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Abstract
Nonconvex regularizers have been successful-
ly used in low-rank matrix learning. In this
paper, we extend this to the more challenging
problem of low-rank tensor completion. Based
on the proximal average algorithm, we develop
an efficient solver that avoids expensive tensor
folding and unfolding. A special “sparse plus
low-rank” structure, which is essential for fast
computation of individual proximal steps, is
maintained throughout the iterations. We also
incorporate adaptive momentum to further speed
up empirical convergence. Convergence results
to critical points are provided under smoothness
and Kurdyka-Lojasiewicz conditions. Experi-
mental results on a number of synthetic and real-
world data sets show that the proposed algorithm
is more efficient in both time and space, and is
also more accurate than existing approaches.

1. Introduction
Tensors, which can be seen as high-order matrices, can be
used to describe multilinear relationships inside the data
(Kolda & Bader, 2009; Song et al., 2017). They have been
popularly used in areas such as computer vision (Vasilescu
& Terzopoulos, 2002), recommender systems (Candès &
Recht, 2009), and signal processing (Cichocki et al., 2015).
Many of these are third-order tensors, which are the focus
in this paper. Examples include color images (Liu et al.,
2013) and hyperspectral images (Signoretto et al., 2011). In
Youtube, users can follow each other and can belong to the
same subscribed channels. By treating channels as the third
dimension, the users’ co-subscription network can again be
represented as a third-order tensor (Lei et al., 2009).
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In many applications, only a few tensor entries are ob-
served. For example, often each Youtube user only
interacts with a few other users (Lei et al., 2009; Davis
et al., 2011). Tensor completion, which aims at filling in
this partially observed tensor, has attracted a lot of interest
(Rendle & Schmidt-Thieme, 2010; Signoretto et al., 2011;
Bahadori et al., 2014; Cichocki et al., 2015). In the related
task of matrix completion, different rows/columns of the
underlying full matrix often share similar characteristics,
and the matrix is thus low-rank (Candès & Recht, 2009).
The nuclear norm, which is the tightest convex envelope
of the rank (Boyd & Vandenberghe, 2009), is popularly
used as a surrogate for the matrix rank in low-rank matrix
completion (Cai et al., 2010; Mazumder et al., 2010).

In tensor completion, the low-rank assumption can also
capture relatedness in the different tensor dimensions
(Tomioka et al., 2010; Acar et al., 2011; Song et al.,
2017). However, tensors are more complicated than
matrices. Indeed, even computation of the tensor rank
is NP-hard (Hillar & Lim, 2013). In recent years, many
convex relaxations based on the matrix nuclear norm have
been proposed for tensors. Examples include the tensor
trace norm (Cheng et al., 2016), overlapped nuclear norm
(Tomioka et al., 2010; Gandy et al., 2011), and latent
nuclear norm (Tomioka et al., 2010). In particular, the
overlapped nuclear norm is the most popular, as it (i) can
be computed exactly (Cheng et al., 2016), (ii) has better
low-rank approximation (Tomioka et al., 2010), and (iii)
can lead to exact recovery (Tomioka et al., 2011; Tomioka
& Suzuki, 2013; Mu et al., 2014).

However, the (overlapped) nuclear norm equally penalizes
all singular values. Intuitively, larger singular values are
more informative and should be less penalized (Mazumder
et al., 2010; Lu et al., 2016; Yao et al., 2018a). In matrix
completion, various adaptive nonconvex regularizers have
been recently introduced to alleviate this problem. Ex-
amples include the capped-`1 norm (Zhang, 2010b), log-
sum-penalty (LSP) (Candès et al., 2008), truncated nuclear
norm (TNN) (Hu et al., 2013), smoothed-capped-absolute-
deviation (SCAD) (Fan & Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010a). All these assign smaller
penalties to the larger singular values. This leads to better
empirical performance (Lu et al., 2016; Gu et al., 2017; Yao
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et al., 2018a) and statistical guarantee (Gui et al., 2016).

Motivating by the success of adaptive nonconvex regular-
izers in matrix completion, we propose to develop a non-
convex variant of the overlapped nuclear norm regularizer
for tensor completion. Unlike the standard convex tensor
completion problem, the resulting optimization problem is
nonconvex and more difficult to solve.

Based on the proximal average algorithm (Bauschke et al.,
2008), we develop in this paper an efficient solver with
much better time and space complexities. The keys to
its success are on (i) avoiding expensive tensor folding
and unfolding, (ii) maintaining a “sparse plus low-rank”
structure on the iterates, and (iii) incorporating the adaptive
momentum (Li et al., 2017). Convergence guarantees
to critical points are provided under smoothness and
Kurdyka-Lojasiewicz (Attouch et al., 2013) conditions.
Experiments on a number of synthetic and real-world data
sets show that the proposed algorithm is efficient and has
much better empirical performance than other low-rank
tensor regularization and decomposition methods.

Notation. Vectors are denoted by lowercase boldface,
matrices by uppercase boldface, and tensors by boldface
Euler. For a matrix A ∈ Rm×n (assume that m ≥ n)
with singular values σi’s, its nuclear norm is ‖A‖∗ =∑
iσi. For tensors, we follow the notation in (Kolda &

Bader, 2009). For a third-order tensor X ∈ RI1×I2×I3
(without loss of generality, we assume I1 ≥ I2 ≥ I3), its
(i1, i2, i3)th entry is Xi1i2i3 . One can unfold X along its
dth mode to obtain the matrix X〈d〉∈RId×(I×/Id), whose
(id, j) entry (wherej=1+

∑3
l=1,l 6=d(il−1)

∏l−1
m=1,m 6=d Im)

is Xi1i2i3 . One can also fold a matrix X back to a
tensor X = X〈d〉, with Xi1i2i3 = Xidj , and j as defined
above. The inner product of two third-order tensors X

and Y is 〈X,Y〉 =
∑I1
i1=1

∑I2
i2=1

∑I3
i3=1 Xi1i2i3Yi1i2i3 .

