
Sample-Optimal Parametric Q-Learning Using Linearly Additive Features

Lin F. Yang 1 Mengdi Wang 1

Abstract
Consider a Markov decision process (MDP) that
admits a set of state-action features, which can
linearly express the process’s probabilistic transi-
tion model. We propose a parametric Q-learning
algorithm that finds an approximate-optimal pol-
icy using a sample size proportional to the feature
dimension K and invariant with respect to the
size of the state space. To further improve its sam-
ple efficiency, we exploit the monotonicity prop-
erty and intrinsic noise structure of the Bellman
operator, provided the existence of anchor state-
actions that imply implicit non-negativity in the
feature space. We augment the algorithm using
techniques of variance reduction, monotonicity
preservation, and confidence bounds. It is proved
to find a policy which is ε-optimal from any initial
state with high probability using Õ(K/ε2(1−γ)3)
sample transitions for arbitrarily large-scale MDP
with a discount factor γ ∈ (0, 1). A matching
information-theoretical lower bound is proved,
confirming the sample optimality of the proposed
method with respect to all parameters (up to poly-
log factors).

1. Introduction
Markov decision problems (MDP) are known to suffer from
the curse of dimensionality. A basic theoretical question
is: Suppose that one can query sample transitions from
any state of the system using any action, how many sam-
ples are needed for learning a good policy? In the tabular
setting where the MDP has S states and A actions, the nec-
essary and sufficient sample size for finding an approximate-
optimal policy is Θ̃(SA

(1−γ)3) 1 where γ ∈ (0, 1) is a discount
factor (Azar et al., 2013; Sidford et al., 2018a). However,

*Equal contribution 1Department of Operations Research
and Financial Engineering, Princeton University. Correspon-
dence to: Lin Yang <lin.yang@princeton.edu>, Mengdi Wang
<mengdiw@princeton.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1f̃(·) ignores poly log f(·) factors.

this theoretical-sharp result does not generalize to practical
problems where S,A can be arbitrarily large or infinite.

Let us consider MDP with structural knowledges. Suppose
that each state-action pair (s, a) admits a feature vector
φ(s, a) ∈ RK that can express the transition dynamics con-
ditioning on (s, a). In practice, the abstract state variable s
can be a sequence of historical records or a raw-pixel image,
containing much information that is not related to the deci-
sion process. More general settings of MDP with structural
knowledges have been considered in Azizzadenesheli et al.
(2016); Jiang et al. (2017) and references therein.

In this paper, we focus on an important and very basic
class of structured MDP, where the features can represent
transition distributions P (· | ·) through an unknown linear
additive model. The feature-based linear transition model
is related to the commonly used linear Q-function model.
We show that they are essentially equivalent when there
is zero Bellman error (a notion introduced in Munos &
Szepesvári (2008)). A similar argument has been made in
Parr et al. (2008). It also contains as a special case the soft
state aggregation model (Singh et al., 1995; Duan et al.,
2018). In this setting, we will study the theoretic sample
complexity for learning a good policy by querying state-
transition samples. We also aim to develop efficient policy
learning algorithms with provable sample efficiency. We
study the following two questions:

Q1: How many observations of state-action-state transitions
are necessary for finding an ε-optimal policy?

Q2: How many samples are sufficient for finding an ε-
optimal policy with high probability and how to find it?

To answer Q1, an information-theoretic lower bound is
provided (Theorem 1), suggesting that, regardless of the
learning algorithm, the necessary sample size for finding a
good policy with high probability is Ω̃

(
K

(1−γ)3·ε2
)

where K
is the dimension of feature space.

To answer Q2, we develop Q-learning-like algorithms that
take as input state-transition samples and output a parame-
terized policy. A basic parametric Q-learning algorithm per-
forms approximate value-iteration estimates on a few points
of the Q function, so that actual updates happen on the pa-
rameters. This idea originates from the phased Q-learning
(Kearns & Singh, 1999) and the fitted value iteration (Munos

Sample-Optimal Parametric Q-Learning with Linear Transition Models

& Szepesvári, 2008; Antos et al., 2008a;b). Our algorithm
is simpler and does not require function fitting. Conver-
gence and approximation error analysis is provided even
when the MDP cannot be fully expressed using the features.
Despite its simplicity, the basic algorithm has complexity
Õ
(

K
(1−γ)7·ε2

)
, which is not sample-optimal.

Furthermore, we develop an accelerated version of paramet-
ric Q-learning that involves taking mini-batches, computing
confidence bounds, and using monotonicity-preserving and
variance reduction techniques. It uses some ideas from fast
solvers of tabular MDP (Sidford et al., 2018b;a). To fully
exploit the monotonicity property of the Bellman operator
in the algorithm, we need an additional “anchor” assump-
tion, i.e., there exists a (small) set of state-actions that can
represent the remaining ones using convex combinations.
The “anchors” can be viewed as vertices of the state-action
space, and implies an intrinsic nonnegativity in the feature
space which is needed for monotonic policy improvement.
We show that the algorithm takes just enough samples per
update to keep the value/policy iterates within a sequence
of narrow confidence regions that monotonically improve
to the near-optimal solutions. It finds an ε-optimal policy
(regardless of the initial state) with probability at least 1− δ
using

Θ̃

(
K

(1− γ)3 · ε2
· log

1

δ

)
samples. It matches the information-theoretic lower bound
up to log(·) factors, thus the algorithm is nearly sample-
optimal. If γ = 0.99, this algorithm is (1 − γ)−4 = 108

times faster than the basic algorithm.

