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Abstract

Many machine learning models are vulnerable
to adversarial attacks; for example, adding ad-
versarial perturbations that are imperceptible to
humans can often make machine learning models
produce wrong predictions with high confidence;
moreover, although we may obtain robust models
on the training dataset via adversarial training, in
some problems the learned models cannot gen-
eralize well to the test data. In this paper, we
focus on ¢, attacks, and study the adversarially
robust generalization problem through the lens of
Rademacher complexity. For binary linear clas-
sifiers, we prove tight bounds for the adversarial
Rademacher complexity, and show that the adver-
sarial Rademacher complexity is never smaller
than its natural counterpart, and it has an unavoid-
able dimension dependence, unless the weight
vector has bounded ¢; norm, and our results also
extend to multi-class linear classifiers; in addi-
tion, for (nonlinear) neural networks, we show
that the dimension dependence in the adversar-
ial Rademacher complexity also exists. We fur-
ther consider a surrogate adversarial loss for one-
hidden layer ReLU network and prove margin
bounds for this setting. Our results indicate that
having /1 norm constraints on the weight matrices
might be a potential way to improve generaliza-
tion in the adversarial setting. We demonstrate
experimental results that validate our theoretical
findings.

1. Introduction

In recent years, many modern machine learning models, in
particular, deep neural networks, have achieved success in
tasks such as image classification (He et al., 2016), speech
recognition (Graves et al., 2013), machine translation (Bah-
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danau et al., 2014), game playing (Silver et al., 2016), etc.
However, although these models achieve the state-of-the-
art performance in many standard benchmarks or compe-
titions, it has been observed that by adversarially adding
some perturbation to the input of the model (images, au-
dio signals), the machine learning models can make wrong
predictions with high confidence. These adversarial inputs
are often called the adversarial examples. Typical methods
of generating adversarial examples include adding small
perturbations that are imperceptible to humans (Szegedy
et al., 2013), changing surrounding areas of the main ob-
jects in images (Gilmer et al., 2018a), and even simple
rotation and translation (Engstrom et al., 2017). This phe-
nomenon was first discovered by Szegedy et al. (2013) in
image classification problems, and similar phenomena have
been observed in other areas (Carlini & Wagner, 2018; Kos
et al., 2018). Adversarial examples bring serious challenges
in many security-critical applications, such as medical di-
agnosis and autonomous driving—the existence of these
examples shows that many state-of-the-art machine learning
models are actually unreliable in the presence of adversarial
attacks.

Since the discovery of adversarial examples, there has been
a race between designing robust models that can defend
against adversarial attacks and designing attack algorithms
that can generate adversarial examples and fool the machine
learning models (Goodfellow et al., 2014; Gu & Rigazio,
2014; Carlini & Wagner, 2016; 2017). As of now, it seems
that the attackers are winning this game. For example, a
recent work shows that many of the defense algorithms fail
when the attacker uses a carefully designed gradient-based
method (Athalye et al., 2018). Meanwhile, adversarial
training (Huang et al., 2015; Shaham et al., 2015; Madry
et al., 2017) seems to be the most effective defense method.
Adversarial training takes a robust optimization (Ben-Tal
et al., 2009) perspective to the problem, and the basic idea
is to minimize some adversarial loss over the training data.
We elaborate below.

Suppose that data points (x,y) are drawn according to
some unknown distribution D over the feature-label space
X xY,and X C R Let F be a hypothesis class (e.g.,
a class of neural networks with a particular architecture),
and ¢(f(x),y) be the loss associated with f € F. Consider
the /., white-box adversarial attack where an adversary is
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allowed to observe the trained model and choose some x’
such that ||x’ — x||oc < € and ¢(f(x'),y) is maximized.
Therefore, to better defend against adversarial attacks, dur-
ing training, the learner should aim to solve the empirical
adversarial risk minimization problem

1 /

min - ; GRS (1
where {(x;,y;)}_; are n i.i.d. training examples drawn
according to D. This minimax formulation raises many inter-
esting theoretical and practical questions. For example, we
need to understand how to efficiently solve the optimization
problem in (1), and in addition, we need to characterize the
generalization property of the adversarial risk, i.e., the gap
between the empirical adversarial risk in (1) and the popula-
tion adversarial risk E . ) p[maxx x| <e £(f(X'),9)].
In fact, for deep neural networks, both questions are still
wide open. In particular, for the generalization problem, it
has been observed that even if we can minimize the adver-
sarial training error, the adversarial test error can still be
large. For example, for a Resnet (He et al., 2016) model
on CIFAR10, using the PGD adversarial training algorithm
by Madry et al. (2017), one can achieve about 96% adversar-
ial training accuracy, but the adversarial test accuracy is only
47%. This generalization gap is significantly larger than that
in the natural setting (without adversarial attacks), and thus
it has become increasingly important to better understand
the generalization behavior of machine learning models in
the adversarial setting.

In this paper, we focus on the adversarially robust gen-
eralization property and make a first step towards deeper
understanding of this problem. We focus on ¢, adversar-
ial attacks and analyze generalization through the lens of
Rademacher complexity. We study both linear classifiers
and nonlinear feedforward neural networks, and both binary
and multi-class classification problems. We summarize our
contributions as follows, and provide detailed comparison
with existing works in Section 6.

1.1. Our Contributions

* For binary linear classifiers, we prove tight upper and
lower bounds for the adversarial Rademacher complexity.
We show that the adversarial Rademacher complexity is
never smaller than its counterpart in the natural setting,
which provides theoretical evidence for the empirical ob-
servation that adversarially robust generalization can be
hard. We also show that under an ¢, adversarial attack,
when the weight vector of the linear classifier has bounded
¢, norm (p > 1), a polynomial dimension dependence in
the adversarial Rademacher complexity is unavoidable,
unless p = 1. For multi-class linear classifiers, we prove
margin bounds in the adversarial setting. Similar to binary
classifiers, the margin bound also exhibits polynomial di-
mension dependence when the weight vector for each

class has bounded ¢, norm (p > 1).

¢ For neural networks, we show that in contrast to the mar-
gin bounds derived by Bartlett et al. (2017) and Golowich
et al. (2017) which depend only on the norms of the
weight matrices and the data points, the adversarial
Rademacher complexity has a lower bound with an ex-
plicit dimension dependence, which is also an effect of
the ¢, attack. We further consider a surrogate adver-
sarial loss for one hidden layer ReