
Sample-Optimal Parametric Q-Learning with Linear Transition Models

A. Proofs of Propositions 1,2
Proof of Proposition 1. Let vπ be the value function of π. Since M ∈ Mtrans(S,A, γ, φ), we have P (s′|s, a) =∑
k∈[K] ψk(s′)φk(s, a) for some ψk’s. We have

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)vπ(s′) = r(s, a) + γ
∑
k∈[K]

φk(s, a)
∑
s′∈S

ψk(s′)vπ(s′)

= r(s, a) + γ
∑
k∈[K]

φk(s, a)wπ(k)

where vector wπ ∈ RK is specified by

∀k ∈ [K] : wπ(k) =
∑
s′∈S

ψk(s′)vπ(s′).

Therefore Qπ ∈ Span(r, φ).

Proof of Proposition 2. “If” direction: Since M ∈Mtrans, we have from the proof of Proposition 1 that for any Q ∈ F ,
T Q ∈ F .

“Only if” direction: If d(T F ,F) = 0, then for any Q ∈ F We have

T Q = r + γPV (Q) ∈ F .

We can then pick a maximum-sized set {Q1, Q2, . . . Qk} ⊂ F such that V (Q1), V (Q2), . . . V (Qk) are linear independent.
Note that k ≤ K. Denote A = [V (Q1), V (Q2), . . . V (Qk)], B = [T Q1, T Q2, . . . , T Qk] and R = [r, r, r . . . , r] (with k
columns). We then have

B = R+ γPA.

Hence we have
P = γ−1(B −R)A>(AA>)−1.

Since each column of B −R is a vector in F , we conclude that each column of P is a vector in F .

B. Proof of Theorem 1
Proof of Theorem 1. LetM′ be the class of all tabular DMDPs with state space S ′, action space A′, and discount factor γ.
Let K′ be an algorithm for such a class of DMDPs with a generative model. Let

N = O

(
|S ′||A′|

(1− γ)3 · ε2 · log ε−1

)
.

For each M ′ ∈M′, let πK
′,M ′,N be the policy returned by K′ with querying at most N samples from the generative model.

The lower bound in Theorem B.3 in Sidford et al. (2018a)(which is derived from Theorem 3 in Azar et al. (2013)) states that

inf
K′

sup
M ′∈M′

P
[

sup
s∈S

(v∗,M
′
(s)− vπ

K′,M′,N
(s)) ≥ ε

]
≥ 1/3,

where v∗,M
′

is the optimal value function of M ′. Suppose, without loss of generality, K = |S ′||A′| + 1. We prove
Theorem 1 by showing that every DMDP instance M ′ ∈M′ can be converted to an instance M ∈Mtrans

K (S,A, γ) such
that any algorithm K forMtrans

K (S,A, γ) can be used to solve M ′.

For a DMDP instanceM ′ = (S ′,A′, P ′, r′, γ) ∈M′, we construct a corresponding DMDP instanceM = (S,A, P, r, γ) ∈
Mtrans

K (S,A, γ) with a feature representation φ. We pick S and S to be supersets of S and A′ respectively, so that the
transition distributions and rewards remain unchanged on S ′ ×A′, i.e., P (· | s, a) = P ′(· | s, a) and r(s, a) = r′(s, a) for
s ∈ S ′, a ∈ A′. From (s, a) ∈ (S ×A)/(S ′ ×A′), the process transitions to an absorbing state s0 ∈ S/S ′ with probability
1 and stays there with reward 0.
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Now we show that M admits a feature representation φ : S ×A → RK as follows. Say (s, a) is the k-th element in S ′ ×A,
we let φ(s, a) = 1k, which is the unit vector whose kth entry equals one. For (s, a) /∈ S ′ × A′, we let φ(s, a) = 1K.
Then we can verify that P (s′ | s, a) =

∑
k∈[K] φk(s, a)ψk(s′) for some ψk’s. Thus we have constructed an MDP instance

M ′ ∈Mtrans
K (S,A, γ) with feature representation φ .