The Frobenius norm of X is ‖X‖F =
√
〈X,X〉. For a

proper and lower-semi-continuous function f , ∂f denotes
its Frechet subdifferential (Attouch et al., 2013). If
f is ρ-Lipschitz smooth, then ‖∇f(X)−∇f(Y)‖2F ≤
ρ ‖X−Y‖2F for any X and Y.

2. Related Works
2.1. Low-Rank Matrix Learning
Low-rank matrix learning can be formulated as the follow-
ing optimization problem:

min
X

f(X) + λr(X), (1)

where r is a low-rank regularizer (a common choice is
the nuclear norm), λ ≥ 0 is a hyper-parameter, and f is
a ρ-Lipschitz smooth loss. Using the proximal algorithm
(Parikh & Boyd, 2013), the iterate is given by Xt+1 =

proxλ
τ ‖·‖∗

(Zt), where

Zt = Xt −
1

τ
∇f(Xt), (2)

τ > ρ is the stepsize, and

proxλ
τ ‖·‖∗

(Z) ≡ arg min
X

1

2
‖X− Z‖2F +

λ

τ
‖X‖∗ (3)

is the proximal step. The following Lemma shows that it
can be obtained from the SVD of Z. Note that shrinking of
the singular values encourages Xt to be low-rank.

Lemma 2.1. (Cai et al., 2010) proxλ‖·‖∗(Z) = U(Σ −
λI)+V>, where UΣV> is the SVD of Z, and [(X)+]ij =
max(Xij , 0).

2.1.1. MATRIX COMPLETION

A special class of low-rank matrix learning problems is
matrix completion, which attempts to find a low-rank
matrix that agrees with the observations in data O:

min
X∈Rm×n

1

2
‖PΩ(X−O)‖2F + λ ‖X‖∗ . (4)

Here, the positions of observed elements in O are indicated
by 1’s in the binary matrix Ω, [PΩ (X)]ij = Xij if Ωij = 1

and 0 otherwise. Setting f(X) = 1
2 ‖PΩ(X−O)‖2F in (1),

Zt in (2) becomes:

Zt = Xt −
1

τ
PΩ(Xt −O). (5)

This has a “sparse plus low-rank” structure, with a low-
rank component Xt and a sparse component 1

τ PΩ(Xt −
O). This allows the SVD computation in Lemma 2.1 to be
much more efficient (Mazumder et al., 2010). Specifically,
on using the power method to compute Zt’s SVD, most
effort is spent on multiplications of the form Ztb and a>Zt
(where a ∈ Rn and b ∈ Rm). Let Xt in (5) be low-rank
factorized as UtV

>
t with rank kt. Computing

Ztb = Ut(V
>
t b)− 1

τ
PΩ(Yt −O)b (6)

takes O((m + n)kt + ‖Ω‖1) time. Usually, kt � n and
‖Ω‖1 � mn. This is much faster than direct multiplying
Zt and b, which takes O(mn) time. The same holds
for a>Zt. Thus, the proximal step in (3) takes O((m +
n)ktkt+1 + ‖Ω‖1 kt+1) time, while a direct computation
without utilizing the “sparse plus low-rank” structure takes
O(mnkt+1) time. Besides, as only PΩ (Xt) and the
factorized form of Xt need to be kept, the space complexity
is reduced from O(mn) to O((m+ n)kt + ‖Ω‖1).

2.1.2. NONCONVEX LOW-RANK REGULARIZER

Instead of using a convex r in (1), the following nonconvex
regularizer is commonly used (Gui et al., 2016; Lu et al.,
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2016; Gu et al., 2017; Yao et al., 2018a):

φ(X) =

n∑
i=1

κ(σi(X)), (7)

where κ is nonconvex and possibly nonsmooth. We assume
the following on κ.
Assumption 1. κ(α) is a concave, nondecreasing and L-
Lipschitz continuous function on α ≥ 0 with κ(0) = 0.

Examples of κ include the capped-`1 penalty: κ(σ) =
log( 1

θσ + 1) (Zhang, 2010b), and log-sum-penalty (LSP):
κ(σ) = min(σ, θ) (where θ > 0 is a constant) (Candès
et al., 2008). More can be found in Appendix A. They
have similar statistical guarantees (Gui et al., 2016), and
empirically perform better than the convex nuclear norm
(Lu et al., 2016; Yao et al., 2018a).

The proximal algorithm can again be used, and converges
to a critical point (Attouch et al., 2013). Analogous to
Lemma 2.1, the underlying proximal step

proxλ
τ φ

(Z) ≡ arg min
X

1

2
‖X− Z‖2F +

λ

τ
φ(X) (8)

can be obtained as follows.
Lemma 2.2. (Lu et al., 2016) proxλφ(Z) =

U Diag (y1, . . . , yn) V>, where UΣV> is the SVD
of Z, and yi = arg miny≥0

1
2 (y − σi(Z))2 + λκ(y).

2.2. Low-Rank Tensor Learning
Recently, the nuclear norm regularizer has been extended
to tensors. Here, we focus on the overlapped nuclear
norm (Tomioka et al., 2010; Gandy et al., 2011), and its
nonconvex extension that will be introduced in Section 3.
Definition 1. For a M -order tensor X, the overlapped
nuclear norm is ‖X‖overlap =

∑M
m=1 λm‖X〈m〉‖∗, where

{λm≥0} are hyperparameters.

