
SWALP: Stochastic Weight Averaging in Low-Precision Training

Guandao Yang 1 Tianyi Zhang 1 Polina Kirichenko 1 Junwen Bai 1

Andrew Gordon Wilson 1 Christopher De Sa 1

Abstract
Low precision operations can provide scalabil-
ity, memory savings, portability, and energy ef-
ficiency. This paper proposes SWALP, an ap-
proach to low precision training that averages low-
precision SGD iterates with a modified learning
rate schedule. SWALP is easy to implement and
can match the performance of full-precision SGD
even with all numbers quantized down to 8 bits,
including the gradient accumulators. Additionally,
we show that SWALP converges arbitrarily close
to the optimal solution for quadratic objectives,
and to a noise ball asymptotically smaller than
low precision SGD in strongly convex settings.

1. Introduction
Training deep neural networks (DNNs) usually requires a
large amount of computational time and power. As model
sizes grow larger, training DNNs more efficiently and with
less memory becomes increasingly important. This is espe-
cially the case when training on a special-purpose hardware
accelerator; such ML accelerators are in development and
used in industry (Jouppi et al., 2017; Burger, 2017). Many
ML accelerators have limited on-chip memory, and many
ML applications are memory bounded (Jouppi et al., 2017).
It is desirable to fit numbers that are frequently used during
the training process into the on-chip memory. One of the
useful techniques for doing this is low-precision computa-
tion, since using fewer bits to represent numbers reduces
both memory consumption and computational cost.

Training a DNN in low-precision usually results in worse
performance compared to training in full precision. Many
techniques have been proposed to reduce this performance
gap (Zhou et al., 2016; Wu et al., 2018; Banner et al., 2018;
Wang et al., 2018). One useful method is to compute for-
ward and backward propagation with low-precision weights

1Cornell University. Correspondence to: Guandao Yang
<gy46@cornell.edu>, Tianyi Zhang <tz58@cornell.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

and accumulate gradient information in higher precision
gradient accumulators (Courbariaux et al., 2015; Wu et al.,
2018; Wang et al., 2018). Recently, Wang et al. (2018)
showed that one could eliminate the performance gap be-
tween low-precision and high-precision training by quantiz-
ing all numbers except the gradient accumulator to 8 bits
without changing the network structure, establishing the
state-of-the-art result in low-precision training. Since gra-
dient accumulators are frequently updated during training,
it would be desirable to also represent and store them in
low-precision (e.g. 8 bits). In this paper, we will focus on
the setting where all numbers including the gradient accu-
mulators are represented in low precision during training.

Independently from low-precision computation, stochastic
weight averaging (SWA) (Izmailov et al., 2018a) has been
recently proposed for improved generalization in deep learn-
ing. SWA takes an average of SGD iterates with a modified
learning rate schedule and has been shown to lead to wider
optima (Izmailov et al., 2018a). Keskar et al. (2016) also
connect the width of the optimum and generalization per-
formance. A wider optimum is especially relevant in the
context of low-precision training as it is more likely to con-
tain high-accuracy low-precision solutions. Izmailov et al.
(2018a) also observed that SWA works well with a relatively
high learning rate and can tolerate additional noise during
training. Low-precision training, on the other hand, pro-
duces extra quantization noise during training and tends to
underperform when the learning rate is low. Moreover, by
averaging, one can combine weights that have been rounded
up with those that been rounded down during quantization.
For these reasons, we hypothesize that SWA can boost the
performance of low-precision training and that performance
improvement is more significant than in the case of SWA
applied to full-precision training.

In this paper, we propose a principled approach using
stochastic weight averaging while quantizing all numbers
including the gradient accumulator and the velocity vec-
tors during training. We prove that for quadratic objectives
SWALP can converge to the optimal solution as well as to a
smaller asymptotic noise ball than low-precision SGD for
strongly convex objectives. Figure 1 illustrates the intuition
behind SWALP. A quantized grid is only able to represent
certain suboptimal solutions. By averaging we find centred

SWALP: Stochastic Weight Averaging in Low Precision Training

Low-precision SGD Compute Weight Average

Representable Points in Low PrecisionSGD-LP TrajectorySWALP Solution

Figure 1. SWALP intuition. The trajectory of low-precision SGD,
with a modified learning rate, over the training objective (with
given contours), and the SWALP solution obtained by averaging.

solutions with better performance. Empirically, we demon-
strate that training with 8-bit SWALP can match the full
precision SGD baseline in deep learning tasks such as train-
ing Preactivation ResNet-164 (He et al., 2016) on CIFAR-10
and CIFAR-100 datasets (Krizhevsky & Hinton, 2009). In
summary, our paper makes the following contributions:

• We propose a principled approach to using stochastic
weight averaging in low-precision training (SWALP)
where all numbers including the gradient accumulators
are quantized. Our method is simple to implement and
has little computational overhead.

• We prove that SWALP can reach the optimal solution
for quadratic objectives with no loss of accuracy from
the quantization. For strongly convex objectives, we
prove that SWALP converges to a noise ball that is
asymptotically smaller than that of low-precision SGD.

• We show that our method can significantly reduce
the performance gap between low-precision and full-
precision training. Our experiment results show that 8-
bit SWALP can match the full-precision SGD baseline
on CIFAR-10 and CIFAR-100 with both VGG-16 (Si-
monyan & Zisserman, 2014) and PreResNet-164.