Suppose that K is an algorithm that applies to M using N samples. Based on the reduction, we immediately obtained an
algorithm K′ that applies to M ′ using N samples and the feature map φ: K′ works by applying K to M and outputs the
restricted policy on S ′ × A′. It can be easily verified that if π is an ε-optimal policy for M then the reduction gives an
ε-optimal policy for M ′. By virtue of the reduction, one gets

inf
K

sup
M∈Mtrans

K (S,A,γ)

P
(

sup
s∈S

(v∗(s)− vπ
K,M,N

(s)) ≥ ε
)
≥ inf
K′

sup
M ′∈M′

P
(

sup
s∈S

(v∗,M
′
(s)− vπ

K′,M′,N
(s)) ≥ ε

)
≥ 1/3,

This completes the proof.

C. Proof of Theorem 2.
Proof. Recall that PK is a submatrix of P formed by the rows indexed by K. We denote P̃K in the same manner for P̃ .
Recall that ‖P − P̃‖1,∞ ≤ ξ. Let P̂ (t)

K be the matrix of empirical transition probabilities based on m := N/(KR) sample
transitions per (s, a) ∈ K generated at iteration k. It can be viewed as an estimate of PK at iteration t. Since P̃ admits a
context representation, it can be written as

P̃ = ΦΨ where Ψ = Φ−1
K P̃K.

Let Ψ̂(t) = Φ−1
K P̂

(t)
K be the estimate of Ψ at iteration t. We can view ΦΨ̂(t) as an estimate of P .

We will show that each iteration of the algorithm is an approximate value iteration. We first define the approximate Bellman
operator, T̂ as, ∀v ∈ RS :

[T̂ (t)v](s) = max
a

[
r(s, a) + γφ(s, a)>Φ−1

K P̂
(t)
K v

]
.

Notice that, by definition of the algorithm,

Vw(t) ← T̂ (t)Π[0,H][Vw(t−1) ],

where w(0) = 0 ∈ RK and w(t) is the w at the end of the t-th iteration of the algorithm and H = (1− γ)−1 and Π[0,H](·)
denotes entrywise projection to [0, H]. For the rest of the proof, we denote

V̂w(t−1) = Π[0,H][Vw(t−1) ].

We now show the approximation quality of T̂ , i.e., estimate ‖T̂ (t)V̂w(t−1) − T V̂w(t−1)‖∞, where T is the exact Bellman
operator. Notice that

∀s : |[T̂ (t)V̂w(t−1) ](s)− [T V̂w(t−1) ](s)| ≤ γmax
a

∣∣φ(s, a)>Φ−1
K P̂

(t)
K V̂w(t−1) − P (·|s, a)>V̂w(t−1)

∣∣.
It remains to show the right hand side of the above inequality is small.

Denote Ft to be the filtration defined by the samples up to iteration t. Then, by the Hoeffding inequality and the fact that the
samples at iteration t are independent with that from iteration t− 1, we have

Pr

[
‖P̂ (t)
K V̂w(t−1) − PKV̂w(t−1)‖∞ ≤ ε1

∣∣∣∣Ft−1

]
≥ 1− δ/R

where we denote

ε1 = cH ·
√

log(KRδ−1)

m
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for some generic constant c. Next, let Et be the event that,

‖P̂ (t)
K V̂w(t−1) − PKV̂w(t−1)‖∞ ≤ ε1.

We thus have Pr[Et|Ft−1] ≥ 1 − δ/R and Pr[Et|E1, E2, . . . Et−1] ≥ 1 − δ/R since E1, E2, . . . Et−1 are adapted to Ft−1.
This lead to

Pr[E1 ∩ E2 ∩ . . . ∩ ER] = Pr[E1] Pr[E2|E1] . . . ≥ 1− δ.
Now we consider event E := E1 ∩ E2 ∩ . . . ∩ ER, on which we have, for all t ∈ [R],

|φ(s, a)>Φ−1
K P̂

(t)
K V̂w(t−1) − φ(s, a)>Φ−1

K PKV̂w(t−1) | ≤ ‖φ(s, a)>Φ−1
K ‖1 · ε1 ≤ Lε1.

Note that, ‖PK − P̃K‖1,∞ ≤ ξ, we thus have

|φ(s, a)>Φ−1
K P̂

(t)
K V̂w(t−1) − φ(s, a)>Φ−1

K P̃KV̂w(t−1) | ≤ Lε1 + |φ(s, a)>Φ−1
K (PK − P̃K)V̂w(t−1) | ≤ Lε1 + LHξ,

Further using
|(φ(s, a)>Φ−1

K P̃
(t)
K − P (·|s, a)>)V̂w(t−1) | ≤ Hξ,

we thus have

|φ(s, a)>Φ−1
K P̂

(t)
K V̂w(t−1) − P (·|s, a)>V̂w(t−1) | ≤ |φ(s, a)>(Φ−1

K P̂
(t)
K − Φ−1

K P̃
(t)
K + Φ−1

K P̃
(t)
K )V̂w(t−1)

− P (·|s, a)>V̂w(t−1) |
≤ Lε1 + LHξ +Hξ.

Further notice that Π[0,H] can only makes error smaller. Therefore, we have shown that the V̂w(t)s follow an approximate
value iteration with error γ[Lε1 + (L+ 1)Hξ] with probability at least 1− δ. Because of the contraction of the operator T ,
we have, after R iterations,

‖V̂w(R−1) − v∗‖∞ ≤ γR−1H + γR[Lε1 + (L+ 1)Hξ] ≤ γR[2Lε1 + (L+ 1)Hξ]

for appropriately chosen R = Θ(log(NH)/(1− γ)). Since Qw(R)(s, a) = r(s, a) + γφ(s, a)>Φ−1
K P̂

(R)
K V̂w(R−1) , we have,

‖Qw(R) −Q∗‖∞ ≤ 2γR[2Lε1 + (L+ 1)Hξ]

happens with probability at least 1− δ. It follows that (see, e.g., Proposition 2.1.4 of (Bertsekas, 2005)),

‖vπw(R) − v∗‖∞ ≤ 2γRH[2Lε1 + (L+ 1)Hξ],

with probability at least 1− δ. Plugging the values of H, ε1 and m, we have

‖vπw(R) − v∗‖∞ ≤ Cγ ·
log(NH)

1− γ
· 1

1− γ
· L ·

√
K log(KRδ−1)

(1− γ)2 ·N
· log(NH)

1− γ
+ Cγ · log(NH)

1− γ
· L

(1− γ)2
· ξ

for some generic constant C > 0. This completes the proof.

D. Proof of Theorem 3
According to the discussions following Assumption 2, we assume without loss of generality:

• For each anchor (sk, ak) ∈ K, φ(sk, ak) is a vector with `1-norm 1.

Then Assumption 2 further implies

• φ(s, a) is a vector of probabilities for all (s, a).

• For each (s, a), P (·|s, a) =
∑
k φk(s, a)P (· | sk, ak).
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D.1. Notations

T -operator For any value function V : S → R and policy π : S → A, we denote the Bellman operators as

T V [s] = max
a∈A

[
r(s, a) + γP (·|s, a)>V

]
and TπV [s] = r(s, π(s)) + γP (·|s, π(s))>V

The key properties, e.g. monotonicity and contraction, of the T -operator can be found in Puterman (2014). For completeness,
we state them here.

Fact 4 (Bellman Operator). For any value function V, V ′ : S → R, if V ≤ V ′ entry-wisely, we then have,

T V ≤ T V ′ and TπV ≤ TπV ′,
‖T V − v∗‖∞ ≤ γ‖V − v∗‖∞ and ‖TπV − vπ‖∞ ≤ γ‖V − vπ‖∞,

lim
t→∞

T tV = v∗ and lim
t→∞

T tπV = vπ.

Q-function We let, for any (s, a),

Qθ(i,j)(s, a) = r(s, a) + γφ(s, a)>w(i,j),

Qθ(i,j)(s, a) = r(s, a) + γP (·|s, a)>Vθ(i,j−1)(·).

Variance of value function For (s, a), we denote the variance of a function (or a vector) V : S → R as,

σs,a[V ] :=
∑
s′

P (s′|s, a)V 2(s′)−
(∑

s′

P (s′|s, a)V (s′)
)2

,

we also denote σk(·) = σsk,ak(·) for (sk, ak) ∈ K.