Factorization methods, such as the Tucker/CP (Kolda &
Bader, 2009) and tensor-train decompositions (Oseledets,
2011), have also been used for low-rank tensor learning.
Compared to nuclear norm regularization, they may lead to
worse approximations and inferior performance (Tomioka
et al., 2011; Liu et al., 2013; Guo et al., 2017).

3. Nonconvex Low-Rank Tensor Completion
By integrating a nonconvex φ in (1) with the overlapped
nuclear norm, the tensor completion problem becomes

min
X

F (X) ≡ 1

2
‖PΩ(X−O)‖2F +

D∑
d=1

λd
D
φ(X〈d〉). (9)

Note that we only sum over D ≤ M modes. This is
useful as the third mode is sometimes already small (e.g.,

the number of bands in images), and so does not need to
be low-rank regularized. When D = 1, (9) reduces to
the matrix completion problem minX∈RI1×I2I3

1
2‖PΩ(X−

O〈1〉)‖2F + λ1φ(X), which can be solved by the proximal
algorithm as in (Lu et al., 2016; Yao et al., 2018a). In the
sequel, we only consider D 6=1.

When κ(α) = |α|, (9) reduces to (convex) overlapped
nuclear norm regularization. While D may not be equal to
M , it can be easily shown that optimization solvers such as
alternating direction of multiple multipliers (ADMM) and
fast low-rank tensor completion (FaLRTC) can still be used
as in (Boyd et al., 2011; Liu et al., 2013). However, when κ
is nonconvex, ADMM no longer guarantees convergence,
and FaLRTC’s dual cannot be derived.

3.1. Structure-aware Proximal Iterations
As in Section 2.1, we solve (9) with the proximal algorithm.
However, the proximal step for

∑D
d=1 λiφ(X〈d〉) is not

simple. To address this problem, we use the proximal
average (PA) algorithm (Bauschke et al., 2008; Yu, 2013).

Let H be a Hilbert space. Consider the following problem
with K possibly nonsmooth regularizers, whose individual
proximal steps are assumed to be easily computable.

min
X∈H

f(X) +

K∑
i=1

λi
K
gi(X), (10)

where f is convex and Lipschitz-smooth, while each gi
is convex but possibly nonsmooth. The PA algorithm
generates the iterates Xt’s as

Xt =
1

K

K∑
i=1

Yit, (11)

Zt = Xt −
1

τ
∇f(Xt), (12)

Yit+1 = proxλi
τ gi

(Zt), i = 1, . . . ,K. (13)

Recently, the PA algorithm is also extended to nonconvex
f and gi’s, where each gi admits a difference-of-convex
decomposition1 (Zhong & Kwok, 2014).

Note that (9) is of the form in (10), and φ in (7) admits
a difference-of-convex decomposition (Yao et al., 2018a),
the PA algorithm can be used to generate the iterates as:

Xt =
1

D

D∑
i=1

Yit, (14)

Zt = Xt −
1

τ
PΩ (Xt −O) . (15)

However, as the regularizer φ is imposed on the unfolded
matrix X〈d〉, not on X directly, the proximal steps need to
be performed as follows.

1In other words, each gi can be decomposed as gi = ḡi − ĝi
where ḡi and ĝi are two convex functions.
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Proposition 3.1. For problem (9), step (13) of the PA
algorithm can be performed as

Yit+1 =
[
proxλi

τ φ
([Zt]〈i〉)

]〈i〉
. (16)

The individual proximal steps in (16) can be computed
using Lemma 2.2 based on SVD. However, tensor folding
and unfolding are required in (16). A direct implementation
takes O(I×) space and O(I×I+) time per iteration, where
I× =

∏3
i=d Id and I+ =

∑3
i=d Id, and is expensive.

In the following, we show how the PA iterations can be
computed efficiently by utilizing the “sparse plus low-
rank” structures.

3.1.1. KEEPING THE LOW-RANK FACTORIZATIONS

In (16), let Yi
t+1 = proxλi

τ φ
(Zit), where Zit = [Zt]〈i〉.

Recall that Yi
t is low-rank. Let its rank be kit. In each

iteration, we avoid constructing the dense Yit by storing Yi
t

as Ui
t(V

i
t)
>, where Ui

t ∈ RIi×kit and Vi
t ∈ R(I×/Ii)×kit .

We also avoid getting Xt in (14) by storing it implicitly as

Xt =
1

D

D∑
i=1

(
Ui
t(V

i
t)
>)〈i〉 . (17)

3.1.2. MAINTAINING “SPARSE PLUS LOW-RANK”

Using (17), Zt in (15) can be rewritten as

Zt =
1

D

D∑
i=1

(Ui
t(V

i
t)
>)〈i〉 − 1

τ
PΩ (Xt−O) . (18)

The sparse tensor PΩ (Xt−O) can be constructed efficient-
ly by using the coordinate format2 (Bader & Kolda, 2007).
As
∑D
i=1(Ui

t(V
i
t)
>)〈i〉 is a sum of tensor (folded from

low-rank matrices) and 1
τ PΩ (Xt−O) is sparse, Zt is also

“sparse plus low-rank”.

