
Tight Kernel Query Complexity of Kernel Ridge Regression
and Kernel k-means Clustering

Manuel Fernández * 1 David P. Woodruff * 1 Taisuke Yasuda * 2

Abstract
Kernel methods generalize machine learning al-
gorithms that only depend on the pairwise in-
ner products of the data set by replacing inner
products with kernel evaluations, a function that
passes input points through a nonlinear feature
map before taking the inner product in a higher
dimensional space. In this work, we present tight
lower bounds on the number of kernel evaluations
required to approximately solve kernel ridge re-
gression (KRR) and kernel k-means clustering
(KKMC) on n input points. For KRR, our bound
for relative error approximation to the minimizer
of the objective function is Ω(ndλeff/ε) where dλeff

is the effective statistical dimension, which is
tight up to a log(dλeff/ε) factor. For KKMC, our
bound for finding a k-clustering achieving a rela-
tive error approximation of the objective function
is Ω(nk/ε), which is tight up to a log(k/ε) factor.
Our KRR result resolves a variant of an open ques-
tion of El Alaoui and Mahoney, asking whether
the effective statistical dimension is a lower bound
on the sampling complexity or not. Furthermore,
for the important practical case when the input is
a mixture of Gaussians, we provide algorithms
which bypass the above lower bounds.

1. Introduction
The kernel trick in machine learning is a general technique
that takes linear learning algorithms that only depend on
the dot products of the data, including linear regression,
support vector machines, principal component analysis, and
k-means clustering, and boosts them to powerful nonlinear
algorithms. This is done by replacing the inner product

*Equal contribution 1Computer Science Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA 2Department
of Mathematical Sciences, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, USA. Correspondence to: Taisuke Yasuda
<taisukey@andrew.cmu.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

between two data points with their inner product after ap-
plying a kernel map, which implicitly maps the points to
a higher dimensional space via a non-linear feature map.
The simplicity and power of kernel methods has led to wide
adoption across the machine learning community: nowa-
days, kernel methods are a staple both in theory (Friedman
et al., 2001) and in practice (Schölkopf et al., 2004; Zhang
et al., 2007). We refer the reader to (Schölkopf & Smola,
2001) for more background on kernel methods.

However, one problem with kernel methods is that the com-
putation of the kernel matrix K, the matrix containing all
pairs of kernel evaluations between n data points, requires
Ω(n2) time, which is prohibitively expensive for the large-
scale data sets encountered in modern data science. To
combat this, a large body of literature in the last decade
has been devoted to designing faster algorithms that attempt
to trade a small amount of accuracy in exchange for speed
and memory, based on techniques such as random Fourier
features (Rahimi & Recht, 2008), sampling (Bach, 2013;
El Alaoui & Mahoney, 2015; Musco & Musco, 2017; Musco
& Woodruff, 2017), sketching (Yang et al., 2017), and in-
complete Cholesky factorization (Bach & Jordan, 2002;
Fine & Scheinberg, 2001). We refer the reader to the ex-
position of (Musco & Musco, 2017) for a more extensive
overview of recent literature on the approximation of kernel
methods.

1.1. Previous work on kernel query complexity

In this work, we consider lower bounds on the query com-
plexity of the kernel matrix. The kernel query complexity
is a fundamental information-theoretic parameter of kernel
problems and both upper and lower bounds have been stud-
ied by a number of works (Lin et al., 2014; Cesa-Bianchi
et al., 2015; Musco & Musco, 2017; Musco & Woodruff,
2017).

For kernel ridge regression, a lower bound has been shown
for additive error approximation of the objective function
value in Corollary 8 of (Cesa-Bianchi et al., 2015), which
is a weaker approximation guarantee than what we study
in this work. However, their bound is not known to be
tight. Furthermore, the best known upper bounds for kernel
ridge regression are in terms of a data-dependent quantity

Kernel Query Complexity of KRR and KKMC

known as the effective statistical dimension (El Alaoui &
Mahoney, 2015; Musco & Musco, 2017), on which the
(Cesa-Bianchi et al., 2015) bound does not depend. The
question of whether the effective statistical dimension gives
a lower bound on the sample complexity has been posed as
an open question by El Alaoui and Mahoney (El Alaoui &
Mahoney, 2015). We will answer this question affirmatively
under a slightly different approximation guarantee than they
use, which is nevertheless satisfied by known algorithms
nearly tightly, for instance by (Musco & Musco, 2017).

Another kernel problem for which lower bounds have been
shown is the problem of giving a (1 + ε) relative Frobe-
nius norm error rank k approximation of the kernel matrix,
which has a bound of Ω(nk/ε) by Theorem 13 of (Musco
& Woodruff, 2017). For kernel k-means clustering, there
are no kernel complexity lower bounds to our knowledge.

Similar cost models have also been studied in the context of
semisupervised/interactive learning. Intuitively, kernel eval-
uations are queries that ask for the similarity between two
objects, where the notion of similarity in this context is the
implicit notion of similarity recognized by humans, i.e. the
“crowd kernel”. In such situations, the dominant cost is the
number of these queries that must be made to users, mak-
ing kernel query complexity an important computational
parameter. Mazumdar and Saha (Mazumdar & Saha, 2017)
study the problem of clustering under the setting where the
algorithm obtains information by adaptively asking users
whether two data points belong to the same cluster or not. In
this setting, the dominant cost that is analyzed is the number
of same-cluster queries that the algorithm must make, which
exactly corresponds to the kernel query complexity of clus-
tering a set of n points drawn from k distinct points with
the indicator function kernel and the 0-1 loss (as opposed
to k-means clustering, which uses the `2 loss). In (Tamuz
et al., 2011), the authors consider the problem of learning a
“crowd kernel”, where the implicit kernel function is crowd-
sourced and the cost is measured as the number of queries of
the form “is a more similar to b than c?” rather than queries
that directly access the underlying kernel evaluations.