E-event In Algorithm 2, let E(i,0) be the event that

∀k ∈ [K] : |w(i,0)(k)− P (·|sk, ak)>Vθ(i,0) | ≤ ε(i,0)(k) ≤ C
[√

log(R′RKδ−1)σk[Vθ(i,0) ]

m
+

log(R′RKδ−1)

(1− γ)m3/4

]
for some generic constant C > 0. Let E(i,j) be the event on which

∀k ∈ [K] : |w(i,j)(k)− w(i,0)(k)− P (·|sk, ak)>(Vθ(i,j−1) − Vθ(i,0))| ≤ C(1− γ)−12−i
√

log(R′RKδ−1)/m1,

where R′, R,m,m1 are parameters defined in Algorithm 2.

G-event Let G(i) be the event such that

0 ≤ Vθ(i,0)(s) ≤ Tπθ(i,0)Vθ(i,0) [s] ≤ v
∗(s), v∗(s)− Vθ(i,0)(s) ≤ c2−i/(1− γ), ∀s ∈ S,

for some sufficiently small constant c.

D.2. Some Properties

Firstly we notice that the parameterized functions Qθ, Vθ (eq. (5)) increase pointwisely (as index (i, j) increases).

Lemma 5 (Monotonicity of the Parametrized V ). For every (i, j), (i′, j′) ∈ [R′]× [R], and s ∈ S, if (i, j) ≤ (i′, j′) (in
lexical order), we have

Vθ(i,j)(s) ≤ Vθ(i′,j′)(s).

We note the triangle inequality of variance.

Lemma 6. For any V1, V2 : S → R, we have
√
σk[V1 + V2] ≤

√
σk[V1] +

√
σk[V2] for all k ∈ [K].

The next is a key lemma showing a property of the convex combination of the standard deviations, which relies on the
anchor condition.
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Lemma 7. For any V : S → R and s, a ∈ S ×A:∑
k∈[K]

φk(s, a)
√
σk[V ] ≤

√
σs,a(V ).

Proof. Since [φ1(s, a), . . . , φK(s, a)] is a vector of probability distribution (due to Assumption 2 without loss of generality),
by Jensen’s inequality we have,

∑
k

φk(s, a)
√
σk[V ] ≤

√∑
k

φk(s, a)σk[V ] =

√∑
k

φk(s, a)

[∑
s′

P (s′|sk, ak)V 2(s′)−
(∑

s′

P (s′|sk, ak)V (s′)
)2]

=

√∑
s′

P (s′|s, a)V 2(s′)−
∑
k

φk(s, a)

[(∑
s′

P (s′|sk, ak)V (s′)
)2]

.

By the Jensen’s inequality again, we have∑
k

φk(s, a)
(∑

s′

P (s′|sk, ak)V (s′)
)2

≥
(∑

k

φk(s, a)
∑
s′

P (s′|sk, ak)V (s′)
)2

=
(∑

s′

P (s′|s, a)V (s′)
)2

.

Combining the above two equations, we complete the proof.

D.3. Monotonicity Preservation

The next lemma illustrates, conditioning on E(i,j) and G(i), a monotonicity property is preserved throughout the inner loop.

Lemma 8 (Preservation of Monotonicity Property). Conditioning on the events G(i), E(i,0), E(i,1), . . . , E(i,j), we have for
all s ∈ S, j′ ∈ [0, j],

Vθ(i,j′)(s) ≤ Tπθ(i,j′)Vθ(i,j′) [s] ≤ T Vθ(i,j′) [s] ≤ v
∗(s). (6)

Moreover, for any fixed policy π∗, we have, for j′ ∈ [j],

v∗(s)− Vθ(i,j′)(s) ≤γP (·|s, π∗(s))>(v∗ − Vθ(i,j′−1)) + 2γ
∑
k

φk(s, π∗(s))ε(i,j
′)(k). (7)

Proof.
Proof of (6) by Induction: We first prove the inequalities in (6) by induction on j′. The base case of j′ = 0 holds by
definition of G(i).

Now assuming it holds for j′ − 1 ≥ 0, let us verify that (6) holds for j′. For any s ∈ S , we rewrite the corresponding value
function defined in (5) as follows:

Vθ(i,j′)(s) = max
{

max
a

Qθ(i,j′)(s, a), Vθ(i,j′−1)(s)
}
.