• We provide code at https://github.com/
stevenygd/SWALP.

2. Related Works
Low Precision Computation. Many works in low preci-
sion computation focus on expediting inference and reduc-
ing model size. Some compress trained models into low
precision (Han et al., 2015); others train models to produce
low-precision weights for inference (Hubara et al., 2016;
Zhu et al., 2016; Aojun Zhou, 2017). In contrast to works
that focus on inference (test) time low-precision computa-
tion, our work focuses on low-precision training. Prior work
on low precision training mostly explores two directions.
Some investigate different numerical representations and

quantization methods (Gupta et al., 2015; Köster et al., 2017;
Miyashita et al., 2016; Mellempudi et al., 2017; Wang et al.,
2018); others explore building specialized layers using low-
precision arithmetic (Wu et al., 2018; Rastegari et al., 2016;
Zhou et al., 2016; Courbariaux et al., 2015; Banner et al.,
2018). Our work is orthogonal to both directions since we
improve on the learning algorithm itself.

Stochastic Weight Averaging. Inspired by the geometry
of the loss function traversed by SGD with a modified learn-
ing rate schedule, Izmailov et al. (2018a) proposed Stochas-
tic Weight Averaging (SWA), which performs an equally
weighted average of SGD iterates with cyclical or high con-
stant learning rates. Izmailov et al. (2018a) develop SWA
for deep learning, showing improved generalization. While
our work is inspired by Izmailov et al. (2018a), we focus on
developing SWA for low-precision training.

Convergence Analysis. It is known that, due to quanti-
zation noise, low-precision SGD cannot necessarily pro-
duce solutions arbitrarily close to an optimum (Li et al.,
2017). A recently developed variant of low-precision SGD,
HALP (De Sa et al., 2018), has the ability to produce such
arbitrarily close solutions (for general convex objectives) by
dynamically scaling its low-precision numbers and using
variance reduction. We will show that SWALP can also
achieve arbitrarily close-to-optimal solutions (albeit only
for quadratic objectives), while being computationally sim-
pler. Li et al. (2017) analyze low-precision SGD, and even
provide a convergence bound for low precision SWA. How-
ever, they use SWA only as a theoretical condition, not as
a suggested algorithm. In contrast, we study SWA explic-
itly as a potential method that can improve low-precision
training, and we use the averaging to improve the bound on
the noise ball size. QSGD (Alistarh et al., 2017) studies the
convergence properties of using low-precision numbers for
communicating among parallel workers, and ZipML (Zhang
et al., 2017) investigates the convergence properties of end-
to-end quantization of the whole model. Our paper focuses
on convergence properties of low-precision SWA, which we
hope can be combined with these exciting prior works.

3. Methods
Izmailov et al. (2018a) show that SWA leads to a wider
solution, works well with a high learning rate, and is robust
toward training noise. These properties make SWA a good
fit for low precision training, since a wider optimum is more
likely to capture a representable solution in low precision,
and low-precision training suffers from low learning rate
and quantization noise. We will first introduce quantization
methods make training low-precision (Sec 3.1), then present
SWALP algorithm in Sec 3.2 and Sec 3.3.

https://github.com/stevenygd/SWALP
https://github.com/stevenygd/SWALP

SWALP: Stochastic Weight Averaging in Low Precision Training

3.1. Quantization

In order to use low-precision numbers during training, we
define a quantization function Q, which rounds a real num-
ber to be stored in fewer bits. In this paper, we use fixed-
point quantization with stochastic rounding to demonstrate
the algorithm and analyze its convergence properties. Re-
cently, many sophisticated quantization methods have been
proposed and studied (Miyashita et al., 2016; Köster et al.,
2017; Mellempudi et al., 2017; Courbariaux et al., 2014).
We will use block floating point (Song et al., 2017) in our
deep learning experiments (Sec 5).

Fixed Point Quantization. In stochastic rounding, num-
bers are rounded up or down at random such that E[Q(w)] =
w for all w that will not cause overflow. Explicitly, suppose
we allocate W bits to represent the quantized number and
allocate F of the W bits to represent the fractional part
of the number. The quantization gap δ = 2−F represents
the distance between successive representable fixed-point
numbers. The upper limit of the representable numbers is
u = 2W−F−1 − 2−F and the lower limit is l = −2W−F−1.
We write the quantization function asQδ : R→ R such that

Qδ(w) =

{
clip(δ

⌊
w
δ

⌋
, l, u) w.p.

⌈
w
δ

⌉
− w

δ

clip(δ
⌈
w
δ

⌉
, l, u) w.p. 1− (

⌈
w
δ

⌉
− w

δ)
(1)

where clip(x, l, u) = max(min(x, u), l). This quantiza-
tion method has been shown to be useful for theory (Li
et al., 2017) and has been observed to perform empirically
better than quantization methods without stochastic round-
ing (Gupta et al., 2015).

Block Floating Point (BFP) Quantization. Floating-point
numbers have individual exponents, and fixed-point num-
bers all share the same fixed exponent. For block floating-
point numbers, all numbers within a block share the same
exponent, which is allowed to vary like a floating-point
exponent. Suppose we allocate W bits to represent each
number in the block and F bits to represent the shared expo-
nent. The shared exponent E(w) for a block of numbers w
is usually set to be the largest exponent in a block to avoid
overflow (Song et al., 2017; Das et al., 2018). In our experi-
ments, we simulated block floating point numbers by using
the following formula to compute the shared exponent:

E(w) = clip(blog2(maxi |wi|)c ,−2F−1, 2F−1 − 1)

We then apply equation (1) with δ replaced by 2−E(w)+W−2

to quantize all numbers in w.