Recall that the proximal step in (16) requires SVD, which
involves matrix multiplications of the form (Zt)〈i〉b

(where b∈RI×/Ii ) and a>(Zt)〈i〉 (where a∈RIi ). Using
the “sparse plus low-rank” structure in (18),

(Zt)〈i〉b =
1

D
Ui
t[(V

i
t)
>b]+

1

D

∑
j 6=i

[(Uj
t (V

j
t )
>)〈j〉]〈i〉b

−1

τ
[PΩ (Xt−O)]〈i〉b, (19)

a>(Zt)〈i〉=
1

D
(a>Ui

t)(V
i
t)
>+

1

D

∑
j 6=i

a>[(Uj
t (V

j
t )
>)〈j〉]〈i〉

−1

τ
a>[PΩ (Xt−O)]〈i〉 . (20)

2For a sparse third-order tensor, its pth nonzero element is
represented in the coordinate format as (i1p, i

2
p, i

3
p, vp), where

i1p, i
2
p, i

3
p are indices on each mode and vp is the value. Using (17),

vp of PΩ (Xt−O) can be computed by finding the corresponding
rows in Ui

t and Vi
t, which takes O(

∑D
i=1 k

i
t) time.

The first term in both (19) and (20) can be easily computed
in O((I×/Ii + Ii)k

i
t) space and time. [PΩ (Xt−O)]〈i〉b

and a> [PΩ (Xt−O)]〈i〉 are sparse. Using sparse tensor
packages such as the Tensor Toolbox (Bader & Kolda,
2007), [PΩ (Xt −O)]〈i〉b and a>[PΩ (Xt −O)]〈i〉 can be
computed in O(‖Ω‖1) space and time.

Computing a>[(Ui
t(V

i
t)
>)〈j〉]〈i〉 and [(Ui

t(V
i
t)
>)〈j〉]〈i〉b

in (19), (20) involves folding/unfolding and is expensive.
By examining how elements are ordered by folding and un-
folding, the following shows that a>[(Ui

t(V
i
t)
>)〈j〉]〈i〉 and

[(Ui
t(V

i
t)
>)〈j〉]〈i〉b can be reformulated without explicit

folding / unfolding, and thus be computed more efficiently.

Proposition 3.2. Let U ∈ RIi×k, V ∈ RI×/Ii×k, and
up (resp.vp) be the pth column of U (resp.V). For any
a ∈ RIj and b ∈ RI×/Ij , we have

(i) a>[(UV>)〈i〉]〈j〉 =
∑k
p=1 u>p ⊗ [a>mat(vp)];

(ii) [(UV>)〈i〉]〈j〉b =
∑k
p=1 mat(vp)mat(b)>up;

where ⊗ is the Kronecker product, and mat(c) reshapes
vector c∈RIiIj into a Ii×Ij matrix.

Remark 3.1. As a special case, take i = 1 and
Ij = 1 where j ∈ {2, 3}, the I1 × I2 × I3 tensor
reduces to a matrix. Proposition 3.2 then becomes
a>[(UV>)〈1〉]〈j〉 =

∑k
p=1 u>p (a>vp) = (a>U)V>,

[(UV>)〈1〉]〈j〉b=
∑k
p=1 vp(b

>up)=U(V>b), and (19)
reduces to (6).

Computation of a>[(Ui
t(V

i
t)
>)〈j〉]〈i〉 takes a total of

O(( 1
Ii

+ 1
Ij

)kitI×) time and O(( 1
Ii

+ 1
Ij

)I×) space. The

same holds for computation of [(Ui
t(V

i
t)
>)〈j〉]〈i〉b. This

is much less expensive than direct evaluation, which takes
O(kitI×) time and O(I×) space.

Combining the above, and noting that we have to keep the
factorized form Ui

t(V
i
t)
> of Yi

t, computing proximal steps
in (16) takesO(

∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitI×+‖Ω‖1) space and

O(
∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitk
i
t+1I×+‖Ω‖1 (kit+k

i
t+1)) time.

3.1.3. COMPLEXITIES

In each PA iteration, D proximal steps are performed
in (16). The whole PA algorithm thus takes a total
of O(

∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitI× + ‖Ω‖1) space and

O(
∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitk
i
t+1I× + ‖Ω‖1 (kit + kit+1))

time for each iteration. As kit, k
i
t+1 � Ii, these are much

lower than those of a direct implementation (Table 1).
Moreover, the PA algorithm has a convergence rate of
O(1/T ), where T is the number of iterations (Zhong &
Kwok, 2014).



Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations

Table 1. Comparison of the proposed NORT (Algorithm 1) and direct implementations of the PA algorithm.
per-iteration time complexity space convergence

direct O(I×
∑D
i=1 Ii) O(I×) slow

NORT O(
∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitk
i
t+1I×+‖Ω‖1 (kit + kit+1)) O(

∑D
i=1

∑
j 6=i(

1
Ii

+ 1
Ij

)kitI×+‖Ω‖1) fast

3.2. Use of Adaptive Momentum

The PA algorithm uses only first-order information, and
empirically can be slow to converge (Parikh & Boyd,
2013). To address this problem, we adopt adaptive
momentum, which has been popularly used for stochastic
gradient descent (Duchi et al., 2011; Kingma & Ba, 2015)
and proximal algorithms (Li & Lin, 2015; Yao et al., 2017;
Li et al., 2017). The idea is to use historical iterates
to speed up convergence. Here, we adopt the adaptive
scheme in (Li et al., 2017). The resultant procedure,
shown in Algorithm 1, will be called NOncvx Regularized
Tensor (NORT). Note that even when step 6 is performed,
Zt in step 10 still has the “sparse plus low-rank” struc-
ture on Zt, since Zt = 1+γt

D

∑D
i=1(Ui

t(V
i
t)
>)〈i〉 −

γt
D

∑D
i=1(Ui

t−1(Vi
t−1)>)〈i〉 − 1

τ PΩ

(
X̄t −O

)
. The rank

of each Xi
t+1 is implicitly determined by the proximal step

with the nonconvex regularizer at step 12. The resultant
time and space complexities are the same as those in
Section 3.1.3.

