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Supplementary Material

A. Pseudo Code for ME-Net

Algorithm 1 ME-Net training & inference
/* ME-Net Training */
Input: training set S = {(Xi, yi)}Mi=1, prescribed masking probability p = {p1, p2, . . . , pn}, network N
for all Xi ∈ S do

Randomly sample n masks with probability {p1, p2, . . . , pn}
Generate n masked images {X(1)

i , X
(2)
i , . . . , X

(n)
i }

Apply ME to obtain reconstructed images {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i }

Add {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i } into new training set S′

end for
Randomly initialize network N
for number of training iterations do

Sample a mini-batch B = {(X̂i, yi)}mi=1 from S′

Do one training step of network N using mini-batch B
end for

/* ME-Net Inference */
Input: test image X , masking probability p = {p1, p2, . . . , pn} used during training
Output: predicted label y
Randomly sample one mask with probability p = 1

n

∑n
i=1 pi

Generate masked image and apply ME to reconstruct X̂
Input X̂ to the trained network N to get the predicted label y

B. Training Details
Training settings. We summarize our training hyper-parameters in Table 8. We follow the standard data augmentation
scheme as in (He et al., 2016) to do zero-padding with 4 pixels on each side, and then random crop back to the original
image size. We then randomly flip the images horizontally and normalize them into [0, 1]. Note that ME-Net’s preprocessing
is performed before the training process as in Algorithm 1.

Dataset Model Data Aug. Optimizer Momentum Epochs LR LR decay

CIFAR-10 ResNet-18
Wide-ResNet

√
SGD 0.9 200 0.1 step (100, 150)

MNIST LeNet × SGD 0.9 200 0.01 step (100, 150)

SVHN ResNet-18
√

SGD 0.9 200 0.01 step (100, 150)

Tiny-ImageNet DenseNet-121
√

SGD 0.9 90 0.1 step (30, 60)

Table 8. Training details of ME-Net on different datasets. Learning rate is decreased at selected epochs with a step factor of 0.1.

ME-Net details. As was mentioned in Section 2.3, one could either operate on the three RGB channels separately as
independent matrices or jointly by concatenating them into one wide matrix. For the former approach, given an image,
we can apply the same mask to each channel and then separately run ME to recover the matrix. For the latter approach,
the RGB channels are first concatenated along the column dimension to produce a wide matrix, i.e., if each channel is of
size 32× 32, then the concatenated matrix, [RGB], is of size 32× 96. A mask is applied to the wide matrix and the whole
matrix is then recovered. This approach is a common, simple method for estimating tensor data. Since this work focuses on
structures of the image and channels within an image are closely related, we adopt the latter approach in this paper.

In our experiments, we use the following method to generate masks with different observing probability: for each image, we
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select n masks in total with observing probability p ranging from a→ b. We use n = 10 for most experiments. To provide
an example, “p : 0.6→ 0.8” indicates that we select 10 masks in total with observing probability from 0.6 to 0.8 with an
equal interval of 0.02, i.e., 0.6, 0.62, 0.64, . . .. Note that we only use this simple selection scheme for mask generation. We
believe further improvement can be achieved with better designed selection schemes, potentially tailored to each image.

C. Additional Results on CIFAR-10
C.1. Black-box Attacks

We provide additional results of ME-Net against different black-box attacks on CIFAR-10. We first show the complete
results using different kinds of black-box attacks, i.e., transfer-based (FGSM, PGD, CW), decision-based (Boundary) and
score-based (SPSA) attacks. For CW attack, we follow the settings in (Madry et al., 2017) to use different confidence values
κ. We report ME-Net results with different training settings on Table 9. Here we use pure ME-Net as a preprocessing
method without adversarial training. As shown, previous defenses only consider limited kinds of black-box attacks. We by
contrast show extensive and also advanced experimental results.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9% 3.5% 1.4%

Madry 79.4% 67.0% 64.2% − − 78.7% − − −
Thermometer 87.5% − 77.7% − − − − − −

ME-Net

p : 0.8→ 1 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.6% 87.4% 93.0%

p : 0.6→ 0.8 92.1% 85.1% 84.5% 83.4% 81.8% 89.2% 89.0% 81.8% 90.9%

p : 0.4→ 0.6 89.2% 75.7% 74.9% 73.0% 70.9% 82.0% 82.0% 77.5% 87.1%

Table 9. CIFAR-10 extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-,
decision-, and score-based attacks.