Our model, algorithms and analyses relate to previous liter-
atures on the sample complexity of tabular MDP, reinforce-
ment learning with function approximation, linear models
and etc. A detailed account for the related literatures is
given in Section 6. All technical proofs are given in the ap-
pendix. To our best knowledge, this work provides the first
sample-optimal algorithm and sharp complexity analysis
(up to polylog factors) for MDP with linear models.

2. Markov Decision Process, Features, Linear
Models

In this section we introduce the basics of Markov decision
process and the feature-based linear transition model.

2.1. Preliminaries

In a discounted Markov decision process (DMDP or MDP
for short), there is a finite set of states S, a finite set of
actions A. Let S = |S| and A = |A|. At any state s ∈ S,
an agent is allowed to play an action a ∈ A. She receives
an immediate reward r(s, a) ∈ [0, 1] after playing a at s,
and then the process will transition to the next state s′ ∈

S with probability P (s′|s, a), where P is the collection
of transition distributions. The full instance of MDP can
be described by the tuple M = (S,A, P, r, γ). The agent
would like to find a policy π : S → A that maximizes the
long-term expected reward starting from every state s, i.e.,

vπ(s) := E
[∞∑
t=0

γtr(st, π(st))|s0 = s

]
where γ ∈ (0, 1) is a discount factor. We call vπ ∈ RS the
value function of policy π. A policy π∗ is said to be optimal
if it attains the maximal possible value at every state. In fact,
it is known (see e.g. Puterman (2014)) that there is a unique
optimal value function v∗ such that

∀s ∈ S : v∗(s) = max
π

vπ(s) = vπ
∗
(s).

A policy π is said to be ε-optimal if it achieves near-optimal
cumulative reward from any initial state, i.e.,

vπ(s) ≥ v∗(s)− ε, ∀ s ∈ S,

or equivalently ‖vπ − v∗‖∞ ≤ ε for short. We denote the
Bellman operator T : RS → RS as

∀s ∈ S : [T v](s) = max
a∈A

[r(s, a) + γP (·|s, a)>v].

A vector v∗ is the optimal value of the DMDP if and only if
it satisfies the Bellman equation v = T v.

The Q-function of a policy π is defined as Qπ(s, a) =
r(s, a) + γ

∑
s′ P (s′|s, a)vπ(s′), and the optimal Q-

function is denoted by Q∗ = Qπ
∗
. We overload the no-

tation T to also denote the Bellman operator in the space of
Q-functions, i.e., T : RS×A → RS×A such that

T Q(s, a) = r(s, a) + γP (·|s, a)>max
a′

Q(·, a′).

A vector Q∗ ∈ RS×A is the optimal Q-function if and only
if it satisfies the Bellman equation Q = T Q.

We useO,Ω, Θ to denote leading orders, and we use Õ,Ω̃, Θ̃
to omit polylog factors. We use . to denote “approximately
less than” by ignoring non-leading order terms, constant
and polylog factors.

2.2. Feature-based Linear Transition Model

We study Markov decision processes with structural knowl-
edges. Suppose that the learning agent is given a set of
K feature functions φ1, φ2, . . . , φK : S × A → R. The
feature φ maps the raw state and action (s, a) into the K-
dimensional vector

φ(s, a) = [φ1(s, a), φ2(s, a), . . . , φK(s, a)] ∈ RK .

Suppose the feature vector φ(s, a) is sufficient to express the
future dynamics of the process conditioning on the current
raw state and action. In particular, we focus on a basic linear
model given below.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Definition 1 (Feature-based Linear Transition Model). Con-
sider a DMDP instance M = (S,A, P, r, γ) and a feature
map φ : S ×A → RK . We say that M admits a linear
feature representation φ if for every s, a, s′,

P (s′|s, a) =
∑
k∈[K]

φk(s, a)ψk(s′).

for some functions ψ1, . . . , ψK : S → R. We denote the
set of all such MDP instances asMtrans(S,A, γ, φ). We
denoteMtrans

K (S,A, γ) the set of all DMDP instances that
admits a K-dimensional feature representation.

Remark 1 (Independence of rewards). The feature rep-
resentations φ(s, a) in Definition 1 capture the transition
dynamics of the Markov process under different actions. It
is a form of structural knowledge about the environment. It
has nothing to do with the rewards r(s, a).

Remark 2 (Combining state features and action features).
In many settings one may be given a state-only feature map
φ1 and an action-only feature map φ2. In this case, one
can construct the joint state-action feature by φ(s, a) =
φ1(s)φ2(a). As long as the MDP admits a linear transition
model in both φ1, φ2, it also admits a linear representation
in the product feature φ = φ1 × φ2.

Remark 3 (Relation to soft state aggregation). The feature-
based linear transition model (Definition 1) contains a worth-
noting special case. When each φ(s, a) ∈ RK and ψk ∈ RS
is a probability density function, the linear transition model
reduces to a soft state aggregation model (Singh et al., 1995;
Duan et al., 2018). In the soft state aggregation model,
each state can be represented by a mixture of latent meta-
states, through aggregation and disaggregation distributions.
There would be K meta-states, which can be viewed as the
leading “modes” of the process. In contrast, our feature-
based transition model is much more general. Our feature
map φ can be anything as long as it is representative of the
transition distributions. It captures information about not
only the states but also the actions.

2.3. Relation to Linear Q-function Model

Linear models are commonly used for approximating value
functions or Q-functions using given features (sometimes
referred to as basis functions). The proposed linear transi-
tion model is closely related to the linear Q-function model,
where Qπ’s are assumed to admit a linear representation.

