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A Additional Related Work

Outlier-robust estimation is a classical topic in statistics [8]. The coordinate-wise median aggre-
gation subroutine that we consider is related to the median-of-means estimator [17, 9], which has
been applied to various robust inference problems [15, 14, 16]. A recent line of work develops
efficient robust estimation algorithms in high-dimensional settings [2, 5, 11, 3, 18, 12, 1, 10, 13].
In the centralized setting, the recent work [7] proposes a scheme, similar to the iterative filtering
procedure, that iteratively removes outliers for gradient-based optimization.

B Challenges of Escaping Saddle Points in the Adversarial
Setting

We provide two examples showing that in non-convex setting with saddle points, inexact oracle can
lead to much worse sub-optimal solutions than in the convex setting, and that in the adversarial
setting, escaping saddle points can be inherently harder than the adversary-free case.

Consider standard gradient descent using exact or A-inexact gradients. Our first example shows
that Byzantine machines have a more severe impact in the non-convex case than in the convex
case.

Example 1. Let d = 1 and consider the functions F(") (w) = (w—1)? and F®) (w) = (w?—1)%/4.
Here F(1 is strongly convex with a unique local minimizer w* = 1, whereas F'?) has two local (in
fact, global) minimizers w* = +1 and a saddle point (in fact, a local maximum) w = 0. Claim 1
below shows the following: for the convex F(1), gradient descent (GD) finds a near-optimal solution
with sub-optimality proportional to A, regardless of initialization; for the nonconvex F), GD
initialized near the saddle point w = 0 suffers from an (1) sub-optimality gap.

Claim 1. Suppose that A < 1/2. Under the setting above, the following holds.

(i) For FY) | starting from any wo, GD using a A-inexact gradient oracle finds w with F) (w) —
FO(w*) < O(A).

(i) For F?) | there exists an adversarial strategy such that starting from a wo sampled uniformly
from [—r,r], GD with a A-inexact gradient oracle outputs w with F®) (w) — F®) (w*) > 2 Yw* =
+1, with probability min{1, %}
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Proof. Since F®(w) = (w? — 1)?, we have VF®(w) = w3 —w. For any w € [-A,A],
|[VF®) (w)| < A (since A < 1/2). Thus, the adversarial oracle can always output §(w) = 0 when
w € [~A, A], and we have |[§(w) — VF®) (w)| < A. Thus, if w € [~A, A, the iterate can no longer
move with this adversarial strategy. Then, we have F(?) (w) — F®)(w*) > F®)(A) -0 > 2 (since

A <1/2). The result for the convex function F") is a direct corollary of Theorem 1 in [21]. [

Our second example shows that escaping saddle points is much harder in the Byzantine setting
than in the non-Byzantine setting.

Example 2. Let d = 2, and assume that in the neighborhood Bg(b) of the origin, F' takes the

quadratic form F(w) = 2w} — Jw3, with A > eg.! The origin wo = 0 is not an (e, €z )-second-
order stationary point, but rather a saddle point. Claim 2 below shows that exact GD escapes the

saddle point almost surely, while GD with an inexact oracle fails to do so.

Claim 2. Under the setting above, if one chooses r < b and sample w from Bo(r) uniformly at
random, then:

(i) Using exact gradient descent, with probability 1, the iterate w eventually leaves Bo(r).

(ii) There exists an adversarial strategy such that, when we update w using A-inexact gradient
oracle, if A > Ar, with probability 1, the iterate w cannot leave Bo(r); otherwise with probability

%(arcsin (&)+£&,/1- (%)2) the iterate w cannot leave By (r).

Proof. Since F(w) = wi — 3 w3, V w € By(r), we have VF(w) = [wy, —Aws]'. Sample wy
uniformly at random from By(r), and we know that with probability 1, wg2 # 0. Then, by
running exact gradient descent wyy1 = wy — nVF(w;), we can see that the second coordinate of
wyis wpe = (14 77)\)1‘/71)072. When wg 2, we know that as ¢ gets large, we eventually have w; o > r,
which implies that the iterate leaves By (r).

On the other hand, suppose that we run A-inexact gradient descent, i.e., Wi11 = Wy — ng(wy)
with ||g(w,) — VF(wy)|2 < A. In the first step, if |wg 2| < %, the adversary can simply replace
VF(wq) with g(wo) = [wo.1, 0]" (one can check that here we have ||g(wq) — VF(wq)|l2 < A), and
then the second coordinate of w; does not change, i.e., w; 2 = wp 2. In the following iterations, the
adversary can keep using the same strategy and the second coordinate of w never changes, and then
the iterates cannot escape By(r), since F(w) is a strongly convex function in its first coordinate.
To compute the probability of getting stuck at the saddle point, we only need to compute the area
of the region {w € By(r) : |wa| < %}, which can be done via simple geometry. O

Remark. Even if we choose the largest possible perturbation in Bg(r), i.e., sample w from
the circle {w € R? : ||w|s = r}, the stuck region still exists. We can compute the length of
the arc {||w[l2 = r : |wp| < £} and find the probability of stuck. One can find that when
A > Ar, the probability of being stuck in By (r) is still 1, otherwise, the probability of being stuck
is 2 (arcsin(£)).