Further, we define and apply another stronger black-box attack, where we provide the architecture and weights of our trained
model to the black-box adversary to make it stronger. This kind of attack is also referred as “semi-black-box” or “gray-box”
attack in some instances, while we still view it as a black-box one. This time the adversary is not aware of the preprocessing
layer but has full access to the trained network, and directly performs white-box attacks to the network. We show the results
in Table 10.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 85.1% 84.9% 84.0% 82.9% 75.8% 75.2%

p : 0.6→ 0.8 83.2% 82.8% 81.7% 79.6% 81.5% 76.8%

p : 0.4→ 0.6 80.5% 80.2% 79.2% 76.4% 84.0% 77.1%

Table 10. CIFAR-10 additional black-box attack results where adversary has limited access to the trained network. We provide
the architecture and weights of our trained model to the black-box adversary to make it stronger.

C.2. White-box Attacks

C.2.1. PURE ME-NET

We first show the extensive white-box attack results with pure ME-Net in Table 11. We use strongest white-box BPDA
attack (Athalye et al., 2018) with different attack steps. We select three preprocessing methods (Song et al., 2018; Buckman
et al., 2018; Guo et al., 2017) as competitors. We re-implement the total variation minimization approach (Guo et al., 2017)
and apply the same training settings as ME-Net on CIFAR-10. The experiments are performed under total perturbation
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ε of 8/255 (0.031). By comparison, ME-Net is demonstrated to be the first preprocessing method that is effective under
strongest white-box attacks.

Method Type
Attack Steps

7 20 40 100

Vanilla − 0.0% 0.0% 0.0% 0.0%

Thermometer Prep. − − 0.0%* 0.0%*

PixelDefend Prep. − − − 9.0%*

TV Minimization Prep. 14.7% 5.1% 2.7% 0.4%

ME-Net

p : 0.8→ 1 Prep. 46.2% 33.2% 26.8% 23.5%

p : 0.7→ 0.9 Prep. 50.3% 40.4% 33.7% 29.5%

p : 0.6→ 0.8 Prep. 53.0% 45.6% 37.8% 35.1%

p : 0.5→ 0.7 Prep. 55.7% 47.3% 38.6% 35.9%

p : 0.4→ 0.6 Prep. 59.8% 52.6% 45.5% 41.6%

Table 11. CIFAR-10 extensive white-box attack results with pure ME-Net. We use the strongest PGD or BPDA attacks in white-box
setting with different attack steps. We compare ME-Net with other pure preprocessing methods (Buckman et al., 2018; Song et al., 2018;
Guo et al., 2017). We show that ME-Net is the first preprocessing method to be effective under white-box attacks. *Data from (Athalye
et al., 2018).

Further, we study the performance of ME-Net under different ε in Fig. 7. Besides using ε = 8 which is commonly used in
CIFAR-10 attack settings (Madry et al., 2017), we additionally provide more results including ε = 2 and 4 to study the
performance of pure ME-Net under strongest BPDA white-box attacks.
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Figure 7. CIFAR-10 white-box attack results of pure ME-Net with different perturbation ε. We report ME-Net results with different
training settings under various attack steps.

Besides the strongest BPDA attack, we also design and apply another white-box attack to further study the effect of the
preprocessing layer. We assume the adversary is aware of the preprocessing layer, but not use the backward gradient
approximation. Instead, it performs iterative attacks only for the network part after the preprocessing layer. This attack helps
study how the preprocessing affects the network robustness against white-box adversary. The results in Table 12 shows that
pure ME-Net provides sufficient robustness if the white-box adversary does not attack the preprocessing layer.