For deep learning experiments, BFP is preferred over fixed-
point because BFP usually has less quantization error caused
by overflow and underflow when quantizing DNN models
(Song et al., 2017). We will discuss how to design appro-
priate blocks in Sec 5, and show that choosing appropriate
block design can result in better performance.

Algorithm 1 SWALP

Require: Initial after-warm-up weight w0; learning rate
α; total number of iterations T ; cycle length c; random
gradient samples∇f̃(wt); quantization function Q.
w̄0 ← w0 {Accumulator for SWA (high precision)}
m← 1 {Number of models that have been averaged}
for t = 1, 2, . . . , T do do
wt ← Q(wt−1−α∇f̃t(wt−1)) {Training with weight
quantization; wt is stored in low precision}
if t ≡ 0 (mod c) then
w̄m ← (w̄m−1 ·m+ wt)/(m+ 1) {Update model
with weight averaging in high precision}
m← m+ 1 {Increment model count}

end if
end for
return w̄

3.2. Algorithm

In the warm-up phase, we first run regular low-precision
SGD to produce a pre-trained model w0. SWALP then
continues to run low-precision SGD, while periodically av-
eraging the current model weight into an accumulator w̄,
which SWALP eventually returns. A detailed description is
presented in Algorithm 1. SWALP is substantially similar to
the algorithm in Izmailov et al. (2018a), except that we use
a constant learning rate and low-precision SGD. The con-
vergence analysis in Sec 4 will be all based on Algorithm 1.

State-of-the-art low-precision training approaches usually
separate weights from gradient accumulators (Courbariaux
et al., 2015; Zhou et al., 2016; Wu et al., 2018; Wang et al.,
2018). Expensive computations in forward and backward
propagation are done with the low-precision weights (e.g., 8
bits), while the gradient information is accumulated onto a
higher precision copy of the weights (e.g. 16 bits). Formally,
the updating step with higher precision gradient accumula-
tor can be written as wt+1 = wt − α∇f̃t(Q(wt)), where
wt is the gradient accumulator and Q(wt) is the weight.
However, such an approach needs to store the high preci-
sion accumulators in low-latency memory (e.g. on-chip
when running on an accelerator), which limits the memory
efficiency. SWALP quantizes the gradient accumulator so
that we only need to store the low-precision model in low-
latency memory during training. Meanwhile, the averaged
model is accessed infrequently so that it can be stored in
higher-latency memory (e.g. off-chip when running on an
accelerator).

Note that in Algorithm 1, we only quantize the gradient
accumulator while leaving the quantization of the gradient,
the layer activations, and back-propagation signals in full
precision. In practice, however, it is desirable to quantize
all above mentioned numbers. We make this simplification

SWALP: Stochastic Weight Averaging in Low Precision Training

Algorithm 2 SWALP with all numbers quantized.

Require: L layers DNN {f1, . . . , fL}; Scheduled learning
rate αt; Momentum ρ; Initial weights w(i)

0 ,∀l ∈ [1, L];
Total iterations T ; Warm-up iterations S; Cycle length
c; Quantization functions QW , QA, QG, QE , and QM ;
Loss function L; Data batch sequence {(xi, yi)}Ti=1.
w̄

(l)
0 ← 0, ∀l ∈ [1, L]; m← 0

for t = 1, 2, . . . , T do
1. Forward Propagation:
a
(0)
t = xi
a
(l)
t = QA(fl(a

(l−1)
t , w

(l)
t)), ∀l ∈ [1, L]

2. Backward Propagation:
e
(L)
t = ∇

a
(L)
t
L(a

(L)
t , yt)

e
(l−1)
t = QE(

∂fl(a
(l)
t)

∂a
(l−1)
t

e
(l)
t), ∀l ∈ [1, L]

g
(l)
t = QG(∂fl

∂w
(l)
t

e
(l)
t), ∀l ∈ [1, L]

3. Low Precision SGD Update (with momentum):
v
(l)
t ← ρQM (v

(l)
t−1) + g

(l)
t , ∀l ∈ [1, L]

w
(l)
t ← QW (wt−1 − αtv(l)t), ∀l ∈ [1, L]

4. High Precision SWA Update:
if t > S and (t− S) ≡ 0 (mod c) then
w̄

(l)
m ← (w̄

(l)
m−1 ·m+ w

(l)
t)/(m+ 1), ∀l ∈ [1, L]

m← m+ 1
end if

end for
return w̄

for the convenience of the theoretical analysis in Sec 4, and
following previous theoretical works in this space (Li et al.,
2017; De Sa et al., 2018). We will discuss how to quantize
other numbers during training in the next section.

3.3. Quantizing Other Numbers

In order to train DNNs with low-precision storage, we need
to also quantize other numbers during training. We follow
prior convention to quantize the weights, activations, back-
propagation errors, and gradients signals (Wu et al., 2018;
Wang et al., 2018). Since we quantized the gradient accumu-
lators wt into low-precision, there is no need to differentiate
them from model weights. To use momentum during train-
ing, we need to store the velocity tensors in low precision,
so we modified the SGD update as follows:

vt = ρ ·QM (vt−1) +QG(∇f̃t(wt−1))

wt = QW (wt−1 − α · vt)

where QM , QG, and QW are quantizers for momentum,
gradients, and weights respectively. For simplicity, we set
QM = QG (i.e. both quantized to 8 bits). We describe the
details in Algorithm 2. Our deep learning experiments will
use Algorithm 2 unless specified otherwise.