First it is easy to see that if the MDP admits a linear transi-
tion model using φ, the Q-functions admit a linear model.

Proposition 1. Let M ∈ Mtrans(S,A, γ, φ). Then Qπ ∈
Span(r, φ) for all π.

Next we show that the two models are essentially “equiva-
lent” in terms of expressibility. A similar conclusion was
made by Parr et al. (2008), which showed that a particular

solution obtained using the linear value model is equivalent
to a solution obtained using a linear transition model. Re-
call a notion of Bellman error that was firstly introduced in
(Munos & Szepesvári, 2008).

Definition 2 (Bellman Error). Let F ⊂ RS×A be a class
of Q functions. Given the Bellman operator T , the Bellman
error of F is d(T F ,F) = supg∈F inff∈F ‖f − T g‖.

We show that the linear transition model is equivalent to the
linear Q-function model with zero Bellman error.

Proposition 2 (Equivalence to Zero Bellman Error). Let
M = (S,A, P, r, γ) be an MDP instance with the Bellman
operator T . Let φ : RS×A be a feature map, and let F =
Span(r, φ). If r ∈ F , then

d(T F ,F) = 0 if & only if M ∈Mtrans(S,A, γ, φ).

Suppose Qπ ∈ Span(r, φ) for all π’s. However, value-
iteration-based method would still fail if the Bellman opera-
tor T does not preserve the (r, φ) representation. In contrast,
if the Q-functions admit linear representations using φ but
the transition kernel P does not, the Bellman error can be
arbitrarily large. The Bellman error may be large even after
projection or function fitting - a common source of unstable
and oscillating behaviors in approximate dynamic program-
ming (Tsitsiklis & Van Roy, 1996; Munos & Szepesvári,
2008).

3. Information-Theoretic Sample Complexity
Let us study the feature-based MDP model (Definition 1). It
comes with the structural knowledge that each state-action
pair (s, a) can be represented by the feature vector φ(s, a) ∈
RK . However, this model can not be parameterized by a
small number of parameters. The full transition model with
known feature map φ can not be specified unless all the
unknown parameters ψk(s′), for s′ ∈ S, k ∈ [K] are given.
Its model size is S ×K, which can be arbitrarily large for
arbitrarily large S.

Given the state-action features, we aim to learn a near-
optimal parametrized policy using a small number of sam-
ples, which hopefully depends onK but not S. Suppose that
we are given a generative model (Kakade, 2003) where the
agent is able to query transition samples and reward from
any state-action pair (s, a) ∈ S × A. Such a generative
model is commonly available in simulation systems. To this
end, we ask how many samples are necessary to obtain an
approximate-optimal policy? Our first theorem provides a
firm answer.

Theorem 1 (Sample Complexity Lower Bound). Let M =
(S,A, P, r, γ) be an instance of DMDP, and let A be any
algorithm that queries sample transitions of M and outputs
a policy. Let πA,M,N be the output of A using N samples.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Then

inf
A

sup
M∈Mtrans

K (S,A,γ)

P
(

sup
s∈S

(v∗(s)− vπ
A,M,N

(s)) ≥ ε
)

≥ 1/3, if N = O

(
K

(1− γ)3 · ε2 · log ε−1

)
,

provided ε ≤ ε0 for some ε0 ≥ 0.

Theorem 1 suggests that, in order to solve the feature-based
MDP to precision level ε with probability at least 2/3, any

algorithm needs at least Ω̃

(
K

(1−γ)3·ε2

)
sample transitions

in the worst case.

In the tabular setting without any feature, the sample com-
plexity lower bound is known to be Ω(SA

(1−γ)3ε2) (Azar et al.,
2013). Our lower bound can be proved by constructing a
reduction from the feature-based model to a smaller-size
tabular MDP with K state-action pairs. In the reduction, the
features are constructed as indicator functions correspond-
ing to a K-partition of the state space. We postpone the
proof to the appendix.

4. A Basic Parametric Q-Learning Method
We develop a Q-learning algorithm for MDP admitting fea-
ture representations provided with a generative model.

4.1. Algorithm

Recall that phased Q-Learning (Kearns & Singh, 1999) takes
the form Q(s, a) ← r(s, a) + γ

m

∑m
i=1 maxa′ Q(s′i, a

′),
where s′i’s are sample states generated from P (· | s, a). In
the tabular setting, one needs to keep track of all the Q(s, a)
values.

Given the feature map φ : S ×A → RK , we parameterize
the Q-functions, value functions and policies using w ∈ RK
by

Qw(s, a) := r(s, a) + γφ(s, a)>w, (1)
Vw(s) := max

a∈A
Qw(s, a), (2)

πw(s) := arg max
a∈A

Qw(s, a). (3)

A scalable learning algorithm should keep track of only
the parameters w, from which one can decode the high-
dimensional value and policy functions according to (1-3).

Algorithm 1 gives a parametric phased Q-learning method.
It queries state-action transitions and makes Q-learning-like
updates on the parameter w. Each iteration picks a small
set of state-action pairs K, and performs approximate value
iteration on K. The set K can be picked almost arbitrarily.
To obtain a convergence bound, we assume that the state-
action pairs in K cannot be too alike, i.e., the regularity
condition (4) holds for some value L > 0.