For any s ∈ S, there are only two cases to make the above equation hold:

1. Vθ(i,j′)(s) = Vθ(i,j′−1)(s)⇒maxaQθ(i,j′)(s, a) < Vθ(i,j′−1)(s) and πθ(i,j′)(s) = πθ(i,j′−1)(s);

2. Vθ(i,j′)(s) = maxaQθ(i,j′)(s, a)⇒ maxaQθ(i,j′)(s, a) ≥ Vθ(i,j′−1)(s) and πθ(i,j′)(s) = arg maxaQθ(i,j′)(s, a).

We investigate the consequences of case 1. Since (6) holds for j′−1, we have Vθ(i,j′)(s) = Vθ(i,j′−1)(s) ≤ v∗(s). Moreover,
since (6) holds for j′ − 1 and πθ(i,j′)(s) = πθ(i,j′−1)(s), we have

Vθ(i,j′)(s) = Vθ(i,j′−1)(s) ≤ Tπ
θ(i,j

′)Vθ(i,j′−1) [s] . by induction hypothesis

≤ Tπ
θ(i,j

′)Vθ(i,j′) [s] . by Lemma 5 and the monotonicity of Tπ
≤ T Vθ(i,j′) [s].
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We now investigate the consequences of case 2. Notice that conditioning on E(i,0), E(i,1) . . . , E(i,j′) (by specifying the
constant C appropriately), we can verify that,

∀k ∈ [K] : w(i,j′)(k) := Π[0,H](w
(i,j′)(k)− ε(i,j

′)(k)) ≤ P (·|sk, ak)>Vθ(i,j′−1) ,

where H = (1− γ)−1. Thus, for any a ∈ A,

Qθ(i,j′)(s, a) = r(s, a) + γφ(s, a)>w(i,j′) ≤ r(s, a) + γ
∑
k∈[K]

φk(s, a)P (·|sk, ak)>Vθ(i,j′−1) = Qθ(i,j′)(s, a).

Then we have

0 ≤ max
a

Qθ(i,j′)(s, a) = Qθ(i,j′)(s, πθ(i,j′)(s));

max
a

Qθ(i,j′)(s, a) ≤ Qθ(i,j′)(s, πθ(i,j′)(s)) = Tπ
θ(i,j

′)Vθ(i,j′−1) [s];

max
a

Qθ(i,j′)(s, a) ≤ max
a

Qθ(i,j′−1)(s, a) = T Vθ(i,j′−1) [s]. (8)

As a result, we obtain

0 ≤ Vθ(i,j′)(s) = max
a

Qθ(i,j′)(s, a) ≤ Tπ
θ(i,j

′) (s)Vθ(i,j′−1) [s]

≤ Tπ
θ(i,j

′)Vθ(i,j′) [s] . by Lemma 5 and the monotonicity of Tπ
≤ T Vθ(i,j′) [s].

We see that 0 ≤ Vθ(i,j′)(s) ≤ Tπθ(i,j′)Vθ(i,j′) [s] ≤ T Vθ(i,j′) [s] holds in both cases 1 and 2. Also note that since (6) holds for
j′ − 1, we have Vθ(i,j′−1) ≤ v∗. It follows from the monotonicity of the Bellman operator that

0 ≤ Vθ(i,j′)(s) ≤ Tπθ(i,j′)Vθ(i,j′−1) [s] ≤ Tπ
θ(i,j

′) v
∗[s] ≤ v∗(s).

This completes the induction.

Proof of (7): Let π∗ be some fixed optimal policy. For each j′ ∈ [j], by (5), we have

Vθ(i,j′)(s) ≥ max
a∈A

Qθ(i,j′)(s, a) := max
a∈A

[
r(s, a) + γφ(s, a)>w(i,j′)

]
.

By definition of E(i,j′), we have

∀k ∈ [K] : w(i,j′)(k) ≥ w(i,j′)(k)− ε(i,j
′)(k) ≥ P (·|sk, ak)>Vθ(i,j′−1) − 2ε(i,j

′)(k).

Therefore,

Vθ(i,j′)(s) ≥ max
a

[
r(s, a) + γ

∑
k

φk(s, a)
(
P (·|sk, ak)>Vθ(i,j′−1) − 2ε(i,j

′)(k)
)]
.