Although SWA adds minor computation and memory over-
head by averaging weights, the fact that averaging could
be done infrequently (i.e. once per epoch) and that the
weight communication is one way (i.e. from accelerator to
host) makes it possible to separate the low-precision training
workload from the model averaging workload. We could
use hardware specialized for low-precision training to ac-
celerate the SGD and to occasionally ship the weights in
low precision to a separate device that computes weight
averaging. For instance, one could train the model in low
precision on a GPU, and the averaging could be computed
on a CPU once per epoch. However, in this paper, we will
focus on the statistical properties of SWALP and will leave
the hardware discussion to future work. Though the aver-
aging workload (i.e. Step(4) in algorithm 2) is typically
done in higher precision, we empirically show in Sec 5.1
that SWALP can achieve comparable performance when the
averaging is performed with low-precision computation.

4. Convergence Analysis
In this section, we analyze the convergence of SWALP
theoretically and compare it to SGD-LP. Specifically, we
first prove that SWALP can pierce the quantization noise
ball of SGD-LP and can converge to the optimal solution
for quadratic objectives (Sec 4.1). Then, we generalize
this theory to strongly convex objectives (Sec 4.2) where
we show that SWALP converges to a noise ball with better
asymptotic dependency on the number of bits compared to
SGD-LP. These results are empirically verified in Sec 4.3.

4.1. Convergence of SWALP for Quadratic Objectives

It is known that conventional low-precision SGD cannot ob-
tain arbitrarily accurate solutions to optimization problems
since it can only represent so much. If the optimal parameter
is not one of the representable low-precision numbers, then
the best SGD-LP can possibly do is to output the closest rep-
resentable number – and it is not even guaranteed to do this.
One recent algorithm, HALP, circumvents this problem by
dynamically re-centering and re-scaling the representable
numbers to produce arbitrarily accurate solutions with low
precision iterates (De Sa et al., 2018). In this subsection, we
will demonstrate that SWALP can also achieve this property
for quadratic objectives with a simple training procedure. A
detailed proof is included in the appendix.

Consider the quadratic objective function f(w) = 1
2 (w −

w∗)TA(w−w∗) for some symmetric matrixA ∈ Rd×d and
optimal solution w∗ ∈ Rd. Assume A � µI for some con-
stant µ > 0, the strong convexity parameter of this function.
Suppose that we want to minimize f using SWALP with gra-
dient samples ∇f̃(w) that satisfy E[∇f̃(w)] = ∇f(w) =
A(w − w∗). Suppose that the variance of these samples
always satisfies E[‖∇f̃(w) − ∇f(w)‖22] ≤ σ2 for some

SWALP: Stochastic Weight Averaging in Low Precision Training

constant σ > 0; this is a standard assumption used in the
analysis of SGD. Then we can prove the following.

Theorem 1. Suppose we run SWALP under the above as-
sumptions with cycle length c and 0 < α < 1

2‖A‖2. The
expected squared distance to the optimum of SWALP’s out-
put w̄ is bounded by

E
[
‖w̄ − w∗‖2

]
≤ ‖w0−w∗‖2

α2µ2T 2 +
c(α2σ2+ δ2d

4)

α2µ2T .

Theorem 1 shows that SWALP will converge to the optimal
solution at a O(1/T) rate. Since E[‖w̄T −w∗‖22] converges
to 0 regardless of what δ is, we can get an arbitrarily precise
solution no matter what numerical precision we use for
quantization is, as long as we train for enough iterations.
This result is surprising since SWALP has the same O(1/T)
asymptotic convergence rate as full precision SGD, even
though SWALP cannot even evaluate gradient samples at
points that are arbitrarily close to the optimal solution.

4.2. Convergence of SWALP for General Strongly
Convex Objectives

To generalize Theorem 1 from quadratic settings to strongly
convex settings, we want to construct a bound that is tight
with our bound in the quadratic case: one that depends on
how much the objective function differs from a quadratic.
A natural way to measure this is the Lipschitz constant M
of the second derivative of f , which is defined such that

∀x, y ∈ Rd, ‖∇2f(x)−∇2f(y)‖2 ≤M‖x− y‖2

where ‖ · ‖2 denotes the matrix induced 2-norm, and M = 0
only if f is a quadratic function.

We prove our result in two steps. First, we bound the tra-
jectory of low precision SGD within some distance of w∗

(a noise ball). Then, we leverage a method similar to the
proof of Theorem 1 to analyze the dynamics of SWALP,
keeping track of the effect caused by the function not being
quadratic as an extra error term that we bound in terms of
M . We give a tight bound that converges with an O(1/T)
rate to a noise ball with squared error proportional to M2.

Let f(w) be a function that is strongly convex with pa-
rameter µ, Lipschitz continuous with parameter L, and has
global minimum w∗. Assume that we run SWALP with
gradient samples ∇f̃t that satisfy E[∇f̃(w)] = ∇f(w).
Suppose the distance from the gradient samples to the ac-
tual gradient is bounded by some constant G such that
‖∇f̃t(w) − ∇f(w)‖ ≤ G for all points w that may ap-
pear in the course of execution. Similar to Sec 4.1, we
assume that no overflow happens during quantization.