1.2. Our contributions

In this work, we resolve the kernel query complexity of
kernel ridge regression and kernel k-means clustering up to
log(dλeff/ε) and log(k/ε) factors, respectively. Our lower
bounds apply even to adaptive algorithms, that is, algo-
rithms that are allowed to decide which kernel entries to
query based on the results of previous kernel queries. This
is a crucial aspect of our contributions, since some of the
most efficient algorithms known for kernel ridge regression
and kernel k-means clustering make use of adaptive queries,
most notably through the use of a data-dependent sampling
technique known as ridge leverage score sampling (Musco

Kernel problem KRR KKMC

Upper bound Õ
(
ndλeff
ε

)
Õ
(
nk
ε

)
(Musco & Musco, 2017) Theorem 15 Theorem 16

Lower bound Ω
(
ndλeff
ε

)
Ω
(
nk
ε

)
(This work) Theorem 3.1 Theorem 4.2

Figure 1. Table of upper bounds and lower bounds on the kernel
query complexity, where Õ(·) hides logarithmic factors in dλeff , k,
and 1/ε.

& Musco, 2017).

For kernel ridge regression, we present Theorem 3.1, in
which we construct a distribution over kernel ridge regres-
sion instances such that any randomized algorithm requires
Ω(ndλeff/ε) adaptive kernel evaluations. This matches the
upper bound given in Theorem 15 of (Musco & Musco,
2017) up to a log(dλeff/ε) factor. Although we present the
main ideas of the proof using the kernel as the dot product
kernel, our proof in fact applies to a more general class
of kernels, including the polynomial kernel and the Gaus-
sian kernel (Theorem 3.7). This result resolves a variant of
an open question posed by (El Alaoui & Mahoney, 2015),
which asks whether the effective statistical dimension is a
lower bound on the sampling complexity or not. In their pa-
per, they consider the approximation guarantee of a (1 + ε)
relative error in the statistical risk, while we consider a
(1 + ε) relative error approximation of the minimizer of
the KRR objective function. By providing tight bounds on
the query complexity in terms of the effective statistical
dimension dλeff , we establish the fundamental importance
of the quantity as a computational parameter, in addition to
its established significance as a statistical parameter in the
statistics literature (Friedman et al., 2001).

For kernel k-means clustering, we present Theorem 4.2,
which shows a lower bound of Ω(nk/ε) for the problem
of outputting a clustering which achieves a (1 + ε) relative
error value in the objective function. This matches the upper
bound given in Theorem 16 of (Musco & Musco, 2017) up
to a log(k/ε) factor.

Although our lower bounds show that existing upper bounds
for kernel ridge regression and kernel k-means clustering
are optimal, up to logarithmic factors, in their query com-
plexity, one could hope that for important input distributions
that may occur in practice, that better query complexities
are possible. We show specifically in the case of kernel k-
means that when the n points are drawn from a mixture of k
Gaussians with 1/ poly(k/ε) mixing probabilities and a sep-
aration between their means that matches the information-
theoretically best possible for learning the means given
by (Regev & Vijayaraghavan, 2017), one can bypass the
Ω(nk/ε) lower bound, achieving an (n/ε) poly(log(k/ε))

Kernel Query Complexity of KRR and KKMC

query upper bound, effectively saving a factor of k from the
lower bounds for worst-case input distributions. This is our
Theorem 5.1.

2. Preliminaries
2.1. Notation

We denote the set {1, 2, . . . , n} by [n]. For j ∈ [d], we write
ej ∈ Rd for the standard Euclidean basis vectors. We write
In ∈ Rn×n for the n× n identity matrix and 1n ∈ Rn for
the vector of all ones in n dimensions.

Let X be the input space of a data set and F a reproduc-
ing kernel Hilbert space with kernel k : X × X → R.
We write ϕ : X → F for the feature map, i.e. the ϕ
such that k(x,y) = 〈ϕ(x), ϕ(y)〉F . For a set of vectors
{xi}ni=1 ⊆ X and a kernel map k : X × X → R, we
write K ∈ Rn×n for the kernel matrix, i.e. the matrix with
e>i Kej := k(xi,xj). Note that K is symmetric and posi-
tive semidefinite (PSD). We refer the reader to (Schölkopf &
Smola, 2001) for more details on the general theory of ker-
nel methods. For all of our lower bound constructions, we
will take X = Rd and our kernel to be the linear kernel, i.e.
the standard dot product on Rd, k(xi,xj) = xi · xj . Hence,
we will frequently refer to kernel queries alternatively as
inner product queries.

2.2. Kernel ridge regression

The kernel ridge regression (KRR) task is defined as follows.
We parameterize an instance of KRR by a triple (K, z, λ),
where K ∈ Rn is the kernel matrix of a data set {xi}ni=1,
z ∈ Rn is the target vector, and λ is the regularization
parameter. The problem is to compute

αopt := argmin
α∈Rn

‖Kα− z‖22 + λα>Kα. (2.1)

It is well-known that the solution to the above is given in
closed form by

αopt = (K + λIn)
−1

z (2.2)

which can be shown for example by completing the square.

An important parameter to the KRR instance (K, z, λ) is
the effective statistical dimension:
Definition 2.1 (Effective statistical dimension ((Friedman
et al., 2001; Zhang, 2005)). Given a rank r kernel matrix
K with eigenvalues σ2

i for i ∈ [r] and a regularization
parameter λ, we define the effective statistical dimension as

dλeff(K) := tr
(
K(K + λIn)

−1
)

=

r∑
i=1

σ2
i

σ2
i + λ

. (2.3)

We simply write dλeff when the kernel matrix K is clear from
context.

The effective statistical dimension was first introduced to
measure the statistical capacity of the KRR instance, but has
since been used to parameterize its computational properties
as well, in the form of bounds on sketching dimension
(Avron et al., 2017) and sampling complexity (El Alaoui &
Mahoney, 2015; Musco & Musco, 2017).

2.2.1. APPROXIMATE SOLUTIONS

In the literature, various notions of approximation guaran-
tees for KRR have been studied, including (1 + ε) relative
error approximations in the objective function cost (Avron
et al., 2017) and (1 + ε) relative error approximations in the
statistical risk (Bach, 2013; El Alaoui & Mahoney, 2015;
Musco & Musco, 2017). In our paper, we consider a slightly
different approximation guarantee, namely a (1+ε) relative
error approximation of the argmin of the KRR objective
function.

Definition 2.2 ((1 + ε)-approximate solution to kernel
ridge regression). Given a kernel ridge regression instance
(K, z, λ), we say that α̂ ∈ Rn is a (1 + ε)-approximate
solution to kernel ridge regression if

‖α̂−αopt‖2 ≤ ε‖αopt‖2 = ε
∥∥(K + λIn)−1z

∥∥
2
. (2.4)

This approximation guarantee is natural, and we note that it
is achieved by the estimator of (Musco & Musco, 2017), the
proof of which is provided in the supplementary material.

2.3. Kernel k-means clustering

Recall the feature map ϕ : X → F for an input spaceX and
a reproducing kernel Hilbert spaceF . The problem of kernel
k-means clustering (KKMC) involves forming a partition
of the data set {xi}ni=1 into k clusters C := {Cj}kj=1 with
centroids µj := 1

|Cj |
∑

x∈Cj ϕ(x) such that the objective
function

cost(C) :=

k∑
j=1

∑
x∈Cj

∥∥ϕ(x)− µj
∥∥2

F (2.5)

is minimized. The problem of finding exact solutions are
known to be NP-hard (Aloise et al., 2009), but it has nonethe-
less proven to be an extremely popular model in practice
(Hartigan, 1975).

With an abuse of notation, we will also talk about the cost
of a single cluster, which is just the above sum taken only
over one cluster:

cost(Cj) :=
∑
x∈Cj

∥∥ϕ(x)− µj
∥∥2

F . (2.6)

As done in (Boutsidis et al., 2009; Cohen et al., 2015; Musco
& Musco, 2017) and many other works, we consider the

Kernel Query Complexity of KRR and KKMC

approximation guarantee of finding a clustering {C ′j}kj=1

that achieves a (1+ε) relative error in the objective function
cost, i.e. cost({C ′j}kj=1) ≤ (1 + ε) minC cost(C).

3. Lower bound for kernel ridge regression
We present our lower bound on the number of kernel entries
required in order to compute a (1 + ε)-approximate solution
to kernel ridge regression (see definition 2.2).

Theorem 3.1 (Query lower bound for kernel ridge regres-
sion). Consider a possibly randomized algorithm A that
correctly outputs a (1 + ε)-approximate solution α̂ ∈ Rn
(see definition 2.2) to any kernel ridge regression instance
(K, z, λ) with probability at least 2/3. Then there exists
an input instance (K, z, λ) on which A reads at least
Ω(ndλeff/ε) entries of K, possibly adaptively, in expecta-
tion.

3.1. Main lower bound

We introduce the following hard distribution.

Definition 3.2 (Hard input distribution – kernel ridge re-
gression). Let J, n ∈ N and assume for simplicity that
4 | J . We define a distribution µKRR(n, J) on binary
PSD matrices K ∈ Rn×n defined as follows. We first de-
fine a distribution νKRR(J) over standard basis vectors
{ej ∈ R3J/4 : j ∈ [3J/4]}, where with probability 1/2 we
draw a uniformly random ej from S1 := {ej : j ∈ [J/2]}
and with probability 1/2 we draw a uniformly random ej
from S2 := {ej+J/2 : j ∈ [J/4]}. We then generate K
by drawing n i.i.d. samples {xi}ni=1 from νKRR(J) and
letting K be the inner product matrix of {xi}ni=1, that is,
e>i Kej := xi · xj .

Using the above distribution, we prove the following:

Theorem 3.3. Let ε ∈ (0, 1/2) and J = k/ε with J2 =
O(n) and k a parameter. Suppose that there exists a possi-
bly randomized algorithm A that, with probability at least
2/3 over its random coin tosses and random kernel ma-
trix drawn from K ∼ µKRR(n, J), correctly outputs a
(1 + ε/100)-approximate solution α̂ ∈ Rn (see definition
2.2) to the kernel ridge regression instance (K, z, λ) with
z = 1n and λ = n/k. Furthermore, suppose that A reads
at most r positions of K on any input, possibly adaptively.
Then, dλeff(K) = Θ(k) and r = Ω(ndλeff/ε).

We prove Theorem 3.3, via a reduction to a hardness lemma.

Lemma 3.4. Recall µKRR(n, J), νKRR(J), S1, S2 from
definition 3.2. Suppose that there exists a possibly ran-
domized algorithm A that, with probability at least 2/3
over its random coin tosses and random inputs drawn from
µKRR(n, k/ε), correctly outputs whether xi corresponds
to ej with j ∈ S1 or j ∈ S2 for at least a 9/10 fraction
of rows e>i K for i ∈ [n]. Further, suppose that A reads

at most r positions of K on any input, possibly adaptively.
Then, r = Ω(nJ).

