Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations

A. Example Nonconvex Regularizers

Common nonconvex regularizers include capped-¢; norm
(Zhang, 2010b), log-sum-penalty (LSP) (Candes et al.,
2008), truncated nuclear norm (TNN) (Hu et al., 2013),
smoothed-capped-absolute-deviation (SCAD) (Fan &
Li, 2001) and minimax concave penalty (MCP) (Zhang,
2010a). Their definitions are in Table 7 below.

Table 7. Common examples of x(o;(X)). Here, 6 is a constant.
For capped-¢1, LSP and MCP, 6 > 0; for SCAD, 6 > 2; and for
TNN, 6 is a positive integer.

K(0:(X))
capped-{; (Zhang, .
PP 20110b) £ min(o;(X), 6)
LSP (Candes et al.,
2008) log(%ai(X) +1)
TNN (Hu et al., 2013) oi(X) ifi>0
0 otherwise
SCAD (Fan & Li, 2001) % if 1<o;(X)<6
2
@ otherwise
2
(X)) — % ifo;(X) <6
MCP (Zhang, 2010a) ;’( )= 55 fouX)<
5 otherwise
B. Proofs

B.1. Proposition 3.1

Proof. Since ¢ is imposed on the unfolding matrix, (13)
can be expressed as

Zt = [Zt]@),
Yo =proxa (%), i=1,...,K

1

Xev1 =5 (Y]

NE

d

Il
—

(9) can be equivalently rewritten as ‘di 11

[proxs, , (2] v 0

T

B.2. Proposition 3.2

Proof. For simplicity of exposition, take {7, 7o, 73} =
{1,2,3}, and consider the case where U (resp. V) has
only one single column u (resp. v).

We need to fold uv ' along with the first mode and then

unfold it along its second mode. In order to avoid the

folding and unfolding operations, we consider the structure

of X = (uv')qy. Let v = [vi;...;vy,], where each

v; € R2. Asu € Rt and v € R%273 we have
X..;=wvu'.

HN

When unfolding X with the second mode, the unfolding
matrix is

[vluT,...,vI3uT] e RIzxNls (21)
Thus,
a' [vluT, e ,VI311T] = [(;‘;\\Tvl)uT7 e (aTvIS)uT]
= (a' mat(v)) ®@u,. (22)
Let b = [by;...;by,], where each b; € Rt From (21),
we have
[viu',...,v,u'lb
I3
= Zvi(uTbi)
i=1
uTbl
= [vi;...;VL]
11Tb13
[vis..;vi][bis..ibg) T u
= mat(v)mat(b) "u. (23)

When U (resp. V) has p columns, combining with the fact
that UV = Zl;=1 upv; with (22) and (23), we obtain

k
al (UV) ) = u) @ (a mat(vy)),

p=1
k
(UVH )b = " mat(v,)mat(b) "u,.
p=1

The proof does not rely on any specific order of
{1, I2, Is}. Thus, we can take a permutation of them. [

B.3. Proposition 3.3
Proof. Let \; = \;/7. Then,
D
D ZPIOX,\d¢(Z’<d))
d=1
1 &1 2
= min — — |1 Xqg— % + Mod(X
i 3 2 |5 1~ Bl + %)
1 1 = () 1 &
= min = |Z|% — Z, — XN 4 — X413
1 -
+BZ>\d¢(Xd)
d=1
1 1S o) 1|1 ’
=min—-||Z— — x - = —x!d
(X4)2 D; d 2 ;D d B
D
1|1 <d>H2 -
— | = ||IX X . 24
+ZD|:2H¢1 ;‘/\d(b( ) (24)
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Let X = % Z§=1 Xfid>. We transform (24) as
in 1 X2 + Lg(x X
min 12 = X%+ 19(%) = prox. ()
where g(X) is implicitly defined as

3(00) =i 52 5 [t o Assxa| -3 el

1 (d)
st 5 Zxd =X. (25)
d=1
b (i)
Thus, prox 1 ; (Z)=5% >z [prox;m([Z](i))} . O
B.4. Proposition 3.4
Let g(X) = Zle %qﬁ(fx 4y). Before proving Proposi-

tion 3.4, we first extend Proposition 2 in (Zhong & Kwok,
2014) in the following Lemma.

Lemma B.1. 0 < g(X) — g(X) < &5 Zd 1A

Proof. From the definition of g in (25), if X = X{" =

ce= X;D>’ we have

D
i) < = [2 x|+ Aot | - 1

d=
D 1
Z =D Z Aad(Xay) = g(X).
d d=1

Thus, g(X) — g(X) > 0.

Next, we prove the “<” part in the Lemma. Note that

Sup Aad(Xa) — Tproxm(X&d))
d

sup)\d¢(Xd)Tm1n{ HX X(d>H + Aao(X )]
Xa

= sup Aad(Xa) - 7 X - X >H — Aad(X). (26)
X4,X F

Since ¢ is L-Lipschitz continuous, let a = HX — Xild> ‘

bl

we have

(26) = sup Aq[p(Xa) — #(X)] -

T (d 2
7 [x-x7|
Xa,X

F

< sup )\dLHX x¢ >HF—

T d 2
7 |x-x2|
Xd F

= sup [)\dLa — 50[2}

1 ML12 A2L2 A212
=sup —— {ad} d- < Zd”
o T

2 = 27

5 27)

Next, we have

g(X) — g(X) < g(X) — Tprox%!j(f)C)

L D D

) > Aad(Xay) — D > proxy 4 (Xa)

d=1 d=1

L D

<5 ; )1(15 A (Xa) — Tproxs,,,(Xa)]
1 &AL

- D 2r

where the second inequality comes from (27). Thus, we get
the second inequality in the Lemma. O

Now, we prove Proposition 3.4.

Proof. First, we have

H&HF(DC) - Ir:l%nFT(fX:) > H&HF(DC) — F(X)
=g(X) — g(X) > 0.
Let X; = argminy F(X) and X, = argminx F,(X).
Then, we have
mgénF(f)C) - n%énFT(DC) = F(Xy) — F-(X,)
< F(X,) - F.(X,)
=9(X;) — g(X)
2 &,
= 27D D A
d=1
Thus, 0 < min F' — min F; < LD Zd 1A O
B.5. Theorem 3.5

First, we introduce the following Lemmas, which are basic
properties for the proximal step.

Lemma B.2 ((Parikh & Boyd, 2013)). Let 7 > p + DL
andn =171 — p+ DL. Then,

2

Fy(prox.14(X)) < Fr (%) — 2| = prox 1, ()

o
Lemma B.3 ((Parikh & Boyd, 2013)). IfX = Proxi; (:x—
LV f(X)), then X is a critical point of F.

Lemma B.4 ((Hare & Sagastizabal, 2009)). The proximal
map prox 1 ;(X) is continuous.

Now, we prove Theorem 3.5.

Proof. Recall that prox1,(X) = 5 ZZ 1 ProX, (Xiy)-

From Lemma B.2,
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o If step 8 is performed, we have

Fr(Xr41) < Fr (V) = 3 [Xear = Vil

< Fr(X) = 3 X = Xellf. 28)

o If step 6 is performed,

Fr(Xig1) < Fr(Vy) — g 1Xiq1 — Vt||§:

F‘r t
Fo(X) = 2P~ il
F'r t

IN

IN

(%) = 3|21 = X[} 29)

Combining (28) and (29), we have

2 (P (X)) — Fo(Xr4n)

>3 1% =X+ D 1%~ XallE, (30)

J€Q(T) J€Q2(T)

3

where (T and Q5(T) are a partition of {1, -- , T} such
that when j € Q4 (T) step 6 is performed, and when j €
0o (T) step 8 is performed.

As F’- is bounded from below and limx, 00 F7(X) =
00, taking T' = oo in (30), we have

Yoo X =Yl + D 1% = Xel 7 =,

JEQ1 (o) JEQ2(0)

where
) )
c< ; [FT(fxl) — F;“m]

is a positive constant. Thus, the sequence {X; } is bounded,
and it must have limit points. Besides, one of the following
three cases must hold.

1. Q1(oc0) is finite, Q9(0c0) is infinite. Let X, be a
limit point of {X,}, and {X;, } be a subsequence that
converges to X,. In this case, on using Lemma B.4,
we have

. 2
jtlgnoo ||:x:jt+1 - :x:jt ||F

: 1 ?
= jtlgnoo ‘ prox%g(xjt - ;Vf(:xjt)) - xjt h
1 2
= |[prox15(X, — ;Vf(fx*)) - X.|| =0.
F

Thus, X, = proxi (X, — 1Vf(X.)), and X, is a
critical point of F, from Lemma B.3.

2. Q1(oc0) is infinite, Q9(c0) is finite. Let X, be a
limit point of {X,}, and {X;, } be a subsequence that
converges to X,. In this case, we have

. 2
T 2,41~ Y,

J
1 2
= i [lrox 0, - 1970x,)) - v,

F
2

=0.
F

proxég(fx* — %Vf(fx*)) - X.

Thus, X, = proxi,(X. — 1Vf(X.)), and X, is a
critical point of F, from Lemma B.3.

3. Both ©;(00) and Q2 (0c0) are infinite. From the above
cases, we can see that either 21 (0c0) or Qa(0c0) is

infinite, and limit points are also the critical points of
F..

Thus, all limit points of {X;} are critical points of F.. [

B.6. Corollary 3.6

Proof. Since X1 = prox1;(Vi— LV £(Vy)), conclusion
(1) directly follows from Lemma B.3.

From (30), we have

1
. 2 2
min, [Xer1 = Vel < ft_IZT [Xe41 — Vel

2
< F.(Xy) — F-(X
< ?7T( (X1) (X741))
2 .
< F.(Xy) — F™MM).
< () — F7)
Thus, we obtain Conclusion (ii). O

B.7. Theorem 3.7
We first bound OF’. in Lemma B.5.

Lemma B.5. For iterations in Algorithm I, we have
miny, egr, () [Well o < (7 + ) [ Xip1 = Ve -

Proof. Since X;,1 is generated from the proximal step,

ie., Xiy1 = proxi, (Ve — LV f(V)), from its optimality

condition, we have !

Xev1 — (Vt - j_Vf(Vt)) + %@(xwl) >0.
Let

Wi =7 X1 = Vi = [V (Vi) = VI (Xeg)] -
We have

OF:(Xpy1) = [V (Xis1) + 09(Xi11)] € Uy
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Table 8. Testing RMSE, CPU time and space required for the synthetic data, when /3 is small.

¢ = 50, sparsity:5.64% ¢ = 100, sparsity: 3.09%

RMSE space (MB) time (sec) RMSE space (MB) time (sec)

convex PA-APG | 0.0141+£0.0012 | 75.5£0.4 | 257.2434.8 | 0.01494+0.0011 | 302.440.1 | 2131.74+419.9

(nonconvex) | GDPAN | 0.0103+0.0001 | 42.4+2.5 64.4+29.5 | 0.0103+0.0001 | 171.5+2.2 665.44+99.8

capped-{; SNORT | 0.0103+0.0001 2.31+0.1 7.1+4.5 0.010340.0001 14.0+0.8 27.945.1
NORT | 0.0103=+0.0001 3.14+0.1 2.1+1.4 0.0103+0.0001 14.9+0.9 5.9+1.6

(nonconvex) | GDPAN | 0.0103+0.0001 | 41.8+2.4 59.14£26.4 | 0.0104+0.0001 | 172.2+1.5 654.1+214.7
LSP SNORT | 0.0103+0.0001 2.3+0.1 4.5+1.5 0.010440.0001 14.4+0.1 27.9+5.7
NORT | 0.0103+0.0001 2.3+0.1 1.6+1.1 0.010440.0001 15.1+0.1 5.8+2.8

(nonconvex) | GDPAN | 0.010440.0001 41.9+1.6 69.3+26.4 | 0.01044+0.0001 | 172.1£1.6 | 615.0+140.9
TNN SNORT | 0.0104+0.0001 2.54+0.1 6.6+3.8 0.010440.0001 14.4+0.1 26.2+4.0
NORT | 0.0104+0.0001 2.540.1 1.44+0.3 0.0103+0.0001 15.1+0.1 5.3+1.5

Table 9. Testing RMSE, CPU time and space required for the synthetic data, when I3 is large.

case (ii) ¢ = 20, sparsity:4.77% ¢ = 40, sparsity:2.70%
RMSE space (MB) time (sec) RMSE space (MB) time (sec)
convex PA-APG | 0.0110£0.0007 | 600.8£70.4 | 250.14£59.6 | 0.0098-+£0.0001 | 4804.5+£598.2 | 6196.44+2033.4
nonconvex | GDPAN | 0.0010+£0.0001 | 423.1+11.4 | 179.9£21.5 | 0.0006+0.0001 | 3243.3+489.6 | 3670.4+225.8
(capped-¢1) | sNORT | 0.0010+0.0001 10.1£0.1 22.9+1.1 0.0006-£0.0001 44.6+0.3 575.9+70.9
NORT | 0.0009-£0.0001 14.440.1 5.1+0.3 0.0006-£0.0001 66.31+0.6 89.4+13.4
nonconvex | GDPAN | 0.0010£0.0001 | 426.9+9.7 | 177.8£16.4 | 0.0006£0.0001 | 3009.3+376.2 | 3794.0+419.5
(LSP) sNORT | 0.0010+0.0001 10.840.1 21.8+0.8 | 0.0006-£0.0001 44.61+0.2 544.2475.5
NORT | 0.0010+0.0001 14.04+0.1 4.6+0.7 0.0006-0.0001 62.1+0.5 81.3+24.9
nonconvex | GDPAN | 0.0010+0.0001 | 427.3+10.1 | 184.1+17.7 | 0.0006+0.0001 | 3009.24+412.2 | 3922.9+280.1
(TNN) sNORT | 0.0010+0.0001 10.240.1 21.8£0.9 | 0.0006+0.0001 44.7+0.2 554.7+44.1
NORT | 0.0010-£0.0001 14.44+0.2 4.8+0.4 0.0006£0.0001 63.1+0.6 78.0+9.4

ST+ X1 = Vel

[Well o < 71 Xt1 = Vil g HIVF (Vi) =V (Xi 1)

Moreover, from Lemma B.2, we have

2
1211 = VeI < " [F7 (Vi) = Fr (Xeq1)] -

(32)

O
Now, we prove Theorem 3.7.

Proof. From Theorem 3.5, we have

Letr; = F,(X;) — F™®, we have

Ty — Tt+1 = FT(:)Ct) — F;nin —
> F‘r(vt) _ F‘Ir_nin _

[Fr (X)) = FM]
[Ff(xt+1) - Frmin]

= F‘r(vt) - F‘r(:x:t+1)- (33)
Jim Fr(X) = Fmin,
—00
Combine (31), (32) and (33), we have
Then, from Lemma B.5, we have
. . . L< [ ) (74 p)* [Xesr = Vil
Jm - min U< Jim () [ Vel =0 2 4 p)? "
A < W) ——[Fr (Vi) = Fr(Xi41)]
Thus, for any ¢, ¢ > 0 and ¢ > ¢y where % is a sufficiently )
large positive integer, we have < 27 +p) W)/(Ttﬂ)f (re — reg). (34)
N n
X, e{X| min |[U||p<e,
uE?FT(x) , Since ¢(ar) = %aﬁ, then ¢’ (o) = CaP~1, (34) becomes
FM < Fr(X) < BP0 + e}
2 28-2
Then, the uniformized KL property implies for all ¢ > ¢, 1< diCoriy " (re = i),
1<y (FT(DCtH) — FTmin) . ElglFin(x | W] where d; = 2Artp)* Finally, it is shown in (Bolte et al.,
) L 2014; Li & Lin, 2015; Li et al., 2017) that the sequence
=9 (FT(xtH) —I7 ) (T + ) X2 = Vel - {r.} satisfying the above inequality, convergence to zero

3D

with different rates stated in the Theorem. O
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Table 10. Algorithms compared on the real-world data sets.

algorithm model basic solver
convex ADMM (Boyd et al., 2011) ADMM
FaLRTC (Liu et al., 2013) overlapped nuclear norm Accelerated proximal algorithm for the dual problem
PA-APG (Yu, 2013) Accelerated PA algorithm
FFW (Guo et al., 2017) latent nuclear norm efficient Frank-Wolfe algorithm
TR-MM (Nimishakavi et al., 2018) squared latent nuclear norm solved in dual with Riemannian optimization
TenNN (Zhang & Aeron, 2017) tensor-SVD ADMM
factorization RP (Kasai & Mishra, 2016) Turker decomposition Riemannian preconditioning
TMac (Xu et al., 2013) multiple matrices factorization alternative minimization
CP-WOPT (Acar et al., 2011) CP decomposition gradient descent
TMac-TT (Bengua et al., 2017) tensor-train decomposition alternative minimization
nonconvex GDPAN (Zhong & Kwok, 2014) nonconvex overlapped nonconvex PA algorithm
NORT (Algorithm 1) regularization proposed algorithm
C. Experimental Details while the Cabbage and Scene images are
from https://sites.google.com/site/

C.1. Computation of Py (X — O)

Using (17), each observed element in Py (X; —O) can be
obtained by using Algorithm 2.

Algorithm 2 Computing the pth element in Pp (X; —0O).

Require: index {7}, 12, i3 }, factorizations of YY2 Y3
. uy < the ill)th row of Ul;
v1 « the (i2I5 + i3 )th row of V;
uy < the i th row of U7;
vy ¢ the (i3 I3 + i), )th row of V7
if D=3 then
uz < the igth row of U};
v « the (ipI; + i2)th row of V;
end if
op < pth element in Py, (O);

A A A e

N

D
output v, = > ;_, a;u] v; — 0p.

C.2. Color Images

The color images used in Section 4.2.1 are shown in
Figure 6.

(c) rice.

(b) tree.

Figure 6. Color images used in the experiments. All are of size
1000 x 1000 x 3.

(a) windows.

C.3. Remote Sensing Data

The hyper-spectral images wused in Section 4.2
are shown in Figure 7. The Female images are
downloaded from http://www.imageval.com/
scene—database—-4-faces-3-meters/,

hyperspectralcolorimaging/dataset.

(a) Cabbage.

(b) Scene. (c) Female.

Figure 7. Hyperspectral images used in the experiment. Images
are of size 1312 x 432 x 49, 1312 x 951 x 49 and 592 x 409 x 148
respectively.