The above examples show that the adversary can significantly alter the landscape of the function
near a saddle point. We counter this by exerting a large perturbation on the iterate so that it
escapes this bad region. The amount of perturbation is carefully calibrated to ensure that the
algorithm finds a descent direction “steep” enough to be preserved under A-corruption, while not
compromising the accuracy. Multiple rounds of perturbation are performed, boosting the escape
probability exponentially.

C Proof of Theorem 3

We first analyze the gradient descent step with A-inexact gradient oracle.

Lemma 1. Suppose that n = 1/Lp. For any w € W, if we run the following inexact gradient
descent step:

w' =w —1g(w), (1)
with |g(w) — VE(w)|2 < A. Then, we have

1 1
F(w') < F(w) — EHVF(W)H% + EAQ'

IF(w) = %w% — %w% holds locally around the origin, not globally; otherwise F'(w) has no minimum.



Proof. Since F(w) is Ly smooth, we know that

=F(w)— (VF(w), Ir

+ i”@(w) — VF(w)+VE(Ww)|3

1 1
<F — —||VF P E—,
<F(w) = 5= IVFW)IE + 57—

O

Let € be the threshold on ||g(W)]||2 that the algorithm uses to determine whether or not to add
perturbation. Choose € = 3A. Suppose that at a particular iterate w, we observe ||g(w)||2 > e.
Then, we know that

IVEW)[2 > [[g(w)ll2 — A > 2A.

According to Lemma 1, by running one iteration of the inexact gradient descent step, the decrease
in function value is at least

2
1 o 38

1
—— IVE(W)IIZ = —— =

(2)

We proceed to analyze the perturbation step, which happens when the algorithm arrives at
an iterate w with ||g(w)||2 < e. In this proof, we slightly abuse the notation. Recall that in
equation (2) in Section 3.1 , we use w} (0 <t < Tiy) to denote the iterates of the algorithm in the
saddle point escaping process. Here, we simply use w; to denote these iterates. We start with the
definition of stuck region at w € W.

Definition (stuck region). Given w € W, and parameters r, R, and Tyn, the stuck region
Ws(w,r, R, Ttn) C Bg(r) is a set of wo € Bg(r) which satisfies the following property: there
exists an adversarial strategy such that when we start with wo and run Ty, gradient descent steps
with A-inezact gradient oracle g(w):

wy =wyi1 —ng(we_q1), t=1,2,... Tip, (3)
we observe ||wy — wolla < R, V t < Ty,

When it is clear from the context, we may simply use the terminology stuck region Wg at w.
The following lemma shows that if V2F(w) has a large negative eigenvalue, then the stuck region
has a small width along the direction of the eigenvector associated with this negative eigenvalue.

Lemma 2. Assume that the smallest eigenvalue of H := V?F (W) satisfies Apmin(H) < —y < 0,
and let the unit vector e be the eigenvector associated with Amin(H). Let ug,yo € Bg(r) be two
points such that yo = ug + poe with some po > p € (0,7). Choose step size n = ﬁ, and consider
the stuck region Wg(W,r, R, Tip,). Suppose that v, R, Ty, and p satisfy 2

Q(R—i-?"))
M bl

(4)
R>p, ()
(6)
(7)

2
Tin = — log
= 9/4(

pr(R+7)n> A, 6
2(R+r)
"

v 2 24pr (R + 1) logg 4( ). 7

Then, there must be either ug ¢ Wg or yo ¢ Wg.

We prove Lemma 2 in Appendix C.1. With this lemma, we proceed to analyze the probability
that the algorithm escapes the saddle points. In particular, we bound the probability that wg €
W (W, r, R, Tin) when Apin(V2F(W)) < —v and wq is drawn from Bg (r) uniform at random.

2(R+r)
m

2Without loss of generality, here we assume that % 10g9/4( ) is an integer, so that T}y, is an integer.



Lemma 3. Assume that Apin(V2F(W)) < —y < 0, and let the unit vector e be the eigenvector
associated with Amin(V2EF(W)). Consider the stuck region Wg(w,r, R, Ty,) at W, and suppose that

r, R, Ttn, and p satisfy the conditions in (4)-(7). Then, when we sample wq from Bg (1) uniformly

at random, the probability that wo € Wg(w,r, R, Tiy) is at most 2‘“[

Proof. Since the starting point wq is uniformly distributed in B (r), to bound the probability of
getting stuck, it suffices to bound the volume of Wg. Let 1y, (w) be the indicator function of the
set Wg. For any w € R%, let w() be the projection of w onto the e direction, and w(~1) e R4-1
be the remaining component of w. Then, we have