This lemma follows from standard techniques, including
reductions to hypothesis testing and total variation distance
computations, and its proof is deferred to the supplementary
material. The lemma is used as follows:

Proof of Theorem 3.3. Assume that nJ = o(n2), since oth-
erwise the lower bound is Ω(n2), which is best possible.
Note that for x ∼ νKRR(J), x = ej with probability
1
2

1
J/2 = 1

J if ej ∈ S1 and 1
2

1
J/4 = 2

J if ej ∈ S2. For
a fixed j ∈ [3J/4], let nj be the number of ej sampled in
K and µj := EK∼µKRR(n,J)(nj). Note that µj = n/J for
j ∈ [J/2] and µj = 2n/J for j ∈ [J/4] + J/2. Then by
Chernoff bounds,

Pr
K

({
|nj − µj | ≥

µj
100

})
≤ 2 exp

(
− 1

100

n/J

3

)
(3.1)

so by a union bound over j ∈ [3J/4], the above holds
for all ej with probability at most 1/100 for n/J large
enough. Dismiss this event as a failure and assume that
|nj − µj | ≤ 1

100µj for all j ∈ [3J/4].

Now let K = UΣU> be the full SVD of K. Note that
the first 3J/4 singular values are nj with corresponding
singular vectors Uej = 1√

nj
Kej , and the rest are all 0s.

Then, the target vector z = 1n can be written as

z =
∑

j∈[3J/4]

Kej =
∑

j∈[3J/4]

√
njUej , (3.2)

since each coordinate i ∈ [n] belongs to exactly one of the
3J/4 input points drawn from νKRR(n, J). The optimal
solution can then be written as

αopt = (K + λIn)−1z = U(Σ + λIn)−1U>z

=
∑

j∈[3J/4]

√
njU(Σ + λIn)−1U>Uej

=
∑

j∈[3J/4]

1

nj + λ

(√
njUej

)
.

(3.3)

Thus, for i ∈ [n], the optimal solution takes the value
(αopt)i = (nji + λ)−1 where ji ∈ [3J/4] is the index of
the standard basis vector that the ith input point corresponds
to.

Now by multiplying the (1 + ε/100)-approximation guar-
antee by n/k and squaring, we have that∥∥∥n

k
α̂− n

k
αopt

∥∥∥2

2
≤ ε2

1002

∥∥∥n
k
αopt

∥∥∥2

2

=
ε2

1002

∑
j∈[3J/4]

∥∥∥∥ n/k

nj + λ

(√
njUej

)∥∥∥∥2

2

≤ ε2

1002
n

(3.4)

Kernel Query Complexity of KRR and KKMC

so by averaging, we have that
(
n
k (α̂)i − n

k (αopt)i
)2 ≤

ε2/100 for at least a 99/100 fraction of the n coordinates of
i. Then on these coordinates,

∣∣n
k (α̂)i − n

k (αopt)i
∣∣ ≤ ε/10.

Now note that on these coordinates, we have that∣∣∣∣nk (α̂)i −
n

k

1

µj + λ

∣∣∣∣
≤
∣∣∣n
k

(α̂)i −
n

k
(αopt)i

∣∣∣+

∣∣∣∣nk (αopt)i −
n

k

1

µj + λ

∣∣∣∣
≤ ε

10
+
n

k

∣∣∣∣ 1

nj + n/k
− 1

µj + n/k

∣∣∣∣
≤ ε

10
+
µj/100

n/k
≤ ε

10
+

2nε/(100k)

n/k
=

6

50
ε.

(3.5)

Since

n

k

1

nε/k + n/k
− n

k

1

2nε/k + n/k
>
ε

3
> 2

6

50
ε (3.6)

for ε ∈ (0, 1/2), we can distinguish whether the ith input
point has µj = nε/k or µj = 2nε/k on these coordinates
and thus we can solve the problem of Lemma 3.4 without
reading any more entries of K after solving the KRR in-
stance. Thus, we have that A reads Ω(nk/ε) kernel entries
by a reduction to Lemma 3.4.

Finally, to obtain the statement of the theorem, it remains to
show that dλeff = Θ(k). Indeed,

dλeff =
∑

j∈[3J/4]

nj
nj + λ

= Θ

 ∑
j∈[3J/4]

nε/k

nε/k + n/k

 = Θ(k)

(3.7)
as desired.

We now obtain Theorem 3.1 by scaling parameters by con-
stant factors.

Remark 3.5. The setting of the regularization parameter in
the above construction is a bit unnatural as the top dλeff =
Θ(k) singular values of the kernel matrix are of order nε/k
while the regularization is of order n/k, which is 1/ε times
larger. One can easily fix this as follows. We add (n/k)ei to
the end of our data set for i = k/ε+1, k/ε+2, . . . , k/ε+k.
This only increases our effective statistical dimension to

dλeff =
∑

j∈[3J/4]

nj
nj + λ

+

k∑
i=1

n/k

n/k + λ
= Θ(k) (3.8)

and our hardness argument is clearly unaffected. Now the
setting of the regularization is such that it scales as the top
dλeff singular values, so that it reduces the effects of the next
k/ε noisy directions, which is natural.

3.2. Extensions to other kernels

The above lower bound was proven just for the dot product
kernel, but essentially the same proof applies to more gen-
eral kernels as well. To this end, we introduce the notion of
indicator kernels:

Definition 3.6 (Indicator kernels). We say that k : Rd ×
Rd → R is an indicator kernel if there exist c1 > 0 and
c0 < c1 such that k(ei, ej) = (c1− c0)1(ei = ej) + c0 for
all standard basis vectors ei, ej for i, j ∈ [d].