Assumption 1 (Representative States and Regularity of
Features). There exists a representative state-action set
K ⊂ S ×A with |K| = K and a scalar L > 0 such that

‖φ(s, a)TΦ−1
K ‖1 ≤ L, ∀ (s, a) (4)

where ΦK ∈ RK×K is the collection of row feature vectors
φ(s, a) where (s, a) ∈ K and L ≥ 1.

Algorithm 1 Phased Parametric Q-Learning (PPQ-
Learning)

1: Input: A DMDPM = (S,A, P, r, γ) with a genera-
tive model

2: Input: Integer N > 0
3:
4: Initialize: R← Θ

[
logN
1−γ

]
, w ← 0 ∈ RK ;

5: Repeat:
6: for t = 1, 2, . . . , R do
7: Pick a representative set K ⊂ S ×A satisfying (4).
8: Q← 0 ∈ RK ;
9: for (s, a) ∈ K do

10: Obtain N
KR samples {s(j)} i.i.d. from P (·|s, a);

11: Q[(s, a)]← KR
N

∑N/KR
j=1 Π[0,(1−γ)−1][Vw(s(j))];

12: . Π[a,b] projects a number onto [a, b]

13: end for
14: w ← Φ−1

K Q;
15: end for
16: Output: w ∈ RK

4.2. Error Bound and Sample Complexity

We show that the basic parametric Q-learning method enjoys
the following error bound.

Theorem 2 (Convergence of Algorithm 1). Suppose As-
sumption 1 holds. Suppose that the DMDP instance M =
(S,A, P, r, γ) has an approximate transition model P̃ that
admits a linear feature representation φ (Defn. 1), such
that for some ξ ∈ [0, 1], ‖P (· | s, a)− P̃ (· | s, a)‖TV ≤ ξ,
∀ (s, a). Let Algorithm 1 takes N > 0 samples and outputs
a parameter w ∈ RK . Then, with probability at least 1− δ,
‖vπw − v∗‖∞

≤ L ·
(√

K

N · (1− γ)
+ ξ

)
· poly log(NKδ−1)

(1− γ)3
.

Remark 4 (Policy optimality guarantee). Our bound ap-
plies to vπw , i.e., the actual performance of the policy πw
in the real MDP. It is for the `∞ norm, i.e., the policy is
ε-optimal from every initial state. This is the strongest form
of optimality guarantee for solving MDP.

Remark 5 (Approximation error due to model misspec-
ification). When the feature-based transition model is inex-
act up to ξ total variation, there is an approximation gap in

Sample-Optimal Parametric Q-Learning with Linear Transition Models

the policy’s performance O
[
L · ξ · poly log(NKδ−1)

(1−γ)3

]
. It sug-

gests that, even if the observed feature values φ(s, a) cannot
fully express the state and action, the Q-learning method can
still find approximate-optimal policies. The level of degra-
dation depends on the total-variation divergence between
the true transition distribution and its closest feature-based
transition model.

Remark 6 (Sample complexity of Algorithm 1). When
the MDP is fully realizable under the features, we have
ξ = 0. Then the number of samples needed for achieving ε
policy error is

Õ

[
KL2

(1− γ)7ε2

]
.

It is independent of size of the original state space, but de-
pends linearly on K. Its dependence on 1

1−γ matches the
tabular phased Q-learning (Kearns & Singh, 1999) which
has complexityO(SA

(1−γ)7ε2) (Sidford et al., 2018a). Despite
the fact that the MDP model has S ×K unknown parame-
ters, the basic parametric Q-learning method can produce
good policies even with small data. However, there remains
a gap between the current achievable sample complexity
(Theorem 2) and the lower bound (Theorem 1).

5. Sample-Optimal Parametric Q-Learning
In this section we will accelerate the basic parametric Q-
learning algorithm to maximize its sample efficiency. To do
so, we need to modify the algorithm in nontrivial ways in
order to take full advantage of the MDP’s structure.

5.1. Anchor States and Monotonicity

In order to use samples more efficiently, we need to leverage
monotonicity of the Bellman operator (i.e., T v1 ≤ T v2 if
v1 ≤ v2). However, when the Q function is parameterized
as a linear function in w, noisy updates on w may easily
break the pointwise monotonicity in theQ space. To remedy
this issue, we will impose an additional assumption to ensure
that monotonicity can be preserved implicitly.

Assumption 2 (Anchor State-Action Pairs). There exists a
set of anchor state-action pairs K such that for any (s, a) ∈
S × A, its feature vector can be represented as a convex
combination of the anchors {(sk, ak) | k ∈ K}:

∃{λk} : φ(s, a) =
∑
k∈K

λkφ(sk, ak),
∑
k∈K

λk = 1, λk ≥ 0.

The anchoring (sk, ak)’s can be viewed as “vertices” of the
state-action space. They imply that the transition kernel P
admits a nonnegative factorization, which can be seen by
transforming φ linearly such that each anchor corresponds
to a unit feature vector. This implicit non-negativity is a key
to pointwisely monotonic policy/value updates.

The notion of “anchor” is a natural analog of the anchor
word condition from topic modeling (Arora et al., 2012) and
nonnegative matrix factorization (Donoho & Stodden, 2004).
A similar notion of “anchor state” has been studied in the
context of soft state aggregation models to uniquely identify
latent meta-states (Duan et al., 2018). Under the anchor
assumption, without loss of generality, we will assume that
φ’s are nonnegative, each φ(s, a) is a vector of probabilities,
and there are K anchors with unit feature vectors.

5.2. Achieving The Optimal Sample Complexity

We develop a sample-optimal algorithm which is imple-
mented in Algorithm 2. Let us explain the features that
enable it to find more accurate policies. Some of the ideas
are due to (Sidford et al., 2018b;a), where they were used to
develop fast solvers for the tabular MDP.

Parametrization. For the purpose of preserving monotonic-
ity, Algorithm 2 employs a new parametric form. It uses a
collection of parameters θ = {w(i)}Zi=1 instead of a single
vector, with Z = Õ(1

1−γ). The parameterized policy and
value functions take the form

Vθ(s) := max
h∈[Z]

max
a∈A

(
r(s, a) + γφ(s, a)> · w(h)

)
and

πθ(s) ∈ arg max
a∈A

max
h∈[Z]

(
r(s, a) + γφ(s, a)> · w(h)

)
. (5)

Given θ, one can compute Vθ(s), πθ(s) by solving an one-
step optimization problem. If a takes continuous values, it
needs to solve a nonlinear optimization problem.

Computing confidence bounds. In Step 13 and Step 18,
the algorithm computes confidence bounds ε(i,j)’s for the
estimated values of PVθ. These bounds tightly measure
the distance from Vθ to the desired solution path, accord-
ing to probaiblistic concentration arguments. With these
bounds, we can precisely shift our estimator downwards so
that certain properties would hold (e.g. monotonicity to be
explained later) while not incurring additional error.

Monotonicity preservation. The algorithm guarantees that
the following condition holds throughout:

Vθ ≤ TπθVθ, pointwise.

We call this property the monotonicity property, which to-
gether with monotonicity of the Bellman operator guaran-
tees that (by an induction proof)

Vθ ≤ TπθVθ ≤ T 2
πθ
Vθ ≤ · · · ≤ T ∞πθ Vθ = vπθ ≤ v∗,

pointwise.

Algorithm 2 uses two algorithmic tricks to preserve the
monotonicity property throughout the iterations. First, the
parametric forms of Vθ and πθ (eq.(5)) take the maximum
across all previous parameters (indexed by h = (i, j)). It

Sample-Optimal Parametric Q-Learning with Linear Transition Models

guarantees that Vθ is monotonically improving through-
out the outer and inner iterations. Second, the algorithm
shifts all the estimated Vθ downwards by a term corre-
sponding to its confidence bound (last equation of Line
13 and Line 18 of Algorithm 2). As a result, the esti-
mated expectation is always smaller than the true expected
value. By virtue of the nonnegativity (due to Assumption
2), the estimate, φ(s, a)>w(i,j), of the exact inner product
P (·|s, a)>V (i,j−1) for arbitrary (s, a) is also shifted down-
wards. Then we have

φ(s, a)>w(i,j) ≤ P (·|s, a)>V (i,j−1) ≤ P (·|s, a)>V (i,j).

By maximizing the lefthandside over a, we see that the
monotonicity property is preserved inductively. See Lemma
8 for a more detailed proof.

Variance reduction. The algorithm uses an outer loop and
an inner loop for approximately iterating the Bellman op-
erator. Each outer iteration performs pre-estimation of a
reference vector PVθ(i,0) (Step 13), which is used through-
out the inner loop. For instance, let θ(i,j) be the parameters
at outer iteration i and inner iteration j. To obtain an en-
try Q(i,j)(s, a) of the new Q-function, we need to estimate
P (·|s, a)>Vθ(i,j−1) with sufficient accuracy, so we have

P (·|s, a)>Vθ(i,j−1) = P (·|s, a)>(Vθ(i,j−1) − Vθ(i,0))
+ P (·|s, a)>Vθ(i,0) .

Note that the reference P (·|s, a)>Vθ(i,0) is already approxi-
mated with high accuracy in Step 13. This allows the inner
loop to successively refine the value and policy, while each
inner iteration uses a smaller number of sample transitions
to estimate the offset P (·|s, a)>(Vθ(i,j−1) − Vθ(i,0)) (Step
18).

Putting together the preceding techniques, Algorithm 2 per-
forms carefully controlled Bellman updates so that the esti-
mated value-policy functions monotonically improve to the
optimal ones. The algorithm contains R′ = Θ(log[ε−1(1−
γ)−1]) many outer loops. Each outer loop (indexed by i)
starts with a policy ‖v∗ − Vθ(i,0)‖∞ . H/2i and ends with
a policy ‖v∗ − Vθ(i+1,0)‖∞ . H/2i+1.The algorithm takes
multiple rounds of mini-batches, where the sample size of
each mini-batch is picked just enough to guarantee the ac-
cumulation of total error is within ε. The algorithm fully
exploits the monotonicity property of the Bellman operator
as well as the error accumulation in the Markov process (to
be explained later in the proof outline).

5.3. Optimal Sample Complexity Guarantee

In this section, we analyze the sample complexity of the
algorithm provided in the last section.

Theorem 3 (Near-Optimal Sample Complexity). Suppose
M = (S,A, P, r, γ) is an MDP instance admitting the

feature representation φ : S × A → RK . Suppose that
Assumption 2 holds. Let δ, ε ∈ (0, 1) be parameters. Then
Algorithm 2 takes

N = Θ

[
K

(1− γ)3 · ε2
· log4/3 K

εδ(1− γ)
· log2 1

ε(1− γ)

]
samples and outputs θ such that πθ is ε-optimal from every
initial state with probability at least 1− δ.

Theorem 3 is proved through a series of lemmas, which we
defer to the appendix. Here we sketch the key ideas.