Hence,

v∗(s)− V
θ(i,j

′)(s) ≤ rπ
∗
(s) + γPπ

∗
(·|s)>v∗ −max

a

[
r(s, a) + γ

∑
k

φk(s, a)
(
P (·|sk, ak)>V

θ(i,j
′−1) − 2ε(i,j

′)(k)
)]

≤ rπ
∗
(s) + γPπ

∗
(·|s)>v∗ −

[
r(s, π∗(s)) + γ

∑
k

φk(s, π∗(s))
(
P (·|sk, ak)>V

θ(i,j
′−1) − 2ε(i,j

′)(k)
)]

= γPπ
∗
(·|s)>(v∗ − V

θ(i,j
′−1)) + 2γ

∑
k

φk(s, π∗(s))ε(i,j
′)(k),

where Pπ
∗
(·|s) = P (·|s, π∗(s)) and we use the fact that Pπ

∗
(·|s) =

∑
k φk(s, π∗(s))P (·|sk, ak) in the last equality.
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D.4. Accuracy of Confidence Bounds

We show that the mini-batch sample sizes picked in Algorithm 2 are sufficient to control the error occurred in the inner-loop
iterations, such that the events E(i,0), E(i,1), . . . , E(i,R) jointly happen with close-to-1 probability.

Lemma 9. For i = 0, 1, 2, . . . , R′,

Pr[E(i,0), E(i,1), . . . , E(i,R)|G(i)] ≥ 1− δ/R′.

Proof. We analyze each event separately.

Probability of E(i,0): We first show that Pr[E(i,0)|G(i)] ≥ 1 − δ/(RR′). Note that Vθ(i,0)(s) ∈ [0, 1
1−γ ] is determined

by the samples obtained before the outer-iteration i starts, therefore samples obtained in iteration (i, j) for j ≥ 0 are
independent with Vθ(i,0) . Hence, conditioning on G(i), for a fixed δ ∈ (0, 1) and k ∈ [K], by the Bernstein’s and the
Hoeffding’s inequalities, for some constant c1 > 0, the following two inequalities hold with probability at least 1− δ,∣∣∣∣w(i,0)(k)− P (·|sk, ak)>Vθ(i,0)

∣∣∣∣ ≤ min

{
c1

√
log[δ−1]σk[Vθ(i,0) ]

m
+
c1 log δ−1

(1− γ)m
, c1(1− γ)−1 ·

√
log[δ−1]

m

}
∣∣∣∣z(i,0)(k)− P (·|sk, ak)>V 2

θ(i,0)

∣∣∣∣ ≤ c1(1− γ)−2 ·
√

log[δ−1]

m
,

where we recall the notation σk[Vθ(i,0) ] = P (·|sk, ak)>V 2
θ(i,0)

− [P (·|sk, ak)>Vθ(i,0) ]
2 ≤ (1−γ)−2 (see D.1). Conditioning

on the preceding two inequalities, we have∣∣∣∣σk[Vθ(i,0) ]− σ(i,0)(k)

∣∣∣∣ =

∣∣∣∣σk[Vθ(i,0) ]−
(
z(i,0)(k)− w(i,0)(k)2

)∣∣∣∣ ≤ c′1(1− γ)−2 ·
√

log[δ−1]

m

for some constant c′1, where σ(i,0)(k) := z(i,0) − (w(i,0)(k))2 according to tep 13 of Alg. 2. Thus, σk[Vθ(i,0) ] ≤ σ(i,0)(k) +

c′1(1− γ)−2 ·
√

log[δ−1]
m . We further obtain,√
σ(i,0)(k) + c′1(1− γ)−2 ·

√
log[δ−1]

m
≤
√
σ(i,0)(k) +

(
c′21 (1− γ)−4 log[δ−1]

m

)1/4

.

By plugging in δ ← δ/(KR′R), we have,∣∣∣∣w(i,0)(k)− P (·|sk, ak)>Vθ(i,0)

∣∣∣∣ ≤ c1
√

log[KRR′δ−1]σk[Vθ(i,0) ]

m
+
c1 log(KRR′δ−1)

(1− γ)m

≤ Θ

[√
log[R′RKδ−1] · σ(i,0)(k)

m
+

log[R′RKδ−1]

(1− γ)m3/4

]
= ε(i,0)(k)

with probability at least 1− δ/(KR′R), where ε(i,0)(k) is defined in Step 13 of Algorithm 2. Since σ(i,0)(k) ≤ σk[Vθ(i,0) ] +

c′1(1− γ)−2 ·
√

log[δ−1]
m , we further have

ε(i,0)(k) ≤ Θ

[√
log(RR′Kδ−1)σk[Vθ(i,0) ]/m+

(
(1− γ)−4 log[RR′Kδ−1]4

m3

)1/4]
.