Examples of such kernels include generalized dot prod-
uct kernels and distance kernels, i.e. kernels of the form
k(x,x′) = f(x · x′) and k(x,x′) = f(‖x− x′‖2) for an
appropriate function f : R→ R, which in turn include im-
portant kernels such as the polynomial kernel, the Gaussian
kernel, etc. For these kernels, we show the following:

Theorem 3.7 (Query lower bound for kernel ridge regres-
sion for indicator kernels). The lower bound of Theorem
3.1 continues to hold for any algorithm computing a (1 + ε)
relative error solution to a KRR instance with an indicator
kernel (Definition 3.6) instead of the dot product kernel.

We obtain this result by showing that for indicator kernels,
αopt is exactly a constant factor away from the above analy-
sis. We defer the details to the supplementary material.

4. Lower bound for kernel k-means clustering
Next, we present our lower bound on the number of kernel
entries required in order to compute a (1 + ε)-approximate
solution to kernel k-means clustering.

4.1. Finding the cost vs. assigning points

Recall that (Musco & Musco, 2017) present an algorithm
for solving KKMC with a kernel querying complexity of
O
(
nk
ε log k

ε

)
. We now briefly present some intuition on

how we would like to match this up to log k
ε . We first note

that the hardness cannot come from finding the centers of an
approximately optimal clustering or approximating the cost
of the optimal clustering up to (1± ε), since there is an al-
gorithm for finding these in O(nk + poly(k, 1/ε, log n))
kernel queries: indeed, Theorem 15.5 of (Feldman &
Langberg, 2011) shows how to find a strong ε-coreset of
size poly(k log n/ε) in O(nk+ poly(k, 1/ε, log n)) kernel
queries, which can then be used to compute both approxi-
mate centers and the cost (in fact, we show in the supplemen-
tary material that there is a lower bound of Ω(nk) kernel
queries for the problem of computing a (1+ε) relative error
approximation to the cost of KKMC, so this is tight). Thus,
intuitively, in order to achieve a lower bound of Ω(nk/ε)
which nearly matches the dominant term in the upper bound
of (Musco & Musco, 2017), we must design a hard point
set in which the hardness is not in computing the cost nor

Kernel Query Complexity of KRR and KKMC

the centers, but rather in assigning the n input points to their
appropriate clusters.

4.2. Main lower bound

We describe our hard input distribution µKKMC(n, k, ε),
formed as an inner product matrix of points drawn from the
ambient space Rk/ε.
Definition 4.1 (Hard input distribution – kernel k-means
clustering). Let ε > 0, k, n be such that k

(
ε−1

2

)
= o(n)

and k/ε = ω(1). We first define a distribution νKKMC(k, ε)
over vectors in Rk/ε as follows. First divide the k/ε coor-
dinates into k blocks of 1/ε dimensions. Then, we sample
our point set as follows: first uniformly select some block
j ∈ [k], and then uniformly select one of the

(
1/ε
2

)
pairs

(j1, j2) where j1, j2 ∈ [1/ε] with j1 6= j2, and then output
vj,j1,j2 := (e`1 + e`2)/

√
2, where `1 = j/ε + j1, `2 =

j/ε + j2. We then generate an i.i.d. sample {xi}ni=1

of n points drawn from νKKMC(k, ε) and then generate
K ∼ µKKMC(n, k, ε) by setting it to be the inner product
matrix of {xi}ni=1, i.e. e>i Kej := xi · xj . For x in the
support of νKKMC(k, ε), we let block(x) denote the j ∈ [k]
such that x = vj,j1,j2 .

Intuitively, we add “edges” between pairs of coordinates in
the same block of 1/ε coordinates, so that clusterings that
associate points in the same block together have lower cost.

In this section, we will prove the following main theorem:
Theorem 4.2 (Query lower bound for kernel k-means clus-
tering). Let ε, k, n be such that k

(
ε−1

2

)
= o(n). Suppose an

algorithmA finds a (1±ε)-approximate solution to a kernel
k-means clustering instance drawn from µKKMC(n, k, ε)
with probability at least 2/3 over its random coin tosses
and the input distribution. Then, A makes at least Ω(nk/ε)
kernel queries.

The main thrust of this proof are cost computations that
show that a set of points of size at most 2n/5 drawn from
νKKMC(k, ε) must have large cost. This is then related to
hardness results via a reduction, using the observation that
sampling from clusters with low cost must have a high prob-
ability of drawing vectors that have positive inner product.

4.3. Cost computations

4.3.1. THE COST OF A GOOD CLUSTERING

Consider the clustering that assigns all points supported in
the same block with each other. We first do our cost compu-
tations for the average case, where every vector vj,j1,j2 is
drawn the same number of times. Then, the first block has
center

1(
ε−1

2

) ∑
(i,j)∈([ε−1]

2)

ei + ej√
2

=
√

2ε
∑

i∈[ε−1]

ei (4.1)

and the center for the rest of the blocks is similar. Then, the
cost of a single point (ei∗ + ej∗)/

√
2 is∥∥∥∥∥∥ei∗ + ej∗√

2
−
√

2ε
∑

i∈[ε−1]

ei

∥∥∥∥∥∥
2

2

= 1− 2ε− 4ε2. (4.2)

Thus, the cost of this clustering is like n(1− 2ε). Note that
this computation also gives a lower bound on the cost of a
cluster containing n/k points, since for any cluster of size
n/k, we can clearly improve its cost while we can swap
points to be supported on the same block.

