ﬁ;g”lm < &, we thus have
6(5,0) T POV — d(5,0) T PV v | < Lex + |6(s,a) T @' (Pc — Pc)Vyov| < Ley + LHE,

Further using
(¢(s,a) T @ P — P([s,a) ) Voo | < HE,

we thus have
|6(s,0) " @ POV, — P(ls,0) Vo | < [éls,a)T (@ BY — 0 BY + 0 PO,
— P(:|s,a) TV, o |
< Ley + LH¢ + HE.

Further notice that ITjg 77 can only makes error smaller. Therefore, we have shown that the 17w<t> s follow an approximate
value iteration with error v[Le; + (L 4 1) H{] with probability at least 1 — §. Because of the contraction of the operator 7,
we have, after R iterations,

IVir-n) = v* oo < ¥*7UH +yR[Ler + (L + 1) HE] < yR[2Ley + (L + 1) HE]
for appropriately chosen R = O(log(NH)/(1 —7)). Since Q,,» (s,a) = r(s,a) + vo(s, a)T¢,Elﬁ,éR) V,,a-1), we have,
1Qum — Qe < 2vR[2Les + (L + 1)He]
happens with probability at least 1 — J. It follows that (see, e.g., Proposition 2.1.4 of (Bertsekas, 2005)),
loTw® —v*|| o < 2yRH[2Ley + (L + 1)HE],

with probability at least 1 — §. Plugging the values of H, ¢; and m, we have

||'U7Tw(R) 71)*”00 Sc’f}/ii f}/ . 5
l—y 1-v (I—9)2-N 1—vy l—y  (1-9)?

for some generic constant C' > 0. This completes the proof.

log(NH) 1 \/Klog(KR51) log(NH) e log(NH) L

D. Proof of Theorem 3

According to the discussions following Assumption 2, we assume without loss of generality:
e For each anchor (sg,ax) € K, ¢(sg, ax) is a vector with ¢1-norm 1.
Then Assumption 2 further implies

e &(s,a) is a vector of probabilities for all (s, a).

e Foreach (s,a), P(:|s,a) = >, ¢r(s,a)P(- | sk, ax).
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D.1. Notations

T-operator For any value function V : § — R and policy 7 : S — A, we denote the Bellman operators as

TV][s] = max [r(s,a) + yP(|s,a) V] and TVI[s] =r(s,m(s)) +vP(:|s,m(s)) 'V

ac

The key properties, e.g. monotonicity and contraction, of the 7 -operator can be found in Puterman (2014). For completeness,
we state them here.

Fact 4 (Bellman Operator). For any value function V,V' : § — R, if V. < V' entry-wisely, we then have,

TVSTV' and TV <TV',
[TV =0l ANV =0"[loc and  [|TzV = 0" [oo <AV = 0",
lim 7'V =v* and lim TV =",
t—o00 t—o0

Q-function We let, for any (s, a),

Qo (s,a) = 7(s,a) +v¢(s,a) "w),
Qi (s,0) =7(s,a) + 'VP('|3»G)TV9(1',J>1>(').

Variance of value function For (s, a), we denote the variance of a function (or a vector) V' : § — R as,
2
0oalV] =3 P(s']s.a)V(s') - (Z P(s|s, a)V(s’)) :
we also denote o (+) = 05, 4, () for (sg, ax) € K.

E-event In Algorithm 2, let £ (1:0) be the event that

10g(R’RK§71)0’k[V9(i,o)] log(R/RK(sil)
m (1 —~y)m3/4

VE € [K] : | w0 (k) — P(-|sk, ar) " Vo | < B0 (k) < O[\/

for some generic constant C' > 0. Let £(%7) be the event on which

Vi e [K]: |w®) (k) —w®O (k) — P(|sk, ar) " (Vots-v — Voo )| < C(1 —~)"127/log(R'RK6—1) /my,

where R, R, m,m1 are parameters defined in Algorithm 2.

G-event Let G be the event such that

0 < Vo (S) <7

Ty(i,0)

Voo [s] < v*(s), v*(8) — Voo (8) < e274/(1 — ), Vs €S,

for some sufficiently small constant c.

D.2. Some Properties

Firstly we notice that the parameterized functions Qg, Vp (eq. (5)) increase pointwisely (as index (i, j) increases).

Lemma 5 (Monotonicity of the Parametrized V). For every (i, j), (i',j') € [R'] x [R], and s € S, if (i,7) < (i,7’) (in
lexical order), we have
Vo (8) < Viaran (8)-

We note the triangle inequality of variance.
Lemma 6. Forany V1,V5 : S — R, we have \/Uk[Vl + W] < \/ak[Vl] + \/Uk[‘/'g]forallk € [K].

The next is a key lemma showing a property of the convex combination of the standard deviations, which relies on the
anchor condition.