Vol(Wyg) :/ , Tw, (w)dw
Bg (r)

ﬁ(l)+\/,,‘27“‘7v(—1)7w(—1)”3
— / dw(~V / Ty, (w)da®
LR B —/r2 [ D —w D3

where the inequality is due to Lemma 2. Then, we know that the probability of getting stuck is

Vol(Ws) _, Vol(B} B V() _ 2p PG+ _ 2 fd T _2uvd
VolBW ()~ VolBP(r))  VArT(d+3) T VarV2 27 ¢
where we use the fact that 15((*11)) <i/x+ % for any = > 0. O

We then analyze the decrease of value of the population loss function F'(-) when we conduct the
perturbation step. Assume that we successfully escape the saddle point, i.e., there exists ¢t < Tiy
such that ||w; — wgl|2 > R. The following lemma provides the decrease of F'(-).

Lemma 4. Suppose that Amin(V2EF(W)) < —y < 0, and at w, we observe |g(w)||2 < € = 3A.
Assume that wo € Bg(r) and that wog ¢ We(w,r, R, Tin). Let t < Ty, be the step such that
|lw: — woll2 > R. Then, we have

Lp

F(w)— F(wy) > 4TthR Ir

2
Al _ 4Ar — L7Fr2. (8)

We prove Lemma 4 in Appendix C.2.

Next, we choose the quantities u, r, R, and + such that (i) the conditions (4)-(7) in Lemma 2
are satisfied, (ii) the probability of escaping saddle point in Lemma 3 is at least a constant, and
(iii) the decrease in function value in (8) is large enough. We first choose

=D (9)
r=AA3/5g310, 12 (10)
R— A2/5d1/5p;1/2, (11)

One can simply check that, according to Lemma 3, when we drawn wy from Bg(r) uniformly
at random, the probability that wg € Wg(w,r, R, Ti) is at most 1/2. Since we assume that
A < 1, one can also check that the condition (5) is satisfied. In addition, since ppRu = A, the
condition (6) is also satisfied. According to (4), we have

2LF 2d>/°
Tin = — 10g9/4( A1/5 + 8d1/2) (12)
In the following, we choose
1/2 2/541/5 4 A3/543/10 24°/° 1/2



which implies
Lp

Tn = 12
384(py~ + L) (A2/5d1/5 4 A3/5d3/10)
Then we check condition (7) holds. We have

2(R+)

2d*/5
24pr(R+ 1) 10g9/4(T) = 24,0;/2(A2/5d1/5 —|—4A3/5d3/10) log9/4(7 + 8d1/2) <.

Al/5

Next, we consider the decrease in function value in (8). Using the equations (12) and (13), we
can show the following three inequalities by direct algebra manipulation.
LF 2 AQTth

R°>6 15

4Ty, — Ly (15)
Lr
4Tth
Lp

— R?>3Lpr>. 17
ATy, =TT (7

R? > 24Ar, (16)

By adding up (15), (16), and (17), we obtain

Lr pa s oA

Ar + Lpr?
T = + 8Ar + Lpre,

which implies that when we successfully escape the saddle point, we have
F(W) — F(wy) > =2 R> = 48(pp"/* + Lppy ) (AS/5d3/5 4 AT/347/10), (18)

Then, one can simply check that, the average decrease in function value during the successful round
of the Escape process is
F(W) — F(w;) _ F(W) — F(wy) _ 2(A%5d%> + A%d)  3A2
> > > .
t - Tin - Ly 2L g

(19)

Recall that according to (2), when the algorithm is not in the Escape process, the function value
is decreased by at least % in each iteration. Therefore, if the algorithm successfully escapes the
saddle point, during the Escape process, the average decrease in function value is larger than the
iterations which are not in this process.

So far, we have chosen the algorithm parameters r, R, Tiy, as well as the final second-order
convergence guarantee v. Now we proceed to analyze the total number of iterations and the failure
probability of the algorithm. According to Lemma 3 and the choice of p and r, we know that
at each point with ||g(W)||2 < €, the algorithm can successfully escape this saddle point with
probability at least 1/2. To boost the probability of escaping saddle points, we need to repeat the
process () rounds in Escape, independently. Since for each successful round, the function value

decrease is at least
48(p;1/2 +LF,0;1)(A6/5d3/5 +A7/5d7/1°) > 48LFP}1(A6/5(13/5 +A7/5d7/10)7

and the function value can decrease at most Fy — F'*. Therefore, the total number of saddle points
that we need to escape is at most

pr(Fo — F*)
BRLp (A5 1 ATGT0)”

(20)

Therefore, by union bound, the failure probability of the algorithm is at most

48LF(A6/5d3/5+A7/5d7/10) 27 7

and to make the failure probability at most §, one can choose

pr(Fo — F*)
48LF5(A6/5d3/5 + A7/5d7/10) :

Q > 2log < (21)