Lemma 1. Under the above conditions, suppose that we

run low-precision SGD with step size α =
√

δ2d
G2 . Assume

δ is small enough so that it satisfies (1− 2αµ+ α2L)2 ≤

1− 2αµ and αµ < 1. If we run for T iterations such that
T ≥ 2G

µδ
√
d

log
(
µ‖w0−w∗‖2

44Gδ
√
d

)
, then for some fixed constant

χ that is independent of dimension and problem parameters,

E[‖wT − w∗‖4] ≤ χ2G2δ2d
µ2 .

Theorem 2. Suppose that we run SWALP under the above
conditions, with the parameters specified in Lemma 1. Also,
suppose that we first run a warm-up phase and start av-
eraging at some point w0 after enough iterations of low-
precision SGD such that the bound of Lemma 1 is already
guaranteed to apply for this and all subsequent iterates.
Let w̄ be the output of SWALP using cycle length c, and
γ = min(α2µ2c2, 1). The expected squared distance to the
optimum of the output of SWALP is bounded by

E[‖w̄ − w∗‖2] ≤ 3χ2M2G2δ2d
µ4 + 6G2c

µ2T + 528
√
dδG3c2

γµT 2 .

The first term 3χ2M2G2µ−4δ2d represents the squared er-
rors caused by the noise ball, the asymptotic accuracy floor
to which SWALP will converge given enough iterations. The
error caused by this noise ball is proportional to M2, which
measures how much the objective function differs from the
quadratic setting. The second and third term converge to 0
at a O(1/T) rate, which shows that the whole bound will
converge to the noise ball at a O(1/T) rate. Our proof lever-
ages some techniques used in prior work (Moulines & Bach,
2011). In particular, Moulines & Bach (2011) showed that
one could provide a better bound in SGD using M , the third
derivative of a strongly convex function. The proofs of our
results here are provided in detail in the appendix.

To the best of our knowledge, our result in Theorem 2 is the
tightest known bound for low precision SWA. Li et al. (2017)
also provide results analyzing a convergence bound for LP-
SGD with weight averaging, but their bound is proportional
to δ, whereas ours is proportional to δ2.1 If we consider
a fixed-point representation using F fractional bits, then
our bound is proportional δ2 = 2−2F whereas the bound
from prior work proportional to δ = 2−F . Asymptotically,
we can say that this halves the number of bits we need
to decrease the noise ball by some factor, compared with
the prior bound. As this prior bound also describes the
convergence behaviour, we can equivalently say that the
number of bits in SWALP has double the effect on the noise
ball, compared with SGD-LP.

To understand whether SWALP can achieve a better bound
than SGD-LP, we need to answer the following question:
can SGD-LP algorithm potentially achieve a better bound
than the O(δ) bound proved in Li et al. (2017)? In the
following theorem, we show that this is not possible:

1Although their bound is stated in terms of the objective gap
f(w̄T)− f(w∗) whereas ours is the squared distance to the opti-
mum, these metrics are directly comparable as they may differ by
at most a factor of µ: 2(f(w̄T)− f(w∗)) ≥ µ‖w̄T − w∗‖22.

SWALP: Stochastic Weight Averaging in Low Precision Training

Figure 2. Empirical verification of two theorems with linear regression and logistic regression. (Left) SWALP converges below the
quantization noise and to the optimal solution in linear regression; (Middle) SWALP can converge to a smaller noise ball than SGD-LP
and SGD; (Right) SWALP requires less than half of the float bits to achieve the same performance compared to SGD-LP.

Theorem 3. Consider the one-dimensional objective func-
tion f(x) = 1

2x
2 with gradient samples f̃ ′(w) = w + σu

where u ∼ N (0, 1). Compute wT recursively using the
quantized SGD updating step: wt+1 = Qδ(wt − αf̃ ′(wt)).
Then there exists a constant A > 0 such that for all step size
α > 0, we have limT→∞ E[w2

T] ≥ σδA.

The proof is provided in the appendix. Theorem 3 shows
that there exists a strongly convex objective function such
that E[(wT − w∗)2] ≥ O(δ). This shows that the asymp-
totic lower bound for low-precision SGD with the gradient
accumulator quantized at every step is O(δ), which is an
asymptotically worse bound compared to the O(δ2) bound
obtained for SWALP. Therefore, SWALP achieves a better
asymptotic dependency on the quantization gap δ.

4.3. Experimental validation

Linear regression. We will use linear regression on a syn-
thetic dataset to empirically verify Theorem 1. For details
on how we generate the synthetic dataset, please refer to
appendix. We train linear regression models using float
SGD (SGD-FL), float SWA (SWA-FL), low precision SGD
(SGD-LP), and SWALP. Low-precision models use 8-bit
fixed point numbers with 6 fractional bits (i.e., δ = 2−6).

The results are displayed in Figure 2 where we plot the
square distance between wt (or w̄t for SWALP) and the
optimal solution w∗. For reference, we also plot in Figure 2
the squared distance between Q(w∗) and w∗ to illustrate
the size of quantization noise. We observe that both SGD-
LP and SGD-FL converge to a noise ball, and SGD-LP’s
noise ball is further away from w∗ than SGD-FL’s noise
ball—indicating that we are operating in a regime where
quantization noise matters. SWA-FL and SWALP, on the
other hand, both converge asymptotically towards the op-
timal solution. Notably, SWALP pierces the quantization

noise ball and even outperforms Q(w∗).2 The asymptotic
convergence rate of SWALP and SWA-FL appears to be
the same, and both appear to follow a O(1/T) convergence
trajectory, which validates our results in Theorem 1.