Sample-Optimal Parametric Q-Learning with Linear Transition Models

Lemma 7. ForanyV : S — Rand s,a € § x A:

> drls,a)Vor[V] <y Josu(V).
]

ke[K

Proof. Since [¢1(s,a), ..., dK(s,a)]is a vector of probability distribution (due to Assumption 2 without loss of generality),
by Jensen’s inequality we have,

> ks, a)Vor[VI< > duls, a)on[V] = \/Z¢k s, a) ZP §'|sk, ax)V2(s (ZP §'|sk, ax)V ))1

ZP s'|s,a)V2(s Zqﬁk (s,a [(;P(sqsk,akw(s')ﬂ.

By the Jensen’s inequality again, we have

Z(bksa(ZP "8k, ar)V ) (Z(/bksaZP sk, ar)V ) (ZP s, a)V ))2

Combining the above two equations, we complete the proof. O

D.3. Monotonicity Preservation

The next lemma illustrates, conditioning on £ and G(Y), a monotonicity property is preserved throughout the inner loop.

Lemma 8 (Preservation of Monotonicity Property). Conditioning on the events GV, £(:0) g1~ £(.9) ywe have for
alls € S,j' €10, j],

Ve(i,a")( ) <Tx oi Ve(i,j’)[S] < TVe(i,j’)[S] < U*(S) (6)

J

Moreover; for any fixed policy 7*, we have, for j' € [j],

V" (8) = Vyian (8) SYP(ls, 7 () T (0% = Vo)) + 27D dw(s, 7 (s))e ) (k). 0
k

Proof.
Proof of (6) by Induction: We first prove the inequalities in (6) by induction on j’. The base case of j* = 0 holds by
definition of G

Now assuming it holds for j* — 1 > 0, let us verify that (6) holds for j'. For any s € S, we rewrite the corresponding value
function defined in (5) as follows:

Voa.in (s) = max { mgx Qpaiin (8,a), V- (3)}

For any s € S, there are only two cases to make the above equation hold:

L. Vi (8) = Vyair—1) (8) = maxg Qga.in) (8, a) < Vi1 (s) and mye 51 (8) = Tyar—1) (8);

2. Vyaan (s) = max, Qpi.i" (s,a) = max, Qo (s,a) > Vo1 (s) and T(i.i") (s) = argmax, (OPRRD) (s,a).

We investigate the consequences of case 1. Since (6) holds for j' — 1, we have Vj . ;1) (s) = Vpi,7—1) (8) < v*(s). Moreover,
since (6) holds for j* — 1 and w51 (S) = Tye.57—1)(8), we have

Ve(m")(s) = Ve(w"—l)( ) <Tx o
< ’7;9“13_,) Vo [8] > by Lemma 5 and the monotonicity of 7
< TVaan sl

o Vat.ir-v 8] > by induction hypothesis

J
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We now investigate the consequences of case 2. Notice that conditioning on £(:0) €1 £(1.3") (by specifying the
constant C' appropriately), we can verify that,

ke [K]: w) (k) = o, ) (w7 (k) — €7 (k) < P(|sk,ak) Voisr o,
where H = (1 — «)~L. Thus, for any a € A,

Qi (5,0) = r(s,a) +76(s,0) W) < r(s,a) +4 Y ils, a)PClsk, ar) Voo = Qe (5,a).
ke[K]

Then we have
0< max Qoiiin (8,a) = Qyiin (8, Ty (8));
max Qyi.in (5, a) < Qoo (5.9 (8) = Tr 1y Vogtuar—n [8];

max Qpiiin (8,a) < mgx@u,j/-n (5,a) = T Vi -1 [s]. (3)

As a result, we obtain

0 < Vyain(s) = max Qoain (s,a) < T, () Voeia—n (8]
< 7;0(1, i Vot [8] > by Lemma 5 and the monotonicity of 7,

< TVe(w") [s].

We see that 0 < Vi ;1 (s) < '7}9“,].,) Viiiin [8] < T V. [s] holds in both cases 1 and 2. Also note that since (6) holds for

j' — 1, we have Vj;,;7—1y < v*. It follows from the monotonicity of the Bellman operator that

0 < Vouin(8) < Tr 1 Vouir-nls] < Tx

(i’

J0[s] < v (s).

PIC

This completes the induction.

Proof of (7): Let 7* be some fixed optimal policy. For each j’ € [j], by (5), we have
o T—(4,5’
Vv@(i,j/) (S) > I;leajl( Qe(i,j’) (Sa a’) T zneajf [7’(87 (l) + 7¢(S7 CL) ’LU( ! )] .
By definition of £ ) /), we have

Vi e [K]: @) (k) > w®) (k) — B (k) > P(-|sk, ar) " Va1 — 2609 (k).

Therefore,
Vi (s) > max {r(s, a) + ’qubk(s,a) (P('|Sk7ak)—r‘/9(i,j’—1) - 2e(i’j')(k))]
k

Hence,

0(8) = Vg (5) <77 () + AP () To" = max [r(s,0) + 4 D 05, @) (P(lss ax) Vi — 2677 ()]
k

<17 () + 9P () 0" = [r(s, 7 () 1 Y (5,7 () (PClisns an) Vo) — 2657 (k) |
k

=P (1)1 (07 = Vo) + 27 Y drls, 7 ()e ™ (k),
k

where P™ (-|s) = P(:|s,7*(s)) and we use the fact that P™ (-|s) = 3", éx(s, 7*(s))P(-|sk, ax) in the last equality. [
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D.4. Accuracy of Confidence Bounds

We show that the mini-batch sample sizes picked in Algorithm 2 are sufficient to control the error occurred in the inner-loop
iterations, such that the events £(+0), £(:1)  £(R) jointly happen with close-to-1 probability.

Lemma9. Fori:=0,1,2,... R/,

pr[e@0 gty g@R) g0 >1 /R

Proof. We analyze each event separately.

Probability of £(°0): We first show that Pr[£(#9|G()] > 1 — §/(RR’). Note that Vy..0(s) € [0, ﬁ] is determined

by the samples obtained before the outer-iteration 4 starts, therefore samples obtained in iteration (i, j) for j > 0 are
independent with Vj.0). Hence, conditioning on G(*), for a fixed § € (0,1) and k € [K], by the Bernstein’s and the
Hoeffding’s inequalities, for some constant ¢; > 0, the following two inequalities hold with probability at least 1 — 4,

< i oyl Il elog®™) sl
<e(l-y)72- \/@7

where we recall the notation o, [Vyi.o)] = P(-|sk, ar) " V30 — [P(:|sk, arx) T Vg ]? < (1—7) 72 (see D.1). Conditioning

on the preceding two inequalities, we have
_ [log[6—1]
<1 - 2oy =
< ) m

for some constant ¢}, where ("0 (k) := 2(40) — (w9 (k))? according to tep 13 of Alg. 2. Thus, o1,[Vpii.0)] < o0 (k) +

(1l —~)"2. %. We further obtain,

%’“’0)(/@ sep(t 2 [ < foone) + (e -yt 280

By plugging in § + §/(K R'R), we have,

‘w@%@(k) — P(-|sg, ar) " Vyao

Z(i’o)(k) — P(:|sk, ak)TV(;Q(i,f))

oi[Voio] — o0 (/f)‘ =

olVoeo] = (000) = w0 (k)?)

e \/log[KRR’él]ak[Vg(i,o)] La log(KRR'671)

‘w(i’o)(k) — P(|sk, ax) " Vouo m (1 —y)m

<o \/ log[R'REK6-1] - o(i0)(k)  log|R'RK6]
- m (1 —y)m3/4
_ E(i,())(k)

with probability at least 1 — § /(K R’ R), where ¢(%?) (k) is defined in Step 13 of Algorithm 2. Since "% (k) < o1.[Vpei.0)] +

Al —v)2- \/@, we further have

(k) <o [ng(RR/Ké1)ok[%u,o>]/m + ((1 =)

_JJog[RRIKs—14\ V/*
m3 '

Therefore, by applying an union bound over all k € [K], we have
Pr[e@91gW] > 1 - §/(RR).

Reminder that if £+%) happens, then w(?) — 0 < P(-|s;., a) " Vyai0).
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Probability of £(*7) by Induction: We now prove by induction that
Pr[eD)|gWi=Y) gli=2) e FO] >1_5/(RR). )
For the base case j = 1, we have
W) =0 and () = (60 4 91— 4) 12~ log(RRK/D),

therefore Pr[£(»1)|£(0) G()] = 1. Now consider j. Conditioning on £~ £i=2)  £G0) 70 we have with
probability at least 1 — 4,

1 &
mil ; (Vau,jfn (xl(f)) - ‘/9(71.0) (l‘;p)) — P(~|Sk, ak)T (Ve(m,l) — VGU,O))‘
log(6—1
< ey max Vs () — Voo (5)] - | 2L
s m
< comax |v*(s) — Vyao (8)] - v/1og(6—1)/my > Voo < Vpii—n < 0*
<27 (1 =)t \/log(6-1) /my. > By definition of G

Letting 6 < §/(RR'K) and applying a union bound over k € [K], we obtain (9).

Probability of Joint Events: Finally, we have that

Pr[®0 n gD neBPIGH] = Pr[e®D |G prie® Vg0 g0 pr[g @ gG0) gl g REL g0
>1-6/R.