Again, due to the fact that the function value decrease is at most Fy — F*, and in each effective
iteration, the function value is decreased by at least %. (Here, the effective iterations are the
iterations when the algorithm is not in the Escape process and the iterations when the algorithm
successfully escapes the saddle points.) The total number of effective iterations is at most

2(Fy — F*)Lp
~sar (22)

Combing with (21), we know that the total number of parallel iterations is at most

4(F0—F*)LF o PF(F()—F*)
3A2 &\ RLp0 (A5 a3/ + AT/AdT/0) ) -

When all the algorithm terminates, and the saddle point escaping process is successful, the output
of the algorithm w satisfies ||g(W)||2 < €, which implies that |[VF(w)||2 < 4A, and

. 2d2/5
Auin( VAF (W) 2 =y = ~T68(p}!” + Lp)(A*°d/° + A/5d%10) logy 4 (F75 +8d"/?)

025 (23)
> —950(p}/? + Lp)(A%/3d/5 4 A3/543/10) log( 75 + 8d'/?).
We next show that we can simplify the guarantee as
~ 10
Amin(VZF(W)) > —1900(p}/* + Lp)A%/3d"/5 log(3)- (24)

We can see that if A < %7 then A3/5d3/10 < A2/541/5 and QAdf//j + 8dY/? < %O. Thus, the

bound (24) holds. On the other hand, when A > -1 we have A2/°d'/> > 1 and thus

1
Vd
1/2 2/5 j1/5 10
1900(p5~ + Lp)A™°d log(z)>LF.

By the smoothness of F(-), we know that Apin(V2F(W)) > —Lp. Therefore, the bound (24) still
holds, and this completes the proof.

C.1 Proof of Lemma 2

We prove by contradiction. Suppose that ug,yo € Wg. Let {u;} and {y;} be two sequences
generated by the following two iterations:

w = w1 — ng(ue-1), (25)
vt =yi-1 — n8(yt-1), (26)

respectively, where ||g(w) — VF(w)||2 < A for any w € W. According to our assumption, we have
V¢t < T, ||lug —uoll2 < R and ||y — yoll2 < R.
Define v; := y; — uy, 6; := g(us) — VF(us), and 8} := g(y:) — VF(y:). Then we have

Yir1 =yt — n(VE(y.) + 6;)
=w + vy —n(VF(u + v¢) + 8})

1
=w+vi—nVF(u) —n [/ V2F(u; + 9vt)} vy —nd;
0
1
=Wy + 00+ v —1n [/ V2F(u; + 9vt)d9} vi — néy,
0

which yields
Virr = (T —nH)v, — nQuvy +n(8; — 8y), (27)

where L
Q; = / V2F(u; + 6v;)dd — H. (28)
0



By the Hessian Lipschitz property, we know that

1Q¢llz <pr(lue — Wll2 + [lye — Wl|2)
<pr(llur —uollz + fluo — Wll2 + [ly+ — yoll2 + llyo — wl|2) (29)
We let ¢, be the norm of the projection of v; onto the e direction, and ¢; be the norm of the

projection of v; onto the remaining subspace. By definition, we have ¥y = pg > p > 0 and ¢g = 0.
According to (27) and (29), we have

Yepr = (L+m7) e — 2npp(R + 1)\ [YE + 67 — 2nA, (30)
br1 < (1+07)¢e + 2npr (R + 7)\/V7 + 67 + 2nA. (31)
In the following, we use induction to prove that V t < Ty,
1 t
Yy > (14 -ny)Ye-1 and ¢y < ——y (32)
2 Tin

We know that (32) holds when ¢ = 0 since we have ¢g = 0. Then, assume that for some t < Ty,
we have V 7 < ¢, ¢y > (14 $17)¢,—1 and ¢, < 7-%r. We show that (32) holds for ¢ + 1.

First, we show that ¢, 1 > (1+1nv)¢y. Since V 7 < t, ¢, > 1b-_1, we know that 1y > 1o > p.
Therefore, according to (6), we have

A<pr(R+71)u< pp(R+1)y. (33)

In addition, since t < Ty, we have
bt < Wy (34)
Combining (33), (34) and (30), (31), we get

Yiyr > (L) = 2npr (R4 1)/ 207 = 2npp(R + 1) > (1+17)t: — 6npp (R + 7)1, (35)

brp1 < (L +07)d¢ + 20pp (R + 1)1/ 207 4 2npp (R + 1)y < (1+07)¢¢ + 6npp(R+ 7). (36)

According to (7), we have v > 24pp(R + r) log9/4(2(R+T)) > 12pp(R + r). Combining with (35),

o
we know that 141 > (1 + 3197)¢:.
Next, we show that ¢y1q < %d)t.ﬁrl. Combining with (35) and (36), we know that to show

dry1 < %@Z)Hl, it suffices to show

(1 +ny)¢e + 6npp(R + 1)y < t;thl 147y — 6npr(R+ 1))t (37)

According to the induction assumption, we have ¢; < ﬁiﬁt- Then, to show (37), it suffices to
show that

I+t +6npp(R+7)Tin < (t+1)[14+ny — 6npr(R+ )] (38)
Since ¢t + 1 < Tiy, we know that to show (38), it suffices to show
12npp(R+r)Tin < L. (39)

Then, according to (4) and (7), we know that (39) holds, which completes the induction.
Next, according to (32), we know that

1
lur, —yrulle > é1,, > (1 + 5777)T°h

Ho
> (14 gy s
2(R+r
> ('u)',UOZZ(R—H“),

where the last inequality is due to the fact that n = ﬁ and thus 7y < 1. On the other hand, since
we assume that ug,yo € Wg, we know that

lur, —y7.lle < lluz, —wollz + lyr, — yoll2 + [[uo — yoll2 < 2(R + 1),

which leads to contradiction and thus completes the proof.



C.2 Proof of Lemma 4

Recall that we have the iterations w, 11 = w, —ng(w,) for all 7 < ¢. Let §, = VF(w,) — g(w,),
and then ||d,||2 < A. By the smoothness of F(-) and the fact that n = ﬁ, we have

Lp
F(w:) = F(Wri1) 2(VF(W:), Wr — Wri) — THWT - WT-HH%

W, — Wri] Lr
= <TTJr + 0., W, — WT+1> - [wr — WT+1||§

n 2
Lp )
ZTHWT = Woptll3 + (67, Wr — Wri1) (40)
Lrp 10,113
ETHWT — w3 - ?2
Lp A?
ET”WT - WH—IH% - E
By summing up (40) for 7 =0,1,...,t — 1, we get
t—1
Lp A?t
F(wo) = F(we) 2 =~ > wr — w3 - T (41)
7=0 F
Consider the k-th coordinate of w, and w, 1, by Cauchy-Schwarz inequality, we have
t—1 1
Z(wr,k - wr+1,k)2 > E(wo,k — wt,k)Q,
7=0
which implies
t—1 1
Do lwr = w3 > ~llwo — w3, (42)
7=0
Combining (41) and (42), we obtain
Lp , A% Lp o, ATy
F - F > — - - — R — 43
(wo) = F(we) = T lwo —wilf - T > ZEm - S (43)
On the other hand, by the smoothness of F(-), we have
~ o~ Lp 19 Ly 4
F(&) ~ Flwo) > (VE(@),% — wo) — 2 [wo — W[3 > ~(c+ A)r — S22 (44)
Adding up (43) and (44), we obtain
- Lp o, ATy Lr o
F(W) — F(w,) > 2E g2 _ —(e+Ay— =L 45
(W) (W) > T Ir (e+ A)r 5 (45)

which completes the proof.

D Proof of Theorem 4

First, when we run gradient descent iterations w’ = w —nV F(w), according to Lemma 1, we have
1
F(w') < F(w) — 57— [|VF(w)]}3. (46)
2Lp

Suppose at w, we observe that |[VF(w)||2 < €, and then we start the Escape process. When
we have exact gradient oracle, we can still define the stuck region Wg at w as in the definition
of stuck region in Appendix C, by simply replacing the inexact gradient oracle with the exact
oracle. Then, we can analyze the size of the stuck region according to Lemma 2. Assume that the
smallest eigenvalue of H := V2F (W) satisfies Apin (H) < —y < 0, and let the unit vector e be the
eigenvector associated with Ay (H). Let ug,yo € Bg(r) be two points such that yo = ug + pee



with some pg > p € (0,7). Consider the stuck region Wg(w,r, R, Ttn). Suppose that r, R, Ty,
and p satisfy

2(R+r)
Ane), (a7)

R>p, (48)
2(R+7")). (49)

v > 24pr(R+) 10%9/4(7

2
Tin = — log
t " 9/a(

Then, there must be either ug ¢ Wg or yo ¢ Wg. In addition, according to Lemma 3, if con-
ditions (47)-(49) are satisfied, then, when we sample wq from Bg(r) uniformly at random, the
probability that wg € Wg(w,r, R, Tiy) is at most 2“7‘/3. In addition, according to (45) in the proof
of Lemma 4, assume that wy € Bg(r) and that wg ¢ We(w,r, R, Tiy). Let ¢ < Ty, be the step
such that ||w; — wol|2 > R. Then, we have

R? —er — =12, (50)
Combining (47) and (49), we know that the first term on the right hand side of (50) satisfies

Ly 3
ZF Rp2> . 1
T R > 3prR (51)

Choose R = \/¢/pr and r = €. Then, we know that when e < min{piF, L%ﬁ}, we have er < ppR?
and $Lpr? < ppR3. Combining these facts with (50) and (51), we know that, when the algorithm
successfully escapes the saddle point, the decrease in function value satisfies

F(W) = F(w;) > prR’. (52)
Therefore, the average function value decrease during the Escape process is at least

F(W) = Fw) _ 12 ,

—€”. 53
Tin ~ L (53)

When we have exact gradient oracle, we choose ) = 1. According to (46) and (53), for the
iterations that are not in the Escape process, the function value decrease in each iteration is at
least ﬁeZ; for the iterations in the Escape process, the function value decrease on average is

%62. Since the function value can decrease at most Fy — F™*, the algorithm must terminate within

2L (Fo—F*) . .
% iterations.