Logistic regression. To empirically validate Theorem 2, we
use logistic regression with L2 regularization on the MNIST
dataset (LeCun et al., 1998). Following prior work (De Sa
et al., 2018; Johnson & Zhang, 2013), we choose 10−4

weight decay, which makes the objective a strongly convex
function with M 6= 0. Similarly to our linear regression ex-
periment, we use SGD-FL, SWA-FL, SGD-LP, and SWALP
to train logistic regression models. For this experiment, we
measure the norm of gradient at each iteration to illustrate
the convergence of the algorithm; this is a more useful met-
ric because MNIST is sparse and poorly conditioned, and
it is a metric that has been used for logistic regression on
MNIST in previous work (De Sa et al., 2018). For SWALP
and SGD-LP, we use 4-bit word length and 2-bit fractional
length. See appendix for detailed hyper-parameters.

In Figure 2, we again observe that SGD-LP converges to
a larger noise ball than SGD-FL, which is caused by the
additional quantization noise of low precision training. Both
SWA-FL and SWALP pierce the noise ball of SGD-FL.
However, unlike SWA-FL whose gradient norm appears to
converge to zero, SWALP still hits a noise ball, albeit one
that is much smaller than the one from SGD. This validates
Theorem 2, which predicts that SWALP will converge to a
noise ball when the problem setting is strongly convex yet
non-quadratic (i.e. M 6= 0).

Figure 2 also compares the training errors of logistic regres-
sion trained with different numbers of fractional bits, which
determine δ in the theorem. Both SGD-LP and SWALP are
trained with 2 integer bits and the same hyper-parameters,
but we vary the number of fractional bits. SWALP recovers

2Note that SWALP is able to do this because it represents the
averaged model in full precision.

SWALP: Stochastic Weight Averaging in Low Precision Training

Table 1. Test error (%) on CIFAR-10 and CIFAR-100 for VGG16 and PreResNet-164 trained in different quantization setting.
FLOAT 8-BIT BIG-BLOCK 8-BIT SMALL-BLOCK

DATASET MODEL SGD SWA SGDLP SWALP SGDLP SWALP

VGG16 6.81 ±0.09 6.51 ±0.14 8.23 ±0.08 7.36 ±0.05 7.61 ±0.15 6.70 ±0.12
CIFAR-10 PRERESNET-164 4.63 ±0.18 4.03 ±0.10 6.51 ±0.08 5.61 ±0.17 5.83 ±0.05 5.01 ±0.14

VGG16 27.23 ±0.17 25.93 ±0.21 30.56 ±0.67 28.66 ±0.17 29.59 ±0.32 26.65 ±0.29
CIFAR-100 PRERESNET-164 22.20 ±0.57 19.95 ±0.19 25.84 ±0.52 24.92 ±0.60 23.97 ±0.08 21.76 ±0.28

the performance of the full precision SGD model with only
4 fractional bits, while SGD-LP needs 10 bits to do so. This
result validates the claim that SWALP needs only half the
number of bits to achieve the same performance, which is
predicted by Theorem 2 in terms of the asymptotic upper
bound. Although our theory bounds the convergence in
terms of the training set, this conclusion still holds when
evaluated on MNIST test set (see appendix).

5. Experiments
In this section, we demonstrate the effectiveness of SWALP
on non-convex problems in deep learning.

Datasets. We use the CIFAR (Krizhevsky & Hinton, 2009)
and ImageNet (Russakovsky et al., 2014) datasets for our
experiments. Following prior work (Izmailov et al., 2018a;
Wu et al., 2018), we apply standard preprocessing and data
augmentation for experiments on CIFAR datasets. Prepro-
cessing and data augmentation for ImageNet are adapted
from the public PyTorch example (Paszke et al., 2017).

Architectures. We use the VGG-16 (Simonyan & Zisser-
man, 2014) and Pre-activation ResNet-164 (He et al., 2016)
on CIFAR datasets as in Izmailov et al. (2018a;b). For Ima-
geNet experiments, we use ResNet-18 (He et al., 2015b).

Block Design. Song et al. (2017) shows that appropri-
ate block assignments are essential to achieve good per-
formance with BFP. In our experiment, we will test two
block assignments: Big-block and Small-block. The Big-
block design puts all numbers within the same tensor into
the same block. For example, the activation of a convolu-
tion layer may have shape (B,C,W,H), and the Big-block
design assigns one shared exponent for B × C ×W ×H
numbers in this tensor. The Small-block design will follow
Song et al. (2017) and Zhou et al. (2016) except that we
assign only one exponent for the following tensors: 1) bias
in convolution and fully connected layers; 2) the learned
scaling parameter in batch normalization layers, and 3) the
learned shift parameter in batch normalization layers. We
empirically found that with these modifications, we can re-
duce memory consumption while regularizing the model.
Storing our VGG16 network in 32-bit float requires 53.33
MB memory, while using 8-bit Small-block BFP with 8-

bit shared exponents reduces this memory requirement to
14.59 MB. Moreover, Small-block design uses only 5.2 KB
more memory compared to the Big-block design, which
is a negligible overhead. In Sec 5.1, we will compare the
performance between these two block assignment methods.

5.1. CIFAR Experiments

We demonstrate how SWALP (Algorithm 2) is applied to
train DNNs in image classification tasks on CIFAR-10 and
CIFAR-100. To examine how the block design of BFP
affects performance, we train each network with both Big-
block and Small-block BFP. We use the reported hyper-
parameters in Izmailov et al. (2018a), for full-precision
SGD, SWA, and low-precision SGD runs. SWALP’s hyper-
parameters are obtained from grid search on a validation set.
Please see the Appendix for more detail.

Table 1 shows results for different combinations of archi-
tecture, dataset, and quantization method. First, the Small-
block model outperforms all the Big-block models by a
large margin. SWALP also consistently outperforms SGD-
LP across architectures and datasets, showing the promise
of SWA for low precision training in deep learning. Al-
though the performance of SWALP does not match that
of full precision SWA, the performance improvement of
SWALP over SGD-LP is larger than that of SWA over SGD.
For example, for VGG16 trained with 8-bit Small-block
BFP on CIFAR100, applying SWALP improves the SGD-
LP performance by 2.94% whereas the corresponding full-
precision improvement is only 1.3%. Notably, the perfor-
mance of SWALP for VGG16 and PreResNet-164 trained
with Small-block BFP can match that of full-precision SGD.
On CIFAR-100 dataset, SWALP with Small-block BFP even
outperforms the full-precision SGD baseline by 0.58% with
VGG-16 and by 0.44% with PreResNet-164.

Averaging in Different Frequency. Both Theorem 1 and
Theorem 2 show that averaging more frequently leads to
faster convergence, but changing c does not affect the final
convergence results. In this section, we empirically study
the effect of c using VGG-16 and CIFAR-100. Previously,
all runs compute the weight average once per epoch, fol-
lowing the convention from Izmailov et al. (2018a). We
compare such default averaging frequency with higher fre-

SWALP: Stochastic Weight Averaging in Low Precision Training

Figure 3. CIFAR-100 classification test error (%). Left: Different
averaging frequency. Right: Different averaging precision.

quencies including averaging every batch and every 200
batches. We keep the quantization method (Small-block
BFP) and all other hyper-parameters unchanged.

The left panel of Figure 3 show that averaging more fre-
quently leads to faster convergence. For example, averaging
every batch achieves an error rate of 28.85% after one epoch,
which is much lower than averaging only once per epoch
(i.e. 30.00%). However, the performance gap between high
and low averaging frequency quickly disappears as we ap-
ply SWALP for more epochs. After 20 epochs, we observe
almost no difference in performance between averaging fre-
quencies. This result suggests that the averaging frequency
does not affect final performance after sufficiently many
epochs. We also observe that the test error keeps decreas-
ing even after 20 epochs for all averaging frequencies, so
averaging for more epochs is necessary for convergence.

Averaging in Different Precision. We study the effect of
averaging in different precisions while keeping quantization
and other hyper-parameters unchanged. The weight averag-
ing is computed with low-precision operations as follows:
w̄m+1 ← QSWA((w̄m ·m+wt)/(m+1)), whereQSWA is a
BFP quantizer with word length WSWA. In this experiment,
we vary WSWA from 6 to 16 bits. The averaging updates are
first computed in high precision before quantizing down to
WSWA bits. During inference, we will quantize the activation
into WSWA-bit Small-block BFP.

We report the results in the right panel of Figure 3 of training
a VGG-16 model with 8-bit Small-block BFP. We observe
that the averaged weights can be computed in 9-bits with
essentially no performance decrease compared to averag-
ing in full precision. When we use 8-bits BFP numbers
to store the averaged model during training, there is a mi-
nor performance loss compared to full precision averaging.
That being said, the error rate (26.85%) is still lower than
those of the SGD-LP baseline (29.59%) and the SGD-FP
baseline(27.23%). Averaging in lower than 8-bit precision
tends to substantially hurt performance. This suggests that
in order to fully realize the benefits of SWALP, one needs
to compute the weight averaging in a slightly higher preci-

Table 2. ImageNet experiment results with ResNet-18. 90+X
epochs of SWA (or SWALP) means running weight averaging
for X epochs starting at 90 epocth.

Model Epochs Top-1 Error (%)

SGD 90 30.49
SWA 90+10 29.74

SDGLP 90 36.56
SWALP 90+10 34.89
SWALP 90+30 34.34
SWALP † 90+30 34.18
† Averaging 50 times per epoch.

sion (i.e. for 8-bit weights, we need to compute the average
in 9-bit). These results suggest that we could replace step
(4) of Algorithm 2 with this quantized averaging step to
eliminate high-precision storage during training. With such
modifications, SWALP can produce a low-precision model
that performs comparably to a full-precision SGD model
without any high precision storage.

5.2. ImageNet Experiments

We further evaluate SWALP’s performance for a large scale
image classification task, by training a ResNet-18 on Im-
ageNet. We obtain the results for SGD and SGD-LP us-
ing hyper-parameters suggested by He et al. (2015b). For
all low-precision experiments, we use Small-block BFP.
Please see Appendix for the details on hyper-parameters.
We present the results in Table 2.