Now by Chernoff bounds, with probability tending to 1

as n/k
(
ε−1

2

)
tends to infinity, the cost of this clustering is

bounded above by

n

(
1−

(
1− 1

40

)
2ε

)
= n

(
1− 79

40
ε

)
. (4.3)

and the cost of any cluster of size n/k is bounded below by

n

k

(
1−

(
1 +

1

40

)
2ε

)
=
n

k

(
1− 81

40
ε

)
. (4.4)

This proves the following lemmas.

Lemma 4.3 (Cost bound for an optimal clustering). With
probability at least 99/100, the cost of an optimal clustering
is at most n(1− (79/40)ε).

Lemma 4.4 (Cost bound for a large cluster). Let C be
a cluster of size at least n/k. Then with probability at
least 99/100, the cost per point of C is bounded below by
1− (81/40)ε.

4.3.2. COST LOWER BOUNDS

If we cluster all n points, we will clearly not achieve lower
bounds beyond the cost of the optimal clustering. However,
it turns out that if restrict our attention to at most 2n/5
points, we can find meaningful cost lower bounds for any
clustering. Formally, we present the following lemma:

Lemma 4.5 (Cost bound for ` clusters). Suppose S is a
set of at most |S| ≤ 2n/5 points drawn from νKKMC(k, ε).
Then, for any clustering CS of S into ` ≤ k clusters,

cost(CS) ≥ |S| − 77

40
nε. (4.5)

The estimates and computations for this lemma are cumber-
some and are deferred to the supplementary material.

4.4. Hardness

We now prove a lemma that translates our cost computations
into a statement about sampling nonzero inner products.

Kernel Query Complexity of KRR and KKMC

Lemma 4.6 (Sampling probability of an approximate so-
lution). Suppose that C is a (1 + ε/40)-approximate so-
lution to a kernel k-means clustering instance drawn as
K ∼ µKKMC(n, k, ε). Then for at least 2n/5 of the points,
if we uniformly sample dot products between the point and
other points in its cluster, then there is at least an ε/80 prob-
ability of sampling a point that has nonzero inner product
with the point.

Proof. Suppose for contradiction that there are at most 2n/5
points belonging to a cluster such that sampling uniformly
from the cluster yields at least an ε/80 probability of sam-
pling a point that has nonzero inner product with that point,
which we refer to as a neighbor. Let S be the set of points
that belong to such a cluster with at least probability ε/80
of sampling a neighbor, and let S be the complement. We
first compute the cost of a point (ei + ej)/

√
2 in S. Let C

be the point’s cluster and let ni, nj be the number of points
in the cluster that has support on the ith coordinate. Then,
ni/|C| and nj/|C| are both at most ε/80. Now note that
the i and jth coordinates of the center are ni/(

√
2|C|) and

nj/(
√

2|C|), so the cost of that point is at least(
1√
2
− 1√

2

ni
|C|

)2

+

(
1√
2
− 1√

2

nj
|C|

)2

≥ 1− 1

40
ε.

(4.6)
Then |S| ≤ 2n/5, so we may use the bounds from Lemma

4.5 to bound the cost from below by∣∣S∣∣(1− 1

40
ε

)
+ |S| − 77

40
nε ≥ n

(
1− 78

40
ε

)
. (4.7)

Now recall that by Lemma 4.3, the optimal solution has
cost at most n(1− (79/40)ε), so a (1 + ε/40)-approximate
solution needs to have cost at most

n

(
1− 79

40
ε

)(
1 +

1

40
ε

)
< n

(
1− 78

40
ε

)
(4.8)

which the above solution does not.

Finally, we give the hardness result. Recall the definition
of νKKMC and block from Definition 4.1 and consider the
following computational problem LABELKKMC.

Definition 4.7 (LABELKKMC). We first sample n points
{xi}ni=1 from our hard point set νKKMC(k, ε), label the
identity of the first n/2 points, and then ask an algorithm
to correctly give block(xi) for 1/6 of the remaining n/2
points.

One can show that this problem requires reading Ω(nk/ε)
kernel entries, again using standard techniques (details in
the supplementary material).

Lemma 4.8 (Hardness of LABELKKMC). Suppose an al-
gorithm A, possibly randomized, solves LABELKKMC

with probability at least 2/3 over the input distribution
νKKMC(k, ε) and the algorithm’s random coin tosses. Then,
A makes Ω(nk/ε) kernel queries.

Finally, we use the above lemma to show the hardness of
kernel k-means clustering.

Corollary 4.9. Suppose an algorithmA gives a (1+ε/40)-
approximate kernel k-means clustering solution with prob-
ability at least 2/3 over the input distribution K ∼
µKKMC(n, k, ε) and the algorithm’s random coin tosses.
Then, A makes Ω(nk/ε) kernel queries.

Proof. Using a (1 + ε/40)-approximate algorithm for k-
means clustering, we solve LABELKKMC as follows. First
cluster all the points using A. Then by Lemma 4.6, at
least 2/5 of the points must belong to a cluster such that
sampling O(1/ε) points within its cluster allows us to find
a point such that at least one coordinate matches a labeled
point’s coordinate. Then, on average, we will get 1/5 of
these correct and thus 1/6 of these with high probability by
Chernoff bounds. This used Q + O(n/ε) kernel queries,
whereQ is the number of kernel queries that the KKMC step
used. Then,Q+O(n/ε) = Ω(nk/ε) soQ = Ω(nk/ε).

Finally, Theorem 4.2 follows by rescaling ε by a constant.