O
Lemma 10 (Upper Bound of ¢(*9) (k)). Conditioning on the events F0), £(:0) g@1) - £(0) e have, for all k € [K]

. log(R'RK6 Nop[0*] log(R'RES™) . [log(R'RKs1)
Gk < C \/ 9—i
k) < [ m * (1 —y)m3/4 + (1—7)%2m

for some universal constant C > 0.

Proof. Conditioning on F(, £6:0) (1) - £(i7) e have

; log(R"RK5 Yoy [Vyio]  log(R'RKS™)
(4,0) 9
e(k) s e l\/ m (1 —~y)ym3/4

/ —1 * / -1 / —1
< \/log(R RE6V)oy[v*] N log(R'RK6~")  »; [log(R'RK4~") 7
m (L —)m3/4 (I=7)*m

for some generic constants ¢, ¢}, where we use the fact that || V0 — v*||ec < 27%/(1 — ~) and the triangle inequality.
Using the definition of €(i:9) and the fact m1 < m, we have

log(R'RK6—1)
(1=7)%m

oy l \/log(R’RKé—l)ok[v*] log(R'RKS™Y) . 1og(R/RK5—1)1
> Gy T o

B (k) = €O (k) 4 27

m (1 —y)m3/4 (1 =7)%m

for some generic constants cg, ¢5, where we use the fact that m > my. This concludes the proof. O
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D.5. Error Accumulation in One Outer Iteration
Lemma 11. Fori=0,1,2,..., R, Pr[GEtD|GO] > 1 - §/(R' + 1).

Proof of Lemma 11. Conditioning on G(*), suppose that the events £(+0) (1) €6F) ]l happen, which has probability
atleast 1 — §/R’ according to Lemma 9. For any s € S, we analyze the total error accumulated in the i-th outer iteration:

v (5) = Vg (8) < 4P™ (1) (0" = Vgus—n) +27 > _ di(s, 7 (5))e ) (k) > Lemma 8
k

<2 PT(Ss) TP (L) T (v = Vga—n) + 292 PT (+]s)T Y g, m ()T (k)

k

+ 2y Z br(s, 7 (s))e®) (k) > applying Lemma 8 again on v* — Vj@.;-1)

IN

> applying Lemma 8 recursively

<[P (0" ~ Vywor))(s) +2 2y (P77 ouls' 7" () ()
Y-y e Z
+CZ'y’ +1Z (P~ s.s’ Z¢k ', m*(s") \/1og(R/RKni —

: and the upperbound of ¢"7) (Lemma 10)

log (RRRK§Y) ., [log(R"RK¢&—1)
— + 2 _— =
—y)m3/ (1=7)%m

>using [[v° — Vg0 [Joo < 1

(1 - +CZ

— i’ / -1 7ok (ol *
+C Z PN (P, \/log(R REO™1)0w oo (o) [V7]
Jj’'=0 s’

log (R'RKS™Y) . [log(R'RKS1)
oV 19 uint =1 Seblinhinieh A
—y)m3/4 (1—7)>m

m

> applying Lemma 7
1o/ |log(R'RKS) log(R’RKdl)]
L=~

=~l(1=~"1r e\Vv M J
VA=) 0= 7ym/t (=),

= i’ / -1 1ok (ol *
I S R e
7'=0 s’ /

where C is a generic constant. By Lemma C.1 of (Sidford et al., 2018a) (a form of law of total variance for the Markov
chain under 7*), we have,

Jj—1 .
DoAY (P o] < OV =)
j/=0 S/

for some generic constant C’. Combining the above equations, and setting
ol log(R'RK§—1)*/3 log(R'RK§™1)
€ (1—7)? (1=7)2

R>0O[i-(1—~)"1and 27%/(1 — ) > O(e) for some generic constant C’, we can make the accumulated error as small
as

and m; =C".

v*(s) = Vogam (5) <27 /(1 =)
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for some ¢ > 0. Since Vy(i+1,0)(s) = Vya.r) () together with the monotonicity properties shown in Lemma 8, we obtain
that conditioning on G, £(:0) g1 £(iR) the event G(*+1) happens with probability 1. O

D.6. Proof of Theorem 3
Proof of Theorem 3. Conditioning on G (R we have

VseS: 0<v"(s)— Vyr.m(s) < 271 /(1 = ).
Since R’ = O(log[e ' (1 — v)~!]), we have |[v*(s) — V' .r) ()| < €. Moreover, we have

v*(s) — € < Vywm (s) < Tn

To(R',R) V9<R/7R) [S] SR [S] < v*(s)v

where the third inequality follows from monotonicity of 7_ (s, r). Therefore myx/ r) is an e-optimal policy from any initial
state s. Notice that Pr[G(?)|G(i—1] > 1 — §/R’, we have Pr[G(F)] > Pr[GE) ngE-1 1 .. G] > 1 — 4. Finally, one
can show the main result by counting the number of samples needed by the algorithm. O