C.2.2. COMBINING WITH ADVERSARIAL TRAINING

We provide more advanced and extensive results of ME-Net when combining with adversarial training in Table 13. As
shown, preprocessing methods are not necessarily compatible with adversarial training, as they can perform worse than
adversarial training alone (Buckman et al., 2018). Compared to current state-of-the-art (Madry et al., 2017), ME-Net
achieves consistently better results under strongest white-box attacks.
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Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 84.3% 83.7% 83.1% 82.5% 77.0% 75.9%

p : 0.6→ 0.8 82.6% 82.1% 81.5% 80.3% 76.9% 76.4%

p : 0.4→ 0.6 79.1% 79.0% 78.3% 77.4% 77.5% 77.2%

Table 12. CIFAR-10 additional white-box attack results where the white-box adversary does not attack the preprocessing layer.
We remain the same attack setups as in the white-box BPDA attack, while only attacking the network part after the preprocessing layer of
ME-Net.

Network Method Type Clean
Attack Steps

7 20 40 100 1000

ResNet-18

Madry Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 85.5% 57.4% 51.5% 49.3% 48.1% 47.4%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 84.8% 62.1% 53.0% 51.2% 50.0% 49.6%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 84.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Wide-ResNet

Madry Adv. train 87.3% 50.0% 47.1% 47.0% 46.9% 46.8%

Thermometer Prep. + Adv. train 89.9% 59.4% 34.9% 26.0% 18.4% 12.3%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 91.0% 69.7% 58.0% 54.9% 53.4% 52.9%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 88.7% 74.1% 61.6% 57.4% 55.9% 55.1%

Table 13. CIFAR-10 extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to
ensure the results are convergent. We use the released models in (Madry et al., 2017; Athalye et al., 2018) but change the attack steps up
to 1000 for comparison. ME-Net shows significant advanced results by consistently outperforming the current state-of-the-art defense
method (Madry et al., 2017).

D. Additional Results on MNIST
D.1. Black-box Attacks

In Table 14, we report extensive results of ME-Net under different strong black-box attacks on MNIST. We follow (Madry
et al., 2017) to use the same LeNet model and the same attack parameters with a total perturbation scale of 76.5/255 (0.3).
We use a step size of 2.55/255 (0.01) for PGD attacks. We use the same settings as in CIFAR-10 for Boundary and SPSA
attacks (i.e., 1000 steps for Boundary attack, and a batch size of 2048 for SPSA attack) to make them stronger. Note that we
only use the strongest transfer-based attacks, i.e., we use white-box attacks on the independently trained copy to generate
black-box examples. As shown, ME-Net shows significantly more effective results against different strongest black-box
attacks.

We further provide the architecture and weights of our trained model to the black-box adversary to make it stronger, and
provide the results in Table 15. As shown, ME-Net can still maintain high adversarial robustness against stronger black-box
adversary under this setting.

D.2. White-box Attacks

Table 16 shows the extensive white-box attack results on MNIST. As discussed, we follow (Madry et al., 2017) to use 40
steps PGD during training when combining ME-Net with adversarial training. We apply up to 1000 steps strong BPDA-based
PGD attack to ensure the results are convergent. For the competitor, we use the released model in (Madry et al., 2017), but
change the attack steps to 1000 for comparison.
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Method Clean FGSM
PGD CW

Boundary SPSA
40 steps 100 steps κ = 20 κ = 50

Vanilla 98.8% 28.2% 0.1% 0.0% 14.1% 12.6% 3.7% 6.2%

Madry 98.5% 96.8% 96.0% 95.7% 96.4% 97.0% − −
Thermometer 99.0% − 41.1% − − − − −

ME-Net

p : 0.8→ 1 99.2% 77.4% 73.9% 73.6% 98.8% 98.7% 89.3% 98.1%

p : 0.6→ 0.8 99.0% 87.1% 85.1% 84.9% 98.6% 98.4% 88.6% 97.5%

p : 0.4→ 0.6 98.4% 91.1% 90.7% 88.9% 98.4% 98.3% 88.0% 97.0%

p : 0.2→ 0.4 96.8% 93.2% 92.8% 92.2% 96.6% 96.5% 88.1% 96.1%

Table 14. MNIST extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-, decision-,
and score-based attacks.