Proof Sketch. Let H = 1
1−γ for short. Each outer-loop

iteration decreases the policy error upper bound by at least
half. Suppose θ(i,0) is the parameter when the ith outer
iteration begins, we expect ‖Vθ(i,0) − v∗‖∞ ≤ H/2i, with
high probability. Therefore, after R′ = log(H/ε) iterations,
we expect ‖Vθ(R′,0) − v∗‖∞ ≤ H/2R

′
= O(ε).

Now we analyze how many samples are sufficient within one
outer-loop iteration. We show that the final error is mainly
due to ε(i,0), which comes from estimating the reference
function Vθ(i,0) (Line 13). This error is exemplified in the
inner loop since Vθ(i,0) is used repeatedly (line 18).

A key step of the proof is to show that the error contributed
by ε(i,0) throughout the inner-loop iterations is small. By
using the monotonicity property, we can show that

ε(i,0)(s, a) .
√
σv∗(s, a)/m, ∀ (s, a),

where . denotes “approximately less than” (ignoring non-
leading terms), and σv∗ : S×A → R is an intrinsic variance
function of the MDP:

σv∗(s, a) := Vars′∼P (·|s,a)

[
v∗(s′)

]
.

By using the monotonicity property, we prove by induction:

v∗ − vπθ(i,R) ≤ v∗ − Vθ(i,R) . γPπ
∗
(v∗ − Vθ(i,R−1)) + ε

(i,0)
π∗

. . . . ≤ γR(v∗ − Vθ(i,0)) +

R∑
i=0

γi(Pπ
∗
)iε

(i,0)
π∗

. (I − γPπ
∗
)−1ε

(i,0)
π∗

. (I − γPπ
∗
)−1
√
σπ
∗
v∗ /
√
m, pointwise w.h.p.,

where σπ
∗

v∗ (s) = σv∗(s, π
∗(s)), ε(i,0)

π∗ (s) = ε(i,0)(s, π∗(s)),
and m is the mini-batch size. Now we have found a connec-
tion between the error accumulation of the algorithm and
the intrinsic variance of the MDP. By a form of conditional
law of total variance of the Markov process (Lemma 7) and
using the convex combination property (Assumption 2), one
has

(I − γPπ
∗
)−1
√
σπ
∗
v∗ = Õ

(√
H3
)
· 1.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Algorithm 2 Optimal Phased Parametric Q-Learning (OPPQ-Learning)
1: Input: A DMDPM = (S,A, P, r, γ) with anchor state-action pairs K; feature map φ : S ×A → R;
2: Input: ε, δ ∈ (0, 1)
3: Output: θ ⊂ RK with |θ| = Θ[(1− γ)−1 log2 ε−1]
4:
5: Initialize: R′ ← Θ(log[ε−1(1− γ)−1]), R← Θ[R′(1− γ)−1] . initialize the numbers of iterations
6: {w(i,j), ε(i,j), w(i,j)}i∈[0,R′],j∈[0,R] ⊂ RK as 0 vectors . initialize parameters

7: m← C · 1
ε2 ·

log(R′RKδ−1)4/3

(1−γ)3 , . mini-batch size for outer loop

m1 ← C · log(R′RKδ−1)
(1−γ)2 for some constant C; . mini-batch size for inner loop

8: θ(0,0) ← {0} ⊂ RK . initialize the output to contain a single 0-vector
9: Iterates:

10: . Outer loop
11: for i = 0, 1, . . . , R′ do
12: for each k ∈ [K] do
13: Obtain state samples x(1)

k , x
(2)
k , . . . , x

(m)
k ∈ S from P (·|sk, ak) for (sk, ak) ∈ K. Let

w(i,0)(k)← 1

m

m∑
`=1

Vθ(i,0)(x
(`)
k), z(i,0)(k)← 1

m

m∑
`=1

V 2
θ(i,0)(x

(`)
k)

. empirical esitimate of PKVθ(i,0) and PKV 2
θ(i,0)

σ(i,0)(k)← z(i,0)(k)− (w(i,0)(k))2

. empirical esitimate of variance PKV 2
θ(i,0) − (PKVθ(i,0))

2

ε(i,0)(k)← Θ
[√

log[R′RKδ−1] · σ(i,0)(k) ·m−1 + log[R′RKδ−1](1− γ)−1/m3/4
]

. estimate of the confidence bound of the emprical estimator w(i,0)

w(i,0)(k)← max
{

0, min
{
w(i,0)(k)− ε(i,0)(k), (1− γ)−1}} . shift and clip the estimate

14: end for
15: . Inner loop
16: for j = 1, 2, . . . , R do
17: for each k ∈ [K] do
18: Obtain state samples x(1)

k , x
(2)
k , . . . , x

(m1)
k ∈ S from P ′(·|sk, ak) for (sk, ak) ∈ K. Let

w(i,j)(k)← 1

m1

m∑
`=1

(
Vθ(i,j−1)(x

(`)
k)− Vθ(i,0)(x

(`)
k)
)

+ w(i,0)(k) . empirical esitimate of PKVθ(i,j−1)

ε(i,j)(k)← ε(i,0)(k) + Θ(1− γ)−12−i
√

log(RR′Kδ−1)/m1

. approximate the confidence bound of PKVθ(i,j−1)

w(i,j)(k)← max
{

0, min
{
w(i,j)(k)− ε(i,j)(k), (1− γ)−1}} . shift and clip the estimate

19: end for
20: θ(i,j) ← θ(i,j−1) ∪ {w(i,j)} . attach the newly estimated parameter to θ
21: end for
22: θ(i+1,0) ← θ(i,R) . prepare the next outer loop
23: end for
24: Return θ(R′,R)

Therefore the inner loop accumulates error Õ(
√
H3/m),

so m = O(H3) = O((1 − γ)−3) number of samples is
enough.