The we proceed to analyze the failure probability. We can see that the number of saddle points
that the algorithm may need to escape is at most £2=£~. Then, by union bound the probability

pr I3
that the algorithm fails to escape one of the saddle pgints is at most
2uNd Fy— F*
r prR?

By letting the above probability to be d, we obtain
565/2
H= )
2\/de<F0 - F*)

which completes the proof.

E Proof of Proposition 1

We consider the following class of one-dimensional functions indexed by s € R:
F={fs() : fo(w) = A% ?sin(A™Y?w + 5),5 € R}.

Then, for each function f(-) € F, we have

Vfs(w) = Acos(A™Y 2w + ),



and
V2 f(w) = —AY?sin(A™Y?w + 5).

Thus, we always have |V fs(w)| < A,Vw. Therefore, the A-inexact gradient oracle can simply
output 0 all the time. In addition, we verify that for all s and w, |V2f,(w)] < A2 < 1 and
|V3 fs(w)| = | — cos(A~2w + s)| < 1 under the assumption that A < 1, so all the functions in F
are 1-smooth and 1-Hessian Lipschitz as claimed.

In this case, the output of the algorithm does not depend on s, that is, the actual function that
we aim to minimize. Consequently, for any output w of the algorithm, there exists s € R such that

A2 4 s = /4, and thus |V fo(@)] = A/v2 and Ain (V2 f5(@)) = —AY2/V/2.

F Proof of Proposition 2

Suppose that during all the iterations, the Escape process is called E + 1 times. In the first £
times, the algorithm escapes the saddle points, and in the last Escape process, the algorithm does
not escape and outputs w. For the first E processes, there might be up to @ rounds of perturb-
and-descent operations, and we only consider the successful descent round. We can then partition
the algorithm into F + 1 segments. We denote the starting and ending iterates of the ¢-th segment
by w; and wy, respectively, and denote the length (number of inexact gradient descent iterations)
by T;. When the algorithm reaches w;, we randomly perturb w; to wyy 1, and thus we have
W — Witz < r for every t =0,1,..., F — 1. According to (22), we know that

(Fo— F)Lp  ~
ZT_—O )Lr _ 7,

and according to (20), we have

~ A8Lp(AS/5d3/5 + AT/5J7/10)"

According to (43), we know that

~ AT,
[we — Wt||§ - :

F(w) = F(%) > 15

which implies

~ 2 — 2AT,
[we —well2 < \/T—F\/Tt(F(Wt) — F(W)) + Lpt
Then, by Cauchy-Schwarz inequality, we have
E ~ E ~
~ T - 2AT
Do llwe = Willa < 24| 7= D> _(Flwe) = F(Wi)) + . (54)
LF LF
t=0 t=0
On the other hand, we have
E E—1
> (F(wy) - )+ F(wyy1)) = F(wo) — F(wg) < F(wg) — F*.
t=0 t:O
According to (44), we have
_ Lp ,
F(Wt) — F(Wt-',-l) > —4Ar — 77"
and thus
E Le
> (F( (Wy)) < F(wq) — F* + E(4Ar + 7r2) (55)

~+

=0

Combining (54) and (56), and using the bounds for T and E, we obtain that

E
- F — F*
> lwe — ol < ¢ AT (56)

t=0
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where C; > 0 is a quantity that only depends on Lp and pp. In addition, we have

E-1
_ F(wo) — F*
; IWe = wirslla < Br < Co e am” s s (57)

where Cy > 0 is a quantity that only depends on Ly and pp. Combining (56) and (57), and using
triangle inequality, we know that

A A3/53/10 1 A4/542/5 A
Here, the last inequality is due to the fact that we consider the regime where A — 0, and C is a
quantity that only depends on L and pp. As a final note, the analysis above also applies to any
iterate prior to the final output, and thus, all the iterates during the algorithm stays in the ¢ ball

centered at wo with radius OW-

IlWe —wolls < Ch

G Robust Estimation of Gradients

G.1 Iterative Filtering Algorithm

We describe an iterative filtering algorithm for robust mean estimation. The algorithm is originally
proposed for robust mean estimation for Gaussian distribution in [5], and extended to sub-Gaussian
distribution in [6]; then algorithm is reinterpreted in [18]. Here, we present the algorithm using
the interpretation in [18]. Suppose that m random vectors xi,Xs,...,X,, € R? are drawn i.i.d.
from some distribution with mean p. An adversary observes all these vectors and changes an
« fraction of them in an arbitrary fashion, and we only have access to the corrupted data points
X1,X2,...,Xm. The goal of the iterative filtering algorithm is to output an accurate estimate of the
true mean p even when the dimension d is large. We provide the detailed procedure in Algorithm 1.
Here, we note that the algorithm parameter o needs to be chosen properly in order to achieve the
best possible statistical error rate.