Method FGSM
PGD CW

40 steps 100 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 93.0% 91.9% 85.5% 98.8% 98.7%

p : 0.6→ 0.8 95.0% 94.2% 93.7% 98.3% 98.2%

p : 0.4→ 0.6 96.2% 95.9% 95.3% 98.3% 98.0%

p : 0.2→ 0.4 94.5% 94.2% 93.4% 96.5% 96.5%

Table 15. MNIST additional black-box attack results where adversary has limited access to the trained network. We provide the
architecture and weights of our trained model to the black-box adversary to make it stronger.

Method Type Clean
Attack Steps

40 100 1000

Madry Adv. train 98.5% 93.2% 91.8% 91.6%

ME-Net

p : 0.8→ 1 Prep. 99.2% 22.9% 21.8% 18.9%

p : 0.6→ 0.8 Prep. 99.0% 47.6% 42.4% 40.8%

p : 0.4→ 0.6 Prep. 98.4% 65.2% 62.1% 60.6%

p : 0.2→ 0.4 Prep. 96.8% 86.5% 83.1% 82.6%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 97.6% 87.8% 81.7% 78.0%

p : 0.6→ 0.8 Prep. + Adv. train 97.7% 90.5% 88.1% 86.5%

p : 0.4→ 0.6 Prep. + Adv. train 98.8% 92.1% 89.4% 88.2%

p : 0.2→ 0.4 Prep. + Adv. train 97.4% 94.0% 91.8% 91.0%

Table 16. MNIST extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to ensure
the results are convergent. We use the released models in (Madry et al., 2017) but change the attack steps up to 1000 for comparison. We
show both pure ME-Net results and the results when combining with adversarial training.

E. Additional Results on SVHN
E.1. Black-box Attacks

Table 17 shows extensive black-box attack results of ME-Net on SVHN. We use standard ResNet-18 as the network, and
use a total perturbation of ε = 8/255 (0.031). We use the same strong black-box attacks as previously used (i.e., transfer-,
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decision-, and score-based attacks), and follow the same attack settings and parameters. As there are few results on SVHN
dataset, we compare only with the vanilla model which uses the same network and training process as ME-Net. As shown,
ME-Net provides significant adversarial robustness against various black-box attacks.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 95.0% 31.2% 8.5% 1.8% 0.0% 20.4% 7.6% 4.5% 3.7%

ME-Net

p : 0.8→ 1 96.0% 91.8% 91.1% 90.9% 89.8% 95.5% 95.2% 79.2% 95.5%

p : 0.6→ 0.8 95.5% 88.9% 88.7% 86.4% 86.2% 95.1% 94.9% 80.6% 94.6%

p : 0.4→ 0.6 94.0% 87.0% 86.4% 85.8% 84.4% 93.6% 93.4% 85.3% 93.8%

p : 0.2→ 0.4 88.3% 80.7% 76.4% 75.3% 74.2% 87.4% 87.4% 83.3% 87.6%

Table 17. SVHN extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-, decision-,
and score-based attacks.

Again, we strengthen the black-box adversary by providing the network architecture and weights of our trained model. We
then apply various attacks and report the results in Table 18. ME-Net can still maintain high adversarial robustness under
this setting.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 83.8% 83.3% 81.3% 78.6% 95.2% 95.0%

p : 0.6→ 0.8 85.8% 85.7% 84.0% 82.1% 94.9% 94.8%

p : 0.4→ 0.6 88.8% 88.6% 87.4% 86.8% 93.5% 93.3%

p : 0.2→ 0.4 86.6% 86.3% 85.7% 85.5% 88.2% 88.2%

Table 18. SVHN additional black-box attack results where adversary has limited access to the trained network. We provide the
architecture and weights of our trained model to the black-box adversary to make it stronger.

E.2. White-box Attacks

For white-box attacks, we set attack parameters the same as in CIFAR-10, and use strongest white-box BPDA attack with
different attack steps (up to 1000 for convergence). We show results of both pure ME-Net and adversarially trained one. We
use 7 steps for adversarial training. Since in (Madry et al., 2017) the authors did not provide results on SVHN, we follow
their methods to retrain a model. The training process and hyper-parameters are kept identical to ME-Net.

Table 19 shows the extensive results under white-box attacks. ME-Net achieves significant adversarial robustness against the
strongest white-box adversary, as it can consistently outperform (Madry et al., 2017) by a certain margin.