Finally, we prove by induction that all the desired events
happen with sufficiently high probability, so that the iter-
ates improve monotonically to the optimal solution within a
sequence of carefully controlled error bars. The total num-
ber of outer iterations is nearly constant, therefore the total
sample size needed scales with O((1− γ)−3).

Remark 7 (Sample Optimality of Algorithm 2). Theo-
rem 3 matches the information-theoretic lower bound of
Theorem 1 up to polylog factors with respect to all parame-
ters S,A,K, ε, 1− γ (note that Theorem 1 still holds under
the anchor restriction). Therefore it is a sample-optimal
method for solving the feature-based MDP. No other method
can outperform it by more than polylog factors.

Remark 8 (About Anchor State-Actions). The proof of
Theorem 3 relies on the anchor assumption. The monotonic-

Sample-Optimal Parametric Q-Learning with Linear Transition Models

ity property can be preserved because the anchor state-action
pairs imply an implicit non-negative factorization of the tran-
sition kernel. The convex combination property of anchor
state-actions is used in analyzing the error accumulation,
needed by the conditional law of total variance. Anchor
condition is commonly believed to be a key to identifying
nonnegative models; see for example (Donoho & Stodden,
2004). We believe this is the first observation that it also
relates to sample-optimal reinforcement learning.

Note that it is possible that the number of anchors is greater
than the number of features K, then one can append new
(dependent) features to make them equal. In this sense As-
sumption 2 always holds and the actual sample complexity
depends on the number of anchors (instead of features). In
addition, the anchors can be pre-computed as long as the φ
feature map is known.
Remark 9 (Significance of (1−γ)−4 Improvement). Let
us compare the sample complexities of Algorithms 1, 2.
They differ by a multiplicative gap (1− γ)−4. Recall that
γ ∈ (0, 1) is the discount factor. One can view (1− γ)−1 =
1 + γ + γ2 + · · · as an approximate horizon. If γ = 0.99,
the MDP essentially has 100 time steps, and

(1− γ)−4 = 108,

i.e., Algorithm 2 is 108 times faster. It only needs a tiny
portion (1/108) of the samples as needed by the basic algo-
rithm. We see that clever algorithmic usage of monotonicity
and variance structures of the MDP saves big.

6. Related Literatures
There is a body of works studying the sample complexity of
tabular DMDP (i.e., the finite-state finite-action case without
structural knowledge). Sample-based algorithms for learn-
ing value and policy functions have been studied in Kearns
& Singh (1999); Kakade (2003); Singh & Yee (1994); Azar
et al. (2011b; 2013); Sidford et al. (2018b;a) and many oth-
ers. Among these papers, Azar et al. (2013) obtains the first
tight sample bound for finding an ε-optimal value function,
Sidford et al. (2018a) obtains the first tight sample bound
for finding an ε-optimal policy; both complexities are of the
form Õ[|S||A|(1− γ)−3]. Lower bounds have been shown
in Azar et al. (2011a); Even-Dar et al. (2006) and Azar et al.
(2013). Azar et al. (2013) gives the first tight lower bound
Ω[|S||A|(1− γ)−3].

Our result is relevant to the large body of works using lin-
ear models and basis functions to approximate value and Q
functions. For instance, Tsitsiklis & Van Roy (1997); Nedić
& Bertsekas (2003); Lagoudakis & Parr (2003); Melo et al.
(2008); Parr et al. (2008); Sutton et al. (2009); Lazaric et al.
(2012); Tagorti & Scherrer (2015) and Maei et al. (2010)
studies both policy evaluation and optimization by assum-
ing values are from a linear space. Tsitsiklis & Van Roy

(1997) studied the convergence of the temporal-difference
learning algorithm for approximating the value function for
a fixed policy. Nedić & Bertsekas (2003) studies the policy
evaluation problem using least square. Parr et al. (2008)
studies the relationships of using linear functions to repre-
sent values and to represent transition models. Melo et al.
(2008) studies the almost sure convergence of Q-learning-
like methods using linear function approximation. Sutton
et al. (2009) shows off-policy temporal-difference learning
is convergent with linear function approximation. These
earlier works primarily focused on convergence using lin-
ear function approximation, without analyzing the sample
complexity.

Fitted value iteration (VI) applies to more general function
approximators of the value function (Munos & Szepesvári,
2008; Antos et al., 2008a; Farahmand et al., 2010; An-
tos et al., 2008b), where v is approximated within a low-
dimensional function space F . They have shown that the
error of the fitted-VI is affected by the Bellman error of the
space F . Their result applies to a general set of functional
spaces, where the statistical error depends on a polynomial
of 1/ε, 1/(1 − γ) and the intrinsic dimension of the func-
tional space. It appears that their result works for the `p
norm of the policy error, which is proportional to ε−Θ(p)

with high probability. Their result does not apply to the `∞
policy error which is the focus of the current paper.

More recently, Lazaric et al. (2012); Tagorti & Scherrer
(2015) analyzes the sample complexity of temporal differ-
ence least square for evaluating a fixed policy. Recently, a
work by Jiang et al. (2017) studies the case when a form of
Bellman error’ is decomposable and has a small rank. They
show that the number of trajectories needed depends on the
Bellman rank rather than the number of states. Chen et al.
(2018) proposes a primal-dual method for policy learning
that uses linear models and state-action features for both the
value and state-action distribution. To our best knowledge,
there is no existing result that solves the linear-model MDP
with provable-optimal sample complexity.