5. Clustering mixtures of Gaussians
In this section, we show that our worst case kernel query
complexity lower bounds for the kernel k-means clustering
problem are pessimistic by a factor of k when our input
instance is mixture of k Gaussians. More specifically, we
prove the following theorem:

Theorem 5.1 (Clustering mixtures of Gaussians). Let m =
Ω(ε−1 log n) as specified by Corollary 5.3. Suppose we
have a mixture of k Gaussians with isotropic covariance
σ2Id and means (µ`)

k
`=1 in Rd. Furthermore, suppose

that the Gaussian means µ` are all separated by at least∥∥µ`1 − µ`2
∥∥

2
≥ Ω(σ

√
log k) as specified by Theorem 5.1

of (Regev & Vijayaraghavan, 2017) and
∥∥µ`1 − µ`2

∥∥
2
≥

Ω(σ
√

log logn+ log ε−1) as specified by Lemma 5.2 with
δ = (2m + k)−3. Finally, suppose that we are in the
parameter regime of poly(k, 1/ε, d, log n) = O(

√
n), dε ≥

1, and k/ε ≤ d ≤ n/10. Then, there exists an algorithm
outputting a (1 + O(ε))-approximate k-means clustering
solution with probability at least 2/3.

5.1. Proof overview

By Theorem 5.1 of (Regev & Vijayaraghavan, 2017), we can
in s = poly(k, 1/ε, d) samples compute approximations
(µ̂`)

k
`=1 to the true Gaussian means (µ`)

k
`=1

‖µ̂` − µ`‖
2
2 ≤ σ

2. (5.1)

Kernel Query Complexity of KRR and KKMC

Set t := max{s, 2m+ k, d}. Then, we extract the t under-
lying points in t2 = O(n) kernel queries by reading a t× t
submatrix of the kernel matrix and retrieving the underlying
Gaussian points themselves from the inner product matrix
up to a rotation, for instance by Cholesky decomposition.
Since we have a sample of size at least s, we may approx-
imate the Gaussian means. Now, of the t Gaussian points
sampled, we show that we can assign which points belong
to which Gaussians for 2m+ k input points in Lemma 5.2.

Now let x1 and x2 be two input points with the same mean.
Then note that x1 − x2 ∼ N (0, 2σ2Id) and that we may
compute its inner product with another input point x′ in
two kernel queries, i.e. by computing x1 · x′ and x2 · x′
individually and subtracting them. Now let S ∈ Rm×d be
the matrix formed by placingm pairs of the above difference
of pairs of Gaussians drawn from the same mean, scaled
by (2σ2)−1. Then S is an m× d matrix of i.i.d. Gaussians,
and for n − 2m input points xi, we may compute Sxi
with O(nm) kernel queries total. We then prove that for
well-separated Gaussian means, Sxi can be used to identify
which true Gaussian mean xi came from in corollary 5.3.

Finally, we show that clustering points to their Gaussian
means is nearly optimal. We then implement this assigning
for Gaussian means that are separated by more than εσ2d.
Otherwise, assigning to a wrong mean only εσ2d away is
still nearly optimal.

5.2. Assigning input points to Gaussian means

We first present a lemma which allows us to distinguish the
mean of a Gaussian point.
Lemma 5.2 (Distinguishing Gaussian means). Let θ1,θ2 ∈
Rd be two Gaussian means separated by ‖θ1 − θ2‖22 ≥
Cσ2 log δ−1 for a constant C large enough and δ ∈
(0, 1/2). Furthermore, let θ̂1, θ̂2 be approximations to the

Gaussian means with
∥∥∥θ̂b − θb

∥∥∥
2
≤ σ for b ∈ {1, 2}. Let

ĉ := (θ̂1 + θ̂2)/2. Then{
(x− ĉ) · (θ̂1 − ĉ) > 0 if x ∼ N (θ1, σ

2Id) w.p. ≥ 1− δ
(x− ĉ) · (θ̂1 − ĉ) < 0 if x ∼ N (θ2, σ

2Id) w.p. ≥ 1− δ
.

(5.2)

The estimates for this proof are straightforward, and the
details can be found in the supplementary material.

Using Lemma 5.2, we identify the true Gaussian mean of a
point with probability at least 1− (2m+ k)−3 with squared
separation only O(σ2(log log n+ log ε−1 + log k)). Then
by a union bound, we identify the true Gaussian means of
2m + k points simultaneously with high probability. We
may then form the matrix S of i.i.d. Gaussians as described
previously and apply it to the n− 2m remaining points.

As a corollary of Lemma 5.2, we show that for Gaussian

means that are separated more, with squared distance at
least εσ2d, we may distinguish the means with a Gaussian
sketch of dimension m = O(ε−1 log δ−1) with probability
at least 1− δ. In particular, we may choose the failure prob-
ability to be δ = (nk)−3 so that with a sketch dimension
of m = O(ε−1 log(nk)3) = O(ε−1 log n), we can iden-
tify the correct Gaussian mean for all n − 2m remaining
input points simultaneously by the union bound, as claimed.
That is, using Sx, we can find the correct mean of x for
Gaussians with large enough separation.

Corollary 5.3. Let µ1,µ2 ∈ Rd be two Gaussian means
separated by ‖µ1 − µ2‖

2
2 ≥ εσ2d, and let δ ∈ (0, 1/2).

Let S ∈ Rm×d be a matrix of i.i.d. standard Gaussians. If
m ≥ Cε−1 log(δ−1), for some constant C large enough,
then there exists an algorithm that can decide whether x ∼
N (µ1, σ

2Id) or x ∼ N (µ2, σ
2Id) given only S, Sx, and

the approximate means µ̂j , with probability at least 1− δ.

The proof comes from combining the sketching guarantees
of S with Lemma 5.2, and the details can be found in the
supplementary material.

We now put corollary 5.3 to algorithmic use by using it to
assign to each point a center withing εσ2d (details in the
supplementary material).