F. Additional Results on Tiny-ImageNet
In this section, we extend our experiments to evaluate ME-Net on a larger and more complex dataset. We use Tiny-ImageNet,
which is a subset of ImageNet and contains 200 classes. Each class has 500 images for training and 50 for testing. All
images are 64×64 colored ones. Since ME-Net requires to train the model from scratch, due to the limited computing
resources, we do not provide results on even larger dataset such as ImageNet. However, we envision ME-Net to perform
better on such larger datasets as it can leverage the global structures of those larger images.

F.1. Black-box Attacks

For black-box attacks on Tiny-ImageNet, we only report the Top-1 adversarial accuracy. We use standard DenseNet-
121 (Huang et al., 2017) as our network, and set the attack parameters as having a total perturbation ε = 8/255 (0.031). We
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Method Type Clean
Attack Steps

7 20 40 100 1000

Madry Adv. train 87.4% 52.5% 48.4% 47.9% 47.5% 47.1%

ME-Net

p : 0.8→ 1 Prep. 96.0% 42.1% 27.2% 14.2% 8.0% 7.2%

p : 0.6→ 0.8 Prep. 95.5% 52.4% 39.6% 28.2% 17.1% 15.9%

p : 0.4→ 0.6 Prep. 94.0% 60.3% 48.7% 40.1% 27.4% 25.8%

p : 0.2→ 0.4 Prep. 88.3% 74.7% 61.4% 52.7% 44.0% 43.4%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 93.5% 62.2% 41.4% 37.5% 35.5% 34.3%

p : 0.6→ 0.8 Prep. + Adv. train 92.6% 72.1% 57.1% 49.6% 47.8% 46.5%

p : 0.4→ 0.6 Prep. + Adv. train 91.2% 79.9% 69.1% 64.2% 62.3% 61.7%

p : 0.2→ 0.4 Prep. + Adv. train 87.6% 83.5% 75.8% 71.9% 69.8% 69.4%

Table 19. SVHN extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to ensure
the results are convergent. We show results of both pure ME-Net and adversarially trained ones. ME-Net shows significantly better results
as it consistently outperforms (Madry et al., 2017) by a certain margin.

use the same black-box attacks as before and follow the same attack settings. The extensive results are shown in Table 20.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 66.4% 15.2% 1.3% 0.0% 0.0% 8.0% 7.7% 2.6% 1.2%

ME-Net

p : 0.8→ 1 67.7% 67.1% 66.3% 66.0% 65.8% 67.6% 67.4% 62.4% 67.4%

p : 0.6→ 0.8 64.1% 63.6% 63.1% 63.1% 62.4% 63.8% 63.6% 61.9% 63.8%

p : 0.4→ 0.6 58.9% 54.8% 51.7% 51.6% 50.4% 58.2% 58.2% 58.9% 58.1%

Table 20. Tiny-ImageNet extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-,
decision-, and score-based attacks.

Further, additional black-box attack results are provided in Table 21, where the black-box adversary has limited access to
ME-Net. The results again demonstrate the effectiveness of the preprocessing layer.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 66.5% 64.0% 62.6% 59.1% 55.8% 56.0%

p : 0.6→ 0.8 61.1% 60.9% 60.7% 59.2% 57.6% 57.6%

p : 0.4→ 0.6 58.8% 58.2% 57.5% 56.9% 58.3% 58.2%

Table 21. Tiny-ImageNet additional black-box attack results where adversary has limited access to the trained network. We
provide the architecture and weights of our trained model to the black-box adversary to make it stronger.

F.2. White-box Attacks

In white-box settings, we set the attack hyper-parameters as follows: a total perturbation of 8/255 (0.031), a step size of
2/255 (0.01), and 7 steps PGD for adversarial training. We still use strongest BPDA attack with different attack steps up
to 1000. We re-implement (Madry et al., 2017) to be the baseline, and keep all training process the same for ME-Net
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and (Madry et al., 2017). Finally, we report both Top-1 and Top-5 adversarial accuracy in Table 22, which demonstrates the
significant adversarial robustness of ME-Net.