Algorithm 1 Iterative Filtering [5, 6, 18]

Require: corrupted data X;,Xs,...,%, € RY a € [0, %), and algorithm parameter o > 0.
A+ [m],c;+ 1, and 1, < 0,Vie A
while true do
Let W € RMIXIAl be a minimizer of the convex optimization problem:

min3+ rIIjlaX Ci(ﬁi— E ﬁjoi)TU(ii— E )/Ejoi),
. o >0
OSWHS (I—a)(3—a)m tr(U_)<1 €A jeEA jeA

jea Wji=l1 B

and U € R?*¢ be a maximizer of the convex optimization problem:

max min E Cz(iz - E ijWﬂ)TU(ﬁl - E §jWﬂ)
Ur0 o<W, < gt “ ‘ ‘
tr(U)<1 = (0-a)B-—a)m jc A jeEA jEA

jea Wii=1

VieA, 7+ ()/Ez - ZjeA }?jo')TU(ii - ZjG.A ijVVji)~

if Y, cimi> 8mo? then
Vie A, ¢+ (1— )¢, where Timax = maXiea 7i.
A A\{i:q < i}

else
return g = ﬁ YieaXi

end if

end while

G.2 Proof of Theorem 5

To prove Theorem 5, we first state a result that bounds the error of the iterative filtering algorithm
when the original data points {x;} are deterministic. The following lemma is proved in [6, 18|;

11



also see [19] for additional discussion.

Lemma 5. [6, 18] Let S := {x1,Xa,...,Xp} be the set of original data points and ps = 37" | x;
be their sample mean. Let X1,Xa,...,X;y be the corrupted data. If a < %, and the algorithm

parameter o is chosen such that

<o’ (58)
2

% Z(Xi —ps)(x — HS)T

then the output of the iterative filtering algorithm satisfies |g — psll2 < O(o/a).

By triangle inequality, we have

18— pll2 < o= psllz + s — pll2, (59)
and
RS T 1 T T
*Z(Xi_l‘&')(x_ﬂs) = H([X17~-~,Xm]—[,l,3]_ J([x1, - Xm] — ps1') HQ
mi= , M
1 T2
e R
1 . 2
<—(IIbxrs 3] = 2Tz + Vil = ps]lz) (60)

where 1 denotes the all-one vector.® By choosing

1
o= @(ﬁ\\[m X = p o+ [l — psll2)

in Lemma 5 and combining with the bounds (59) and (60), we obtain that

va v
1= plle S Yl %] = 1Tl + = s (61)
o

With the above bound in hand, we now turn to the robust gradient estimation problem, where
the data points are drawn i.i.d. from some unknown distribution. Let g(w) := filter{g;(w)},,
where filter represents the iterative filtering algorithm. In light of (61), we know that in order to
bound the gradient estimation error supy,cyy ||8(W) — VF(w)||2, it suffices to bound the quantities

Vftelgvll[VFl(W)w-~ ,VEp(w)] = VE(w)1T ||

and

sup ||— VFE(w .
Sup I Z VE(W)|2
Here, we recall that VF;(w) is the true gradient of the empirical loss function on the é-th machine,
and g;(w) is the (possibly) orrupted gradient.

We first bound supy,cyy |5 Y1 VF;(w) — VF(w)l|2. Note that we have L 3" VFy(w) =
LS Zj 1 Vf(w;z; ;). Using the same method as in the proof of Lemma 6 in [4], we can
show that for each fixed w, with probability at least 1 — ¢,

LS (w) - VB s < 2V
||m;vm( )= VEW)l < =

dlog6 + log ((15)

For some &y > 0 to be chosen later, let W5, = {w!,w?,..., w5} be a finite subset of W such
that for any w € W, there exists some w’ € Wj, such that |[w*—w|s < &y. Standard e-net results
from [20] ensure that N5, < (1+ %)d. Then, by the union bound, we have with probability 1 — 4,

for all w* € W,,

1N op(wl) v 2v2¢
||m;VFz( ) — VF(w )H2<F

0g 6 + log (]\;5“). (62)

3We note that similar derivation also appears in [19].
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When (62) holds, by the smoothness of f(:;z) we know that for all w € W,

1" 2\/§<\/ N50
| ;:1 VE;(w)— VF(w)|2 < T dlog6 +1og( 5 ) + 2L6o.