Therefore, by applying an union bound over all k ∈ [K], we have

Pr[E(i,0)|G(i)] ≥ 1− δ/(RR′).

Reminder that if E(i,0) happens, then w(i,0) − ε(i,0) ≤ P (·|sk, ak)>Vθ(i,0) .
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Probability of E(i,j) by Induction: We now prove by induction that

Pr[E(i,j)|E(i,j−1), E(i,j−2), . . . , E(i,0),F (i)] ≥ 1− δ/(RR′). (9)

For the base case j = 1, we have

w(i,1) = w(i,0) and ε(i,1) = ε(i,0) + Θ(1− γ)−12−i
√

log(RR′K/δ),

therefore Pr[E(i,1)|E(i,0),G(i)] = 1. Now consider j. Conditioning on E(i,j−1), E(i,j−2), . . . , E(i,0),F (i), we have with
probability at least 1− δ,∣∣∣ 1

m1

m1∑
`=1

(
Vθ(i,j−1)(x

(`)
k )− Vθ(i,0)(x

(`)
k )
)
− P (·|sk, ak)>

(
Vθ(i,j−1) − Vθ(i,0)

)∣∣∣
≤ c2 max

s
|Vθ(i,j−1)(s)− Vθ(i,0)(s)| ·

√
log(δ−1)

m1

≤ c2 max
s
|v∗(s)− Vθ(i,0)(s)| ·

√
log(δ−1)/m1 . Vθ(i,0) ≤ Vθ(i,j−1) ≤ v∗

≤ c22−i(1− γ)−1 ·
√

log(δ−1)/m1. . By definition of G(i)

Letting δ ← δ/(RR′K) and applying a union bound over k ∈ [K], we obtain (9).

Probability of Joint Events: Finally, we have that

Pr[E(i,0) ∩ E(i,1) . . . ∩ E(i,R)|G(i)] = Pr[E(i,0)|G(i)] Pr[E(i,1)|E(i,0),G(i)] . . .Pr[E(i,R)|E(i,0), E(i,1), . . . , E(i,R−1),G(i)]
≥ 1− δ/R′.

Lemma 10 (Upper Bound of ε(i,j)(k)). Conditioning on the events F (i), E(i,0), E(i,1), . . . , E(i,j), we have, for all k ∈ [K]

ε(i,j)(k) ≤ C
[√

log(R′RKδ−1)σk[v∗]

m
+

log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m1

]
for some universal constant C > 0.

Proof. Conditioning on F (i), E(i,0), E(i,1), . . . , E(i,j), we have

ε(i,0)(k) ≤ c1

[√
log(R′RKδ−1)σk[Vθ(i,0) ]

m
+

log(R′RKδ−1)

(1− γ)m3/4

]

≤ c′1

[√
log(R′RKδ−1)σk[v∗]

m
+

log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m

]
,

for some generic constants c1, c′1, where we use the fact that ‖Vθ(i,0) − v∗‖∞ ≤ 2−i/(1− γ) and the triangle inequality.
Using the definition of ε(i,j) and the fact m1 ≤ m, we have

ε(i,j)(k) = ε(i,0)(k) + c22−i

√
log(R′RKδ−1)

(1− γ)2m1

≤ c′2

[√
log(R′RKδ−1)σk[v∗]

m
+

log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m1

]
,

for some generic constants c2, c′2, where we use the fact that m ≥ m1. This concludes the proof.
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D.5. Error Accumulation in One Outer Iteration

Lemma 11. For i = 0, 1, 2, . . . , R′, Pr[G(i+1)|G(i)] ≥ 1− δ/(R′ + 1).