Metrics Method Type Clean
Attack Steps

7 20 40 100 1000

Top-1

Madry Adv. train 45.6% 23.3% 22.4% 22.4% 22.3% 22.1%

ME-Net p : 0.8→ 1 Prep. + Adv. train 53.9% 28.1% 25.7% 25.3% 25.0% 24.5%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 57.0% 33.7% 28.4% 27.3% 26.8% 26.3%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 55.6% 38.8% 30.6% 29.4% 29.0% 28.5%

Top-5

Madry Adv. train 71.4% 47.5% 46.0% 45.9% 45.8% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 77.4% 54.8% 52.2% 51.9% 51.2% 50.6%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 80.3% 62.1% 57.1% 56.7% 56.4% 55.1%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 78.8% 66.7% 59.5% 58.5% 58.0% 56.9%

Table 22. Tiny-ImageNet extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to
ensure the results are convergent. We select (Madry et al., 2017) as the baseline and keep the training process the same for both (Madry
et al., 2017) and ME-Net. We show both Top-1 and Top-5 adversarial accuracy under different attack steps. ME-Net shows advanced
results by outperforming (Madry et al., 2017) consistently in both Top-1 and Top-5 adversarial accuracy.

G. Trade-off between Adversarial Robustness and Standard Generalization
In this section, we briefly discuss the trade-off between standard generalization and adversarial robustness, which can
be affected by training ME-Net with different hyper-parameters. When the masks are generated with higher observing
probability p, the recovered images will contain more details and are more similar to the original ones. In this case, the
generalization ability will be similar to the vanilla network (or even be enhanced). However, the network will be sensible to
the adversarial noises, as the adversarial structure in the noise is only destroyed a bit, and thus induces low robustness. On
the other hand, when given lower observing probability p, much of the adversarial structure in the noise will be eliminated,
which can greatly increase the adversarial robustness. Nevertheless, the generalization on clean data can decrease as it
becomes harder to reconstruct the images and the input images may not be similar to the original ones. In summary, there
exists an inherent trade-off between standard generalization and adversarial robustness. The trade-off should be further
studied to acquire a better understanding and performance of ME-Net.

We provide results of the inherent trade-off between adversarial robustness and standard generalization on different datasets.
As shown in Fig. 8, we change the observing probability p of the masks to train different ME-Net models, and apply 7 steps
white-box BPDA attack to each of them. As p decreases, the generalization ability becomes lower, while the adversarial
robustness grows rapidly. We show the consistent trade-off phenomena on different datasets.
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(b) CIFAR-10
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(c) SVHN
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(d) Tiny-ImageNet

Figure 8. The trade-off between adversarial robustness and standard generalization on different datasets. We use pure ME-Net
during training, and apply 7 steps white-box BPDA attack for the adversarial accuracy. For Tiny-ImageNet we only report the Top-1
accuracy. The results verify the consistent trade-off across different datasets.
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H. Additional Results of Different ME Methods
H.1. Black-box Attacks

We first provide additional experimental results using different ME methods against black-box attacks. We train different
ME-Net models on CIFAR-10 using three ME methods, including the USVT approach, the Soft-Impute algorithm and the
Nuclear Norm minimization algorithm. The training processes are identical for all models. For the black-box adversary, we
use different transfer-based attacks and report the results in Table 23.

PGD CW
Method Complexity Type Clean FGSM

7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla − − 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9%

ME-Net - USVT Low Prep. 94.8% 90.5% 90.3% 89.4% 88.9% 93.6% 93.6%

ME-Net - Soft-Imp. Medium Prep. 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.5%

ME-Net - Nuc. Norm High Prep. 94.8% 92.0% 91.7% 91.4% 91.0% 93.3% 93.4%

Table 23. Comparison between different ME methods against black-box attacks. We report the generalization and adversarial
robustness of three ME-Net models using different ME methods on CIFAR-10. We apply transfer-based black-box attacks as the
adversary.