By choosing dp = - and § = m7 we obtain that with probability at least 1 — m7
for all w e W,
1 m
”EZVE(W)_ F(w)l2 < F\/dlog 1+ nmDL). (63)
i=1

We next bound supyey, | [VF1(W), -+, VE,(W)] — VF(w)1"|2. We note that when the gra-
dients are sub-Gaussian distributed, similar results for the centralized setting have been estab-
lished in [3]. Ome can check that for every i, VF;(w) — VF(w) is fﬁ—sub—Gaussian. Define

G(w) := [VF(w), - ,VF,(w)] — VF(w)1T. Using a standard concentration inequality for the
norm of a matrix with independent sub-Gaussian columns [20], we obtain that for each fixed w,
with probability at least 1 — ¢,

||%G(W)G(W)T _ %E(W)H2 < 4: <\/;+ L —10 (;) + %log (;)) ,

which implies that

e o G ([ 2 b))

Recall the §p-net Ws, = {w!, w2, ..., w5} as defined above. Then, we have with probability at
least 1 — &, for all w’ € W,

1/2
d d N, N,
v;ﬂcw#MQs\;,+j%<vcn+ﬂ1+;g%( ) 1 Lo ;)) e

For each w with ||w’ — w|s < g, we have

IG(w*) = G(w)|l2 <|G(W) — G(w)|

m 1/2
< (Z (VE(w") = VE(w")) = (VE,(w) — VF(W))H%)
i=1
<2Lép/m.

This implies that when the bound (64) holds, we have for all w € W,

/2

1/2
1 o ¢ d d N, 1 Ns,
ﬁ”G(W)Hzg% \f < +—+—1 (T)+ Elog( 5 )) +2Ldg.  (65)

Choose §y = in which case the last term above is a high order term. In this case, choosing

nmL’
6= m, we have with probability at least 1 — m, for all w € W,
1 ¢ d d e
o
|G <7 45 (7 7) log(1 DL
=G 7=+ f<m+ﬁn%“”m>
o ¢ d
S—+ 144/ log(1 +nmDL). (66)
N < m)
Combining the bounds (61), (63), and (66), we obtain that with probability at least 1 — Z

(14+mnDL)%>

Sup [lg(w) = VEW)ll2 5 ((0+C)\/E+C\/ Tjﬂ) Vlog(1 +nmDL),

which completes the proof.
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G.3 Lower Bound for First-Order Guarantee

In this section we prove Observation 2. We consider the simple mean estimation problem with
random vector z drawn from a distribution D with mean p. The loss function associated with
z is f(w;z) = 3|lw — z||3. The population loss is F(w) = 1(|wl|j3 — 2u"w + E[||z[|3]), and
VF(w) =w—pu. We first provide a lower bound for distributed mean estimation in the Byzantine
setting, which is proved in [21].

Lemma 6. [21] Suppose that z is Gaussian distributed with mean p and covariance o?1. Then,
any algorithm that outputs an estimate W of p has a constant probability such that

I = wle = 2= + Vot

Since VF(w) = w — p, the above bound directly implies the lower bound on ||VF(w)|2 in
Observation 2.

G.4 Median and Trimmed Mean

In this section, we present the error bounds of median and trimmed mean operations in the
Byzantine setting in [21] for completeness.

Condition 1. For any z € Z, the k-th partial derivative Oy f(-;2) is Ly-Lipschitz for each k € [d].
Let L:= (X0_, L2)1/2.

For the median-based algorithm, one needs to use the notion of the absolute skewness of a
one-dimensional random variable X, defined as S(X) := E[|X — E[X]|?]/Var(X)3/2. Define the
following upper bounds on the standard deviation and absolute skewness of the gradients:

vi= sup (E[IVf(wiz) = VEW)E)", 5= sup amax§(0i(w;2)).

Then one has the following guarantee for the median-based algorithm.
Claim 3 (median). [21] Suppose that Condition 1 holds. Assume that
dlog(1 + nmDL) 1/2 oS < 1 .
m(l — ) YVn—2 7
for some constant c1,co > 0. Then, with probability 1 — o(1), GradAGG = med provides a Amed-
inexact gradient oracle with

c3 dlog(nmDL) |, s
Aped < —— =\ VR SR
ed_\/ﬁv(aJr( m ) Jr\/ﬁ Onm

where c3 is an absolute constant.

Therefore, the median operation provides a (5(1}(% + 1/ 7= + &))-inexact gradient oracle. If
each partial derivative is of size O(1), the quantity v is of the order O(v/d) and thus one has
Amed S 22 + o 4 44,

For the trimmed mean algorithm, one needs to assume that the gradients of the loss functions
are sub-exponential.

Condition 2. For any w € W, V f(w;z) is £-sub-exponential.

In this setting, there is the following guarantee.
Claim 4 (trimmed mean). [21] Suppose that Conditions 1 and 2 hold. Choose 3 = cyor < § — c5
with some constant ¢4 > 1, c5 > 0. Then, with probability 1 — o(1), GradAGG = trmeang provides
a Aim-inexact gradient oracle with

Aum < c6éd( <= + —— ) /log(nmDL),

Vi F

where cg is an absolute constant.

1

Therefore, the trimmed mean operation provides a O(fd(% —))-inexact gradient oracle.
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