Algorithm 1 NOnconvex Regularized Tensor (NORT).
1: initialize X0 =X1 =0, τ > ρ+DL and γ1, p ∈ (0, 1);
2: for t = 1, . . . , T do
3: Xt+1 = 1

D

∑D
i=1(Ui

t+1(Vi
t+1)>)〈i〉;

4: X̄t = Xt + γt(Xt −Xt−1);
5: if Fτ (X̄t) ≤ Fτ (Xt) then
6: Vt = X̄t, γt+1 = min(γtp , 1);
7: else
8: Vt = Xt, γt+1 = pγt;
9: end if

10: Zt = Vt − 1
τ PΩ (Vt −O);

// compute PΩ (Vt −O) using sparse tensor format;
11: for i = 1, . . . , D do
12: Xi

t+1 = proxλi
τ φ

((Zt)〈i〉); // keep as Ui
t(V

i
t)
>;

13: end for
14: end for
output XT+1.

3.3. Convergence Analysis

Adaptive momentum has not been used with the PA
algorithm. Besides, previous proofs of the PA algorithm do
not involve folding/unfolding operations. Thus, previous
proofs cannot be directly used. In the following, first note
that the proximal step in (16) implicitly corresponds to a
new regularizer.

Proposition 3.3. There exists a function ḡ such that
prox 1

τ ḡ
(Z)= 1

D

∑D
i=1[proxλi

τ φ
(
[
Z]〈i〉)

]〈i〉
for any τ >0.

Let the objective with the new regularizer be Fτ (X) =
f(X)+ḡ(X). The following bounds the difference between
the optimal values (Fmin and Fmin

τ , respectively) of the
objectives F in (9) and Fτ .

Proposition 3.4. 0≤Fmin−Fmin
τ ≤ L2

2τD

∑D
d=1 λ

2
d.

3.3.1. WITH SMOOTH ASSUMPTION

As in Section 2.1, we assume that f is L-Lipschitz
smooth. The following shows that Algorithm 1 converges
to a critical point (Theorem 3.5) at the rate of O(1/T )
(Corollary 3.6). Note that this is the best possible rate
for first-order methods on general nonconvex problems
(Nesterov, 2013; Ghadimi & Lan, 2016).

Theorem 3.5. The sequence {Xt} generated from Algo-
rithm 1 has at least one limit point, and all limits points are
critical points of Fτ (X).

Corollary 3.6. (i) If Xt+1 = Vt, then Xt+1 is a
critical point of Fτ ; (ii) Let η = τ − ρ−DL. Then
mint=1,...,T

1
2 ‖Xt+1−Vt‖2F ≤

1
ηT [Fτ (X1)−Fmin

τ ];

Remark 3.2. A larger τ leads to a better approximation to
the original problem F (Proposition 3.4). However, it also
leads to smaller steps (step 12 in Algorithm 1) and thus
slower convergence (Corollary 3.6).

3.3.2. WITH KURDYKA-LOJASIEWICZ CONDITION

The Kurdyka-Lojasiewicz (KL) condition (Attouch et al.,
2013; Bolte et al., 2014) has been popularly used in
nonconvex optimization, particularly in gradient (Attouch
et al., 2013) and proximal gradient descent algorithms
(Bolte et al., 2014; Li & Lin, 2015; Li et al., 2017).

Definition 2. A function h: Rn → (−∞,∞] has the
uniformized KL property if for every compact set S ∈
dom(h) on which h is a constant, there exist ε, c > 0 such
that for all u ∈ S and all ū ∈ {u : minv∈S ‖u− v‖2 ≤
ε} ∩ {u : f(ū) < f(u) < f(ū) + c}, one has
ψ′ (f(u)− f(ū)) minv∈∂f(u) ‖v‖F > 1, where ψ(α) =
C
β α

β for some C > 0, α ∈ [0, c) and β ∈ (0, 1].

The following extends this to Algorithm 1.

Theorem 3.7. Let rt = Fτ (Xt) − Fmin
τ . If Fτ has the

uniformized KL property, for a sufficiently large t0, we have

a) If β = 1, rt reduces to zero in finite steps;
b) If β∈ [ 1

2 , 1), rt≤( d1C
2

1+d1C2 )t−t0rt0 where d1 = 2(τ+ρ)2

η ;
c) If β∈(0, 1

2 ), rt≤( C
(t−t0)d2(1−2β) )1/(1−2β) where d2 =

min{ 1
2d1C

, C
1−2β (2

2β−1
2β−2 − 1)rt0}.
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Though the convergence rates in Corollary 3.6 and The-
orem 3.7 are the same as when momentum is not used,
the proposed algorithm does have faster convergence em-
pirically, as will be shown in Section 4. This also agrees
with previous studies showing that adaptive momentum
can significantly accelerate empirical convergence (Duchi
et al., 2011; Kingma & Ba, 2015; Li & Lin, 2015; Li et al.,
2017; Yao et al., 2017).

4. Experiments
In this section, experiments are performed on both synthet-
ic (Section 4.1) and real-world data sets (Section 4.2).

4.1. Synthetic Data

The setup is as in (Song et al., 2017). We first generate
Ō =

∑5
i=1si(ai ◦ bi ◦ ci), where ai ∈ RI1 , bi ∈ RI2

and ci ∈ RI3 , and ◦ denotes the outer product (i.e.,
[a◦b◦c]ijk = aibjck). All elements in ai’s, bi’s, ci’s and
si’s are sampled independently from the standard normal
distribution. This is then corrupted by Gaussian noise from
N (0, 0.01) to form O. A total of ‖Ω‖1 = I+I3 log(I×)/5
random elements are observed from O. We use 50% of
them for training, and the remaining 50% for validation.
Testing is evaluated on the unobserved elements in Ō.