H.2. White-box Attacks

We further report the white-box attack results of different ME-Net models in Table 24. We use 7 steps PGD to adversarially
train all ME-Net models with different ME methods on CIFAR-10. We apply up to 1000 steps strongest white-box BPDA
attacks as the adversary. Compared to the previous state-of-the-art (Madry et al., 2017) on CIFAR-10, all the three ME-Net
models can outperform them by a certain margin, while also achieving higher generalizations. The performance of different
ME-Net models may vary slightly, where we can observe that more complex methods can lead to slightly better performance.

Method Complexity Type Clean
Attack Steps

7 20 40 100 1000

Madry − Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net - USVT Low Prep. + Adv. train 85.5% 67.3% 55.8% 53.7% 52.6% 51.9%

ME-Net - Soft-Imp. Medium Prep. + Adv. train 85.5% 67.5% 56.5% 54.8% 53.0% 52.3%

ME-Net - Nuc. Norm High Prep. + Adv. train 85.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Table 24. Comparison between different ME methods against white-box attacks. We adversarially trained three ME-Net models
using different ME methods on CIFAR-10, and compare the results with (Madry et al., 2017). We apply up to 1000 steps PGD or BPDA
white-box attacks as adversary.

I. Additional Studies of Attack Parameters
We present additional studies of attack parameters, including different random restarts and step sizes for further evaluations
of ME-Net. Authors in (Mosbach et al., 2018) show that using multiple random restarts and different step sizes can
drastically affect the performance of PGD adversaries. We consider the same white-box BPDA-based PGD adversary as in
Table 4, and report the results on CIFAR-10. Note that with n random restarts, given an image, we consider a classifier
successful only if it was not fooled by any of these n attacks. In addition, this also significantly increases the computational
overhead. We hence fix the number of attack steps as 100 (results are almost flattened; see for example Fig. 6), and select
three step sizes and restart values. We again compare ME-Net with (Madry et al., 2017).

As shown in Table 25, with different step sizes, the performance of ME-Net varies slightly. Specifically, the smaller the step
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Method Step sizes
Random restarts

10 20 50

Madry

2/255 43.4% 42.7% 41.7%

4/255 43.8% 43.3% 41.9%

8/255 44.0% 43.3% 41.9%

ME-Net

2/255 48.7% 47.2% 44.8%

4/255 49.7% 48.4% 45.2%

8/255 50.8% 49.8% 46.0%

Table 25. Results of white-box attacks with different random restarts and step sizes on CIFAR-10. We compare ME-Net with (Madry
et al., 2017) using three different step sizes and random restart values. We apply 100 steps PGD or BPDA white-box attacks as adversary.

size (e.g., 2/255) is, the stronger the adversary becomes for both ME-Net and (Madry et al., 2017). This is as expected,
since a smaller step size enables a finer search for the adversarial perturbation.

ME-Net leverages randomness through masking, and it would be helpful to understand how random restarts, with a hard
success criterion, affect the overall pipeline. As observed in Table 25, more restarts can reduce the robust accuracy by a few
percent. However, we note that ME-Net can still outperform (Madry et al., 2017) by a certain margin across different attack
parameters. We remark that arguably, one could potentially always handle such drawbacks by introducing restarts during
training as well, so as to maximally match the training and testing conditions. This introduces in unnecessary overhead that
might be less meaningful. We hence focus on other parameters such as the number of attack steps in the main paper.

J. Additional Benefits by Majority Voting
It is common to apply an ensemble or vote scheme during the prediction stage to further improve accuracy. ME-Net naturally
provides a majority voting scheme. As we apply masks with different observation probability p during training, an intuitive
method is to also use multiple masks with the same p (rather than only one p) for each image during inference, and output a
majority vote over predicted labels. One can even use more masks with different p within the training range. By such, the
training procedure and model can remain unchanged while the inference overhead only gets increased by a small factor.

Attack
Steps Method MNIST CIFAR-10 SVHN

Tiny-ImageNet

Top-1 Top-5

40
Standard 94.0% 55.4% 71.9% 29.4% 58.5%

Vote 95.9% 59.3% 76.0% 33.8% 68.9%

100
Standard 91.8% 53.5% 69.8% 29.0% 58.0%

Vote 94.2% 56.2% 73.1% 31.2% 65.4%

1000
Standard 91.0% 52.8% 69.4% 28.5% 56.9%

Vote 92.6% 54.2% 71.4% 29.8% 59.5%

Table 26. Comparison between majority vote and standard inference. For each image, we apply 10 masks with same p used during
training, and the model outputs a majority vote over predicted labels. The standard inference only uses one mask with the mean probability
of those during training. We use 40, 100 and 1000 steps white-box BPDA attack and report the results on each dataset.