ImageNet contains substantially more information than CI-
FAR, and is more sensitive to hyper-parameter tuning; conse-
quently, there is a greater drop in performance for ImageNet
when using low precision computations: from 30.49% with
SGD to 36.56% with SGD-LP. Although in preliminary
experiments, SWALP does not entirely close this larger per-
formance gap, achieving 34.89% error after 10 epochs, it
still leads to a substantial improvement in accuracy over
SGD-LP. The performance gain with SWALP over SGD-LP
is also greater than for SWA over SGD: after 10 epochs
of weight averaging, there is a 1.67% improvement in low
precision compared to 0.84% in full precision.

6. Conclusion
We have proposed SWALP, a convenient approach to low-
precision training that outperforms low-precision SGD and
is competitive with full-precision SGD, even when trained
in 8 bits. SWALP is based on averaging SGD iterates in
low precision, motivated by the intuition that averaging
could reduce the quantization noise introduced by stochastic
rounding. In the future, it would be exciting to explicitly
consider loss geometry in building low precision solutions.

SWALP: Stochastic Weight Averaging in Low Precision Training

Acknowledgements
Polina Kirichenko and Andrew Gordon Wilson were sup-
ported by NSF IIS-1563887, an Amazon Research Award,
and Facebook Research Award. We thank Google Cloud
Platform Research Credits program for providing computa-
tional resources.

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,

M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, pp. 1707–1718, 2017.

Aojun Zhou, Anbang Yao, Y. G. L. X. Y. C. Incremen-
tal network quantization: Towards lossless cnns with
low-precision weights. In International Conference on
Learning Representations,ICLR2017, 2017.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable
methods for 8-bit training of neural networks. arXiv
preprint arXiv:1805.11046, 2018.

Burger, D. Microsoft unveils Project Brain-
wave for real-time AI. https://www.
microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/,
2017. Accessed: 2018-02-08.

Courbariaux, M., Bengio, Y., and David, J.-P. Training deep
neural networks with low precision multiplications. arXiv
preprint arXiv:1412.7024, 2014.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In Advances in neural information
processing systems, pp. 3123–3131, 2015.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D. D.,
Avancha, S., Banerjee, K., Sridharan, S., Vaidyanathan,
K., Kaul, B., Georganas, E., Heinecke, A., Dubey, P.,
Corbal, J., Shustrov, N., Dubtsov, R., Fomenko, E., and
Pirogov, V. O. Mixed precision training of convolutional
neural networks using integer operations. ICLR, 2018.

De Sa, C., Leszczynski, M., Zhang, J., Marzoev, A.,
Aberger, C. R., Olukotun, K., and Ré, C. High-accuracy
low-precision training. CoRR, abs/1803.03383, 2018.
URL http://arxiv.org/abs/1803.03383.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
International Conference on Machine Learning, pp. 1737–
1746, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression: Com-
pressing deep neural network with pruning, trained quanti-
zation and huffman coding. CoRR, abs/1510.00149, 2015.
URL http://arxiv.org/abs/1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015b.
URL http://arxiv.org/abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European Conference on
Computer Vision, pp. 630–645. Springer, 2016.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 29, pp. 4107–4115. 2016.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization. 2018a.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. G. Averaging weights leads to wider optima
and better generalization – released code. 2018b. URL
https://github.com/timgaripov/swa.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in neural information processing systems, pp. 315–323,
2013.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pp. 1–12.
ACM, 2017.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016. URL http://arxiv.org/
abs/1609.04836.

Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A. K.,
Constable, W., Elibol, O., Gray, S., Hall, S., Hornof,
L., et al. Flexpoint: An adaptive numerical format for
efficient training of deep neural networks. In Advances in
Neural Information Processing Systems, pp. 1742–1752,
2017.

https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
http://arxiv.org/abs/1803.03383
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1512.03385
https://github.com/timgaripov/swa
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836

SWALP: Stochastic Weight Averaging in Low Precision Training

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Goldstein,
T. Training quantized nets: A deeper understanding. In
Advances in Neural Information Processing Systems, pp.
5813–5823, 2017.

Mellempudi, N., Kundu, A., Das, D., Mudigere, D.,
and Kaul, B. Mixed low-precision deep learning in-
ference using dynamic fixed point. arXiv preprint
arXiv:1701.08978, 2017.

Miyashita, D., Lee, E. H., and Murmann, B. Convolutional
neural networks using logarithmic data representation.
arXiv preprint arXiv:1603.01025, 2016.

Moulines, E. and Bach, F. R. Non-asymptotic analysis of
stochastic approximation algorithms for machine learning.
In Advances in Neural Information Processing Systems,
pp. 451–459, 2011.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. 2017.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
XNOR-Net: Imagenet classification using binary convo-
lutional neural networks. In European Conference on
Computer Vision, pp. 525–542. Springer, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Li, F. Imagenet large scale visual
recognition challenge. CoRR, abs/1409.0575, 2014. URL
http://arxiv.org/abs/1409.0575.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Song, Z., Liu, Z., Wang, C., and Wang, D. Computation
error analysis of block floating point arithmetic oriented
convolution neural network accelerator design. arXiv
preprint arXiv:1709.07776, 2017.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrish-
nan, K. Training deep neural networks with 8-bit floating
point numbers. In Advances in Neural Information Pro-
cessing Systems, pp. 7686–7695, 2018.

Wu, S., Li, G., Chen, F., and Shi, L. Training and inference
with integers in deep neural networks. ICLR, 2018.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. ZipML: Training linear models with end-to-end low
precision, and a little bit of deep learning. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 4035–
4043, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.
DoReFa-Net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

http://arxiv.org/abs/1409.0575