Three nonconvex penalties as used: capped-`1 (Zhang,
2010a), LSP (Candès et al., 2008) and TNN (Hu et al.,
2013). The proposed NORT algorithm is compared with
(i) its slower variant without adaptive momentum (denoted
sNORT); (ii) GDPAN (Zhong & Kwok, 2014), which
directly applies PA algorithm to (10) as described in (14)-
(16); and (iii) PA-APG (Yu, 2013), which solves the
convex overlapped nuclear norm minimization problem.
For NORT, τ has to be larger than ρ + DL (Corol-
lary 3.6). However, a large τ leads to slow convergence
(Remark 3.2). Hence, we set τ = 1.01(ρ+DL). Moreover,
we set γ1 = 0.1 and p = 0.5 as in (Li et al., 2017). Besides,
Fτ in step 5 of Algorithm 1 is hard to evaluate, and we use
F instead as in (Zhong & Kwok, 2014). All algorithms
are implemented in Matlab, with sparse tensor and matrix
operations in C. Experiments are performed on a PC with
Intel-i8 CPU and 32GB memory.

Following (Lu et al., 2016; Yao et al., 2017; 2018a), per-
formance is evaluated by (i) root-mean-square-error on the
unobserved elements: RMSE =

∥∥PΩ̄(X−Ō)
∥∥
F
/
∥∥Ω̄
∥∥0.5

1
,

where X is the low-rank tensor recovered, and Ω̄ contains
the unobserved elements in Ō; and (ii) CPU time. To
reduce statistical variation, results are averaged over five
repetitions.

4.1.1. SMALL I3 (D = 2)

Recall that for the third-order tensor considered here, we
assume that I1≥I2≥I3. In this experiment, we first study

the case where I3 is small. We set I1 = I2 = 25c̄, where
c̄=100, I3 =5, and D=2.

Table 2 shows the results. As can be seen, PA-APG,
which is based on the convex overlapped nuclear norm,
has much higher testing RMSEs than those with nonconvex
regularization. Besides, the various nonconvex penalties
(capped-`1, LSP and TNN) have similar empirical testing
RMSEs, as is also observed in (Lu et al., 2016; Yao et al.,
2017; 2018a). As for space, NORT and its variant sNORT
need much less memory than PA-APG and GDPAN, as they
do not explicitly construct dense tensors during iterations.
As for time, NORT is the fastest. Figure 1 shows
convergence of the objective.3 As can be seen, sNORT and
GDPAN have similar speeds w.r.t. the number of iterations.
However, sNORT is much faster when measured against
time, as it utilizes the “sparse plus low-rank” structure.
NORT is even faster due to usage of adaptive momentum.

(a) vs iterations. (b) vs time.

Figure 1. Convergence of the objective on the synthetic data for
small I3 (capped-`1 regularizer).

4.1.2. LARGE I3 (D = 3)

In this experiment, we set I1 = I2 = I3 = 10ĉ, where ĉ =
40; and D= 3 is used here. Results are shown in Table 2.
Again, the capped-`1, LSP and TNN regularizers yield the
same RMSE. GDPAN, sNORT and NORT all have much
lower RMSEs than PA-APG. Convergence of the objective
value is shown in Figure 2. Again, NORT is the fastest, and
GDPAN is the slowest. NORT and sNORT need much less
memory than GDPAN.

(a) vs iterations. (b) vs time.

Figure 2. Convergence of the objective on synthetic data for large
I3 (capped-`1 regularizer).

3Plots for LSP and TNN are similar, and so are not shown
because of the lack of space.
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Table 2. Testing RMSE, CPU time and space required on the synthetic data set. The left is for small I3, and the right is for large I3.
Results for c̄ = 50 (small I3) and ĉ = 20 (large I3) are in Appendix C. In all tables, the best and comparable performances (according
to the pairwise t-test with 95% confidence) are highlighted.

small I3: c̄ = 100, sparsity: 3.09% large I3: ĉ = 40, sparsity:2.70%
RMSE space (MB) time (sec) RMSE space (MB) time (sec)

convex PA-APG 0.0149±0.0011 302.4±0.1 2131.7±419.9 0.0098±0.0001 4804.5±598.2 6196.4±2033.4
(nonconvex) GDPAN 0.0103±0.0001 171.5±2.2 665.4±99.8 0.0006±0.0001 3243.3±489.6 3670.4±225.8
capped-`1 sNORT 0.0103±0.0001 14.0±0.8 27.9±5.1 0.0006±0.0001 44.6±0.3 575.9±70.9

NORT 0.0103±0.0001 14.9±0.9 5.9±1.6 0.0006±0.0001 66.3±0.6 89.4±13.4
(nonconvex) GDPAN 0.0104±0.0001 172.2±1.5 654.1±214.7 0.0006±0.0001 3009.3±376.2 3794.0±419.5

LSP sNORT 0.0104±0.0001 14.4±0.1 27.9±5.7 0.0006±0.0001 44.6±0.2 544.2±75.5
NORT 0.0104±0.0001 15.1±0.1 5.8±2.8 0.0006±0.0001 62.1±0.5 81.3±24.9

(nonconvex) GDPAN 0.0104±0.0001 172.1±1.6 615.0±140.9 0.0006±0.0001 3009.2±412.2 3922.9±280.1
TNN sNORT 0.0104±0.0001 14.4±0.1 26.2±4.0 0.0006±0.0001 44.7±0.2 554.7±44.1

NORT 0.0103±0.0001 15.1±0.1 5.3±1.5 0.0006±0.0001 63.1±0.6 78.0±9.4

4.1.3. D = 2 VS D = 3

Recall that D in (9) can be either 2 and 3. We expect D=2
to be better when I3 is small, and vice versa. This will
be verified in this section. The setup is the same as in
Sections 4.1.1 and 4.1.2. We only experiment with NORT,
as the other baselines are less efficient.