In Table 26, we report the majority voting result of ME-Net on different datasets, where voting can consistently improve the
adversarial robustness of the standard one by a certain margin. This is especially helpful in real-world settings where the
defender can get more robust output without highly increasing the computational overhead. Note that by using majority
vote, we can further improve the state-of-the-art white-box robustness.
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K. Hyper-Parameters Study
K.1. Observation Probability p

As studied previously, by applying different masks with different observation probability p, the performance of ME-Net can
change differently. We have already reported extensive quantitative results of different ME-Net models trained with different
p. Here we present the qualitative results by visualizing the effect of different p on the original images. As illustrated in
Fig. 9, the first row shows the masked image with different p, and the second row shows the recovered image by ME. It can
be observed that the global structure of the image is maintained even when p is small.

Masked

images

ME

Figure 9. Visualization of ME result with different observation probability p. First row: Images after applying masks with different
observation probabilities. Second row: The recovered images by applying ME. We can observe that the global structure of the image is
maintained even when p is small.

K.2. Number of Selected Masks

Another hyper-parameter of ME-Net is the number of selected masked images for each input image. In the main paper, all
experiments are carried out using 10 masks. We here provide the hyper-parameter study on how the number of masks affects
the performance of ME-Net. We train ME-Net models on CIFAR-10 using different number of masks and keep other settings
the same. In Table 27, we show the results of both standard generalization and adversarial robustness. We use transfer-based
40 steps PGD as black-box adversary, and 1000 steps BPDA as white-box adversary. As expected, using more masks can
lead to better performances. Due to the limited computation resources, we only try a maximum of 10 masks for each image.
However, we expect ME-Net to perform even better with more sampled masks and better-tuned hyper-parameters.

# of Masks Method Clean Black-box White-box

− Vanilla 93.4% 0.0% 0.0%

p : 0.9 92.7% 82.3% 44.1%
1 ME-Net

p : 0.5 79.8% 59.7% 47.4%

p : 0.8→ 1 94.1% 87.8% 46.5%
5 ME-Net

p : 0.4→ 0.6 86.3% 68.5% 49.3%

p : 0.8→ 1 94.9% 91.3% 47.4%
10 ME-Net

p : 0.4→ 0.6 89.2% 70.9% 52.8%

Table 27. Comparisons between different number of masked images used for each input image. We report the generalization and
adversarial robustness of ME-Net models trained with different number of masks on CIFAR-10. We apply transfer-based 40 steps PGD
attack as black-box adversary, and 1000 steps PGD-based BPDA as white-box adversary.

L. Additional Visualization Results
We finally provide more visualization results of ME-Net applied to clean images, adversarial images, and their differences.
We choose Tiny-ImageNet since it has a higher resolution. As shown in Fig. 10, for vanilla model, the highly structured
adversarial noises are distributed over the entire image, containing human imperceptible adversarial structure that is very
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likely to fool the network. In contrast, the redistributed noises in the reconstructed images from ME-Net mainly focus on the
global structure of the images, which is well aligned with human perception. As such, we would expect ME-Net to be more
robust against adversarial attacks.
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Figure 10. Visualization of ME-Net applied to clean images, adversarial images, and their differences on Tiny-ImageNet. First
column from top to bottom: the clean image, the adversarial example generated by PGD attacks, the difference between them (i.e., the
adversarial noises). Second column from top to bottom: the reconstructed clean image by ME-Net, the reconstructed adversarial example
by ME-Net after performing PGD attacks, the difference between them (i.e., the redistributed noises). Underlying each image is the
predicted class and its probability. We multiply the difference images by a constant scaling factor to increase the visibility. The differences
between the reconstructed clean image by ME-Net and the reconstructed adversarial example by ME-Net after performing PGD attacks,
i.e., the new adversarial noises, are redistributed to the global structure.