Proof of Lemma 11. Conditioning on G(i), suppose that the events E(i,0), E(i,1), . . . , E(i,R) all happen, which has probability
at least 1− δ/R′ according to Lemma 9. For any s ∈ S, we analyze the total error accumulated in the i-th outer iteration:

v∗(s)− Vθ(i,j)(s) ≤ γPπ
∗
(·|s)>(v∗ − Vθ(i,j−1)) + 2γ

∑
k

φk(s, π∗(s))ε(i,j)(k) . Lemma 8

≤ γ2
∑
s′

Pπ
∗
(s′|s)>Pπ

∗
(·|s′)>(v∗ − Vθ(i,j−2)) + 2γ2Pπ

∗
(·|s)>

∑
k

φk(·, π∗(·))ε(i,j−1)(k)

+ 2γ
∑
k

φk(s, π∗(s))ε(i,j)(k) . applying Lemma 8 again on v∗ − Vθ(i,j−1)

≤ . . . . applying Lemma 8 recursively

≤ γj [
(
Pπ
∗)j

(v∗ − Vθ(i,0))](s) + 2

j−1∑
j′=0

γj
′+1
∑
k,s′

(
Pπ
∗)j′
s,s′

φk(s′, π∗(s′))ε(i,j−j
′)(k)

≤ γj(1− γ)−1 + C

j−1∑
j′=0

γj
′+1

[
log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m1

]

+ C

j−1∑
j′=0

γj
′+1
∑
s′

(
Pπ
∗)j′
s,s′
·
∑
k

φk(s′, π∗(s′))

√
log(R′RKδ−1)σk[v∗]

m

. using ‖v∗ − Vθ(i,0)‖∞ ≤
1

1− γ
and the upperbound of ε(i,j) (Lemma 10)

≤ γj(1− γ)−1 + C

j−1∑
j′=0

γj
′+1

[
log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m1

]

+ C

j−1∑
j′=0

γj
′+1
∑
s′

(
Pπ
∗)j′
s,s′
·
√

log(R′RKδ−1)σs′,π∗(s′)[v∗]

m

. applying Lemma 7

= γj(1− γ)−1 + C
1− γj

1− γ
·

[
log(R′RKδ−1)

(1− γ)m3/4
+ 2−i

√
log(R′RKδ−1)

(1− γ)2m1

]
+

C

j−1∑
j′=0

γj
′+1
∑
s′

(
Pπ
∗)j′
s,s′
·
√

log(R′RKδ−1)σs′,π∗(s′)[v∗]

m
,

where C is a generic constant. By Lemma C.1 of (Sidford et al., 2018a) (a form of law of total variance for the Markov
chain under π∗), we have,

j−1∑
j′=0

γj
′+1
∑
s′

(
Pπ
∗)j′
s,s′

√
σs′,π∗(s′)[v∗] ≤ C ′

√
(1− γ)−3

for some generic constant C ′. Combining the above equations, and setting

m = C ′′
1

ε2
· log(R′RKδ−1)4/3

(1− γ)3
and m1 = C ′′ · log(R′RKδ−1)

(1− γ)2
,

R ≥ Θ[i · (1− γ)−1] and 2−i/(1− γ) ≥ Θ(ε) for some generic constant C ′′, we can make the accumulated error as small
as

v∗(s)− Vθ(i,R)(s) ≤ c2−i/(1− γ)
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for some c > 0. Since Vθ(i+1,0)(s) = Vθ(i,R)(s) together with the monotonicity properties shown in Lemma 8, we obtain
that conditioning on G(i), E(i,0), E(i,1), . . . , E(i,R), the event G(i+1) happens with probability 1.

D.6. Proof of Theorem 3

Proof of Theorem 3. Conditioning on G(R′), we have

∀s ∈ S : 0 ≤ v∗(s)− Vθ(R′,R)(s) ≤ 2−R
′
/(1− γ).

Since R′ = Θ(log[ε−1(1− γ)−1]), we have |v∗(s)− Vθ(R′,R)(s)| ≤ ε. Moreover, we have

v∗(s)− ε ≤ Vθ(R′,R)(s) ≤ Tπ
θ(R
′,R)

Vθ(R′,R) [s] ≤ vπθ(R′,R) [s] ≤ v∗(s),

where the third inequality follows from monotonicity of Tπ(R′,R) . Therefore πθ(R′,R) is an ε-optimal policy from any initial
state s. Notice that Pr[G(i)|G(i−1)] ≥ 1− δ/R′, we have Pr[G(R′)] ≥ Pr[G(R′) ∩ G(R−1) ∩ . . .G(0)] ≥ 1− δ. Finally, one
can show the main result by counting the number of samples needed by the algorithm.