Results are shown in Table 3. As can be seen, when I3
is small, D = 2 and 3 yield similar RMSEs. However, D
= 3 is much slower. When I3 is small, the third mode is
not low-rank. Thus, the proximal step for the third mode is
much more expensive than those for the first two modes as
we cannot have k3

t � I3. Moreover, D = 3 requires much
larger space than D = 2. When I3 is large, it is slightly
more expensive on CPU time and space. However, D= 2
has much worse testing RMSE than D = 3, as it cannot
capture the low-rank property on the third mode.

Table 3. NORT with different D’s in (9) on the synthetic data.
small I3 (c̄ = 100) large I3 (ĉ = 40)

D RMSE
space
(MB)

time
(sec) RMSE

space
(MB)

time
(sec)

capped 2 0.0103 14.0 5.9 0.0009 46.7 40.0
-`1 3 0.0103 78.7 918.7 0.0006 66.3 89.4

LSP 2 0.0104 14.1 5.8 0.0010 45.2 50.8
3 0.0103 78.7 899.7 0.0006 62.1 81.3

TNN 2 0.0103 14.4 5.3 0.0009 46.8 39.3
3 0.0104 77.8 615.5 0.0006 63.1 78.0

4.2. Real-World Data sets

As different nonconvex regularizers have similar perfor-
mance, we will only use LSP. Moreover, based on the
observations in Section 4.1.3, we use D= 2 if I3 is ≤ 10,
and D = 3 otherwise. Besides comparing with GDPAN,
the proposed NORT algorithm is also compared with:
(i) algorithms for various convex regularizers including
ADMM (Boyd et al., 2011), FaLRTC (Liu et al., 2013), PA-
APG (Yu, 2013), FFW (Guo et al., 2017), TenNN (Zhang
& Aeron, 2017), and TR-MM (Nimishakavi et al., 2018);
(ii) factorization-based algorithms including RP (Kasai &
Mishra, 2016), TMac (Xu et al., 2013), CP-WOPT (Acar

et al., 2011), and TMac-TT (Bengua et al., 2017).

We do not compare with sNORT as it is slower than NORT.
Neither do we compare with (Bahadori et al., 2014), which
is inferior to FFW above (Guo et al., 2017); and (Rauhut
et al., 2017), whose its code is not publicly available and
the more recent TMac-TT solves the same problem.

4.2.1. COLOR IMAGES

We use windows, tree and rice from (Hu et al., 2013),
which are resized to 1000 × 1000 × 3 (Appendix C.2).
Each pixel is normalized to [0, 1]. We randomly sample
10% of the pixels for training, which are then corrupted by
Gaussian noise N (0, 0.01). Half of the training pixels are
used for validation. The remaining unseen clean pixels are
used for testing. Hyper-parameters of the various methods
are tuned using the validation set. Performance is measured
by the testing RMSE and CPU time. To reduce statistical
variation, results are averaged over five repetitions.

Table 4. Testing RMSEs (×10−1) on color images.
rice tree windows

convex ADMM 0.680±0.003 0.915±0.005 0.709±0.004
PA-APG 0.583±0.016 0.488±0.007 0.585±0.002
FaLRTC 0.576±0.004 0.494±0.011 0.567±0.005

FFW 0.634±0.003 0.599±0.005 0.772±0.004
TR-MM 0.596±0.005 0.515±0.011 0.634±0.002
TenNN 0.647±0.004 0.562±0.004 0.586±0.003

factor- RP 0.541±0.011 0.524±0.010 0.388±0.026
ization TMac 1.923±0.005 1.750±0.006 1.313±0.005

CP-OPT 0.912±0.086 0.733±0.060 0.964±0.102
TMac-TT 0.729±0.022 0.697±0.147 1.045±0.107

non GDPAN 0.467±0.002 0.388±0.012 0.296±0.007
-convex NORT 0.468±0.001 0.386±0.009 0.297±0.007

Table 4 shows the results. As can be seen, the best
convex methods (PA-APG and FaLRTC) are based on the
overlapping nuclear norm. This agrees with our motivation
to build a nonconvex regularizer based on the overlapping
nuclear norm. GDPAN and NORT have similar RMSEs,
which are lower than those by convex regularization and
factorization approach. Convergence of the testing RMSE
is shown in Figure 3. As can be seen, while ADMM solves



Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations

the same convex model as PA-APG and FaLRTC, it has
slower convergence. FFW, RP and TR-MM are very fast
but their testing RMSEs are higher than that of NORT. By
utilizing the “sparse plus low-rank” structure and adaptive
momentum, NORT is more efficient than GDPAN.

(a) rice. (b) tree.

Figure 3. Testing RMSE vs CPU time (seconds) on color images.
The plot for windows is similar, and thus not shown.

4.2.2. REMOTE SENSING DATA

Experiments are performed on three hyper-spectral data
sets (Appendix C.3): Cabbage (1312×432×49), Scene
(1312×951×49) and Female (592×409×148). The third
dimension is for the bands of images. We use the same
setup as in Section 4.2.1, and hyper-parameters are tuned
with the validation set. ADMM, TenNN, GDPAN, and
TMac-TT are slow and so not compared.

Results are shown in Table 5. Again, NORT achieves
much lower testing RMSE than convex regularization and
factorization approach. Figure 4 shows convergence of the
testing RMSE. As can be seen, NORT is fast.