7. Remarks
The paper studies the information-theoretic sample com-
plexity for solving MDP with feature-based linear transition
model. It provides the first sharp sample complexity upper
and lower bounds for learning the policy using a genera-
tive model. It also provides a sample-optimal parametric Q-
learning method that involves computing confidence bounds,
variance reduction and monotonic improvement. We hope
that establishing sharp results for the basic linear model
would shed lights on more general structured models and
motivate faster solutions.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Acknowledgment
We thank Zhuoran Yang for pointing out a flaw in the initial
proof of Proposition 2. We thank the anonymous reviewers
for the helpful comments.

References
Antos, A., Szepesvári, C., and Munos, R. Fitted Q-iteration

in continuous action-space mdps. In Advances in neural
information processing systems, pp. 9–16, 2008a.

Antos, A., Szepesvári, C., and Munos, R. Learning
near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008b.

Arora, S., Ge, R., and Moitra, A. Learning topic models–
going beyond svd. In Foundations of Computer Science
(FOCS), 2012 IEEE 53rd Annual Symposium on, pp. 1–
10. IEEE, 2012.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen,
H. Reinforcement learning with a near optimal rate of
convergence. 2011a.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen,
H. Speedy q-learning. In Advances in neural information
processing systems, 2011b.

Azar, M. G., Munos, R., and Kappen, H. J. Minimax pac
bounds on the sample complexity of reinforcement learn-
ing with a generative model. Machine learning, 91(3):
325–349, 2013.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-
inforcement learning in rich-observation mdps using spec-
tral methods. arXiv preprint arXiv:1611.03907, 2016.

Bertsekas, D. P. Dynamic programming and optimal control,
volume 1. Athena scientific Belmont, MA, 2005.

Chen, Y., Li, L., and Wang, M. Scalable bilinear pi learning
using state and action features. In Proceedings of the
35th International Conference on Machine Learning, pp.
834–843, Stockholmsmssan, Stockholm Sweden, 10–15
Jul 2018. PMLR.

Donoho, D. and Stodden, V. When does non-negative matrix
factorization give a correct decomposition into parts? In
Advances in neural information processing systems, pp.
1141–1148, 2004.

Duan, Y., Ke, Z. T., and Wang, M. State aggregation
learning from markov transition data. arXiv preprint
arXiv:1811.02619, 2018.

Even-Dar, E., Mannor, S., and Mansour, Y. Action elimina-
tion and stopping conditions for the multi-armed bandit
and reinforcement learning problems. Journal of machine
learning research, 7(Jun):1079–1105, 2006.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error
propagation for approximate policy and value iteration.
In Advances in Neural Information Processing Systems,
pp. 568–576, 2010.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 1704–1713. JMLR. org, 2017.

Kakade, S. M. On the sample complexity of reinforcement
learning. PhD thesis, University of London London,
England, 2003.

Kearns, M. J. and Singh, S. P. Finite-sample convergence
rates for q-learning and indirect algorithms. In Advances
in Neural Information Processing Systems, pp. 996–1002,
1999.

Lagoudakis, M. G. and Parr, R. Least-squares policy it-
eration. Journal of machine learning research, 4(Dec):
1107–1149, 2003.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Finite-
sample analysis of least-squares policy iteration. Jour-
nal of Machine Learning Research, 13(Oct):3041–3074,
2012.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton,
R. S. Toward off-policy learning control with function
approximation. In ICML, pp. 719–726, 2010.

Melo, F. S., Meyn, S. P., and Ribeiro, M. I. An analysis
of reinforcement learning with function approximation.
In Proceedings of the 25th international conference on
Machine learning, pp. 664–671. ACM, 2008.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(May):815–857, 2008.

Nedić, A. and Bertsekas, D. P. Least squares policy evalua-
tion algorithms with linear function approximation. Dis-
crete Event Dynamic Systems, 13(1-2):79–110, 2003.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and
Littman, M. L. An analysis of linear models, linear
value-function approximation, and feature selection for
reinforcement learning. In Proceedings of the 25th inter-
national conference on Machine learning, pp. 752–759.
ACM, 2008.

Sample-Optimal Parametric Q-Learning with Linear Transition Models

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving markov
decision processes with a generative model. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 31, pp. 5192–5202, 2018a.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving markov
decision processes. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 770–787. Society for Industrial and Applied Mathe-
matics, 2018b.

Singh, S. P. and Yee, R. C. An upper bound on the loss from
approximate optimal-value functions. Machine Learning,
16(3):227–233, 1994.

Singh, S. P., Jaakkola, T., and Jordan, M. I. Reinforce-
ment learning with soft state aggregation. In Advances
in neural information processing systems, pp. 361–368,
1995.

Sutton, R. S., Maei, H. R., and Szepesvári, C. A convergent
o(n) temporal-difference algorithm for off-policy learn-
ing with linear function approximation. In Advances in
neural information processing systems, pp. 1609–1616,
2009.

Tagorti, M. and Scherrer, B. On the rate of convergence and
error bounds for LSTD(λ). In International Conference
on Machine Learning, pp. 1521–1529, 2015.

Tsitsiklis, J. N. and Van Roy, B. Feature-based methods for
large scale dynamic programming. Machine Learning,
22(1-3):59–94, 1996.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. In
Advances in neural information processing systems, pp.
1075–1081, 1997.