Lemma 5.4. With probability at least 99/100, we may si-
multaneously assign for each xi for i ∈ [n] a center µ`i

with
∥∥∥µ`i − µ`∗i

∥∥∥2

2
≤ εσ2d, where µ`∗i is the true Gaus-

sian mean that generated xi. Furthermore, the assignment
algorithm that we describe only depends on S, Sxi, and
approximate means µ̂j .

5.3. Clustering the points

Now that we have approximately assigned input points to
Gaussian means in O(nm) = Õ(n/ε) kernel queries, it
remains to show that this information suffices to give a
(1 + ε)-approximate solution to the KKMC problem.

Theorem 5.5. Let dε ≥ 1 and k/ε ≤ d ≤ n/10 and let our
data set {xi}ni=1 be distributed as a mixture of k Gaussians
as described before. Then assigning the xi to approximate
means as in Lemma 5.4 gives a (1 + 8ε)-approximate k-
means clustering solution with probability at least 98/100.

The proof of the theorem essentially follows from noting
that the cost of the optimal clustering is at least the cost of an
optimal rank 2k approximation of the noise component of
the mixture of Gaussians, which can be shown to be (1 + ε)
within the total Frobenius norm of the noise component. We
then show that finding the Gaussian means optimally allows
us to approximate this cost from above as well. The details
are elaborated in the supplementary material.

Kernel Query Complexity of KRR and KKMC

Acknowledgements
We would like to thank the anonymous reviewers for helpful
feedback. D. Woodruff would like to thank support from the
Office of Naval Research (ONR) grant N00014-18-1-2562.
This work was also partly done while D. Woodruff was
visiting the Simons Institute for the Theory of Computing.

References
Aloise, D., Deshpande, A., Hansen, P., and Popat, P. NP-

hardness of Euclidean sum-of-squares clustering. Ma-
chine learning, 75(2):245–248, 2009.

Avron, H., Clarkson, K. L., and Woodruff, D. P. Sharper
bounds for regularized data fitting. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2017), pp.
27:1–27:22, 2017.

Bach, F. Sharp analysis of low-rank kernel matrix approxi-
mations. In Conference on Learning Theory, pp. 185–209,
2013.

Bach, F. R. and Jordan, M. I. Kernel independent component
analysis. Journal of Machine Learning Research, 3(Jul):
1–48, 2002.

Boutsidis, C., Drineas, P., and Mahoney, M. W. Unsuper-
vised feature selection for the k-means clustering prob-
lem. In Advances in Neural Information Processing Sys-
tems, pp. 153–161, 2009.

Cesa-Bianchi, N., Mansour, Y., and Shamir, O. On the
complexity of learning with kernels. In Conference on
Learning Theory, pp. 297–325, 2015.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. Dimensionality reduction for k-means clustering and
low rank approximation. In Proceedings of the 47th
Annual ACM Symposium on Theory of Computing, pp.
163–172. ACM, 2015.

El Alaoui, A. and Mahoney, M. W. Fast randomized ker-
nel methods with statistical guarantees. In Advances in
Neural Information Processing Systems, pp. 775–783,
2015.

Feldman, D. and Langberg, M. A unified framework for
approximating and clustering data. In Proceedings of the
43rd Annual ACM Symposium on Theory of Computing,
pp. 569–578. ACM, 2011.

Fine, S. and Scheinberg, K. Efficient SVM training using
low-rank kernel representations. Journal of Machine
Learning Research, 2(Dec):243–264, 2001.

Friedman, J., Hastie, T., and Tibshirani, R. The elements of
statistical learning, volume 1. Springer series in statistics
New York, NY, USA:, 2001.

Hartigan, J. A. Clustering algorithms. Wiley, 1975.

Lin, M., Weng, S., and Zhang, C. On the sample complex-
ity of random Fourier features for online learning: How
many random Fourier features do we need? ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 8
(3):13, 2014.

Mazumdar, A. and Saha, B. Clustering with noisy queries.
In Advances in Neural Information Processing Systems,
pp. 5788–5799, 2017.

Musco, C. and Musco, C. Recursive sampling for the
Nyström method. In Advances in Neural Information
Processing Systems, pp. 3833–3845, 2017.

Musco, C. and Woodruff, D. P. Sublinear time low-rank ap-
proximation of positive semidefinite matrices. In Proceed-
ings of the 58th Annual IEEE Symposium on Foundations
of Computer Science, pp. 672–683. IEEE, 2017.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177–1184, 2008.

Regev, O. and Vijayaraghavan, A. On learning mixtures
of well-separated Gaussians. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer
Science, pp. 85–96. IEEE, 2017.

Schölkopf, B. and Smola, A. J. Learning with kernels:
support vector machines, regularization, optimization,
and beyond. MIT press, 2001.

Schölkopf, B., Tsuda, K., Vert, J.-P., Istrail, D. S., Pevzner,
P. A., Waterman, M. S., et al. Kernel methods in compu-
tational biology. MIT press, 2004.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai, A.
Adaptively learning the crowd kernel. In Proceedings of
the 28th International Conference on Machine Learning,
pp. 673–680. ACM, 2011. ISBN 978-1-4503-0619-5.

Yang, Y., Pilanci, M., and Wainwright, M. J. Randomized
sketches for kernels: Fast and optimal nonparametric
regression. The Annals of Statistics, 45(3):991–1023,
2017.

Zhang, J., Marszałek, M., Lazebnik, S., and Schmid, C.
Local features and kernels for classification of texture and
object categories: A comprehensive study. International
Journal of Computer Vision, 73(2):213–238, 2007.

Zhang, T. Learning bounds for kernel regression using
effective data dimensionality. Neural Computation, 17
(9):2077–2098, 2005.