Table 5. Testing RMSEs (×10−2) on remote sensing data.
Cabbage Scene Female

convex PA-APG 9.13±0.06 19.65±0.02 11.57±0.03
FaLRTC 9.09±0.02 19.20±0.01 11.33±0.04

FFW 9.62±0.04 20.37±0.02 20.96±0.06
TR-MM 9.59±0.01 19.65±0.02 13.97±0.06

factor- RP 4.91±0.11 18.04±0.05 6.47±0.03
ization TMac 49.19±0.59 59.70±0.29 198.97±0.06

CP-OPT 18.46±5.14 48.11±0.82 18.68±0.13
noncvx NORT 3.76±0.04 17.14±0.12 5.92±0.02

(a) Cabbage. (b) Female.

Figure 4. Testing RMSE vs CPU time (minutes) on remote
sensing data. The plot for Scene41 is similar, and thus not shown.

4.2.3. SOCIAL NETWORKS

In this section, we perform multi-relational link prediction
(Guo et al., 2017) as a tensor completion problem on the
YouTube data set (Lei et al., 2009). It contains 15,088
users, and describes five types of user interactions. Thus, it
forms a 15088×15088×5 tensor, with a total of 27,257,790
nonzero elements. Besides the full set, we also experiment
with a YouTube subset obtained by randomly selecting
1,000 users (leading to 12,101 observations). We use 50%
of the observations for training, another 25% for validation
and the rest for testing. Experiments are repeated five
times. Table 6 shows the testing RMSE, and Figure 5
shows the convergence. As can be seen, NORT achieves
low RMSE and is also much faster.

Table 6. Testing RMSEs on Youtube data set. FaLRTC, PA-APG,
TR-MM and CP-OPT are slow, and thus not run on the full set.

subset full set

convex
FaLRTC 0.657±0.060 —
PA-APG 0.651±0.047 —

FFW 0.697±0.054 0.395±0.001
TR-MM 0.670±0.098 —

RP 0.522±0.038 0.410±0.001
factorization TMac 0.795±0.033 0.611±0.007

CP-OPT 0.785±0.040 —
nonconvex NORT 0.482±0.030 0.370±0.001

(a) Subset. (b) Full set.

Figure 5. Testing RMSE vs CPU time (seconds) on Youtube.

5. Conclusion
In this paper, we propose a low-rank tensor completion
model with nonconvex regularization. An efficient non-
convex proximal average algorithm is developed, which
maintains the “sparse plus low-rank” structure throughout
the iterations and also incorporates adaptive momentum.
Convergence to critical points is guaranteed. Experimental
results show that the proposed algorithm is more efficient
and more accurate than existing approaches. As a future
work, it will be interesting to utilize automated machine
learning (AutoML) (Yao et al., 2018b) for adaptive tuning
hyper-parameters of the proposed approach.
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tensor recovery via iterative hard thresholding. Linear
Algebra and its Applications, 523:220–262, 2017.

Rendle, S. and Schmidt-Thieme, L. Pairwise interaction
tensor factorization for personalized tag recommenda-
tion. In WSDM, pp. 81–90, 2010.

Signoretto, M., Van de Plas, R., De Moor, B., and Suykens,
J. Tensor versus matrix completion: a comparison with
application to spectral data. SPL, 18(7):403–406, 2011.

Song, Q., Ge, H., Caverlee, J., and Hu, X. Tensor
completion algorithms in big data analytics. Technical
report, Department of Computer Science and Engineer-
ing, Texas A&M University, 2017.

Tomioka, R. and Suzuki, T. Convex tensor decomposition
via structured schatten norm regularization. In NIPS, pp.
1331–1339, 2013.

Tomioka, R., Hayashi, K., and Kashima, H. Estimation
of low-rank tensors via convex optimization. arXiv
preprint, 2010.

Tomioka, R., Suzuki, T., Hayashi, K., and Kashima, H.
Statistical performance of convex tensor decomposition.
In NIPS, pp. 972–980, 2011.

Vasilescu, A. and Terzopoulos, D. Multilinear analysis of
image ensembles: Tensorfaces. In ECCV, pp. 447–460,
2002.

Xu, Y., Hao, R., Yin, W., and Su, Z. Parallel matrix
factorization for low-rank tensor completion. IPI, 9(2):
601–624, 2013.

Yao, Q., Kwok, J., Gao, F., Chen, W., and Liu, T.-
Y. Efficient inexact proximal gradient algorithm for
nonconvex problems. In IJCAI, pp. 3308–3314, 2017.

Yao, Q., Kwok, J., Wang, T., and Liu, T.-Y. Large-scale
low-rank matrix learning with nonconvex regularizers.
TPAMI, 2018a.

Yao, Q., Wang, M., Chen, Y., Dai, W., Y., H., Li, Y., Tu,
W., Yang, Q., and Yu, Y. Taking human out of learning
applications: A survey on automated machine learning.
Technical report, arXiv preprint, 2018b.

Yu, Y.-L. Better approximation and faster algorithm using
the proximal average. In NIPS, pp. 458–466, 2013.

Zhang, C. Nearly unbiased variable selection under
minimax concave penalty. Annals of Statistics, 38(2):
894–942, 2010a.

Zhang, T. Analysis of multi-stage convex relaxation for
sparse regularization. JMLR, 11:1081–1107, 2010b.

Zhang, Z. and Aeron, S. Exact tensor completion using
t-SVD. TSP, 65(6):1511–1526, 2017.

Zhong, W. and Kwok, J. Gradient descent with proximal
average for nonconvex and composite regularization. In
AAAI, pp. 2206–2212, 2014.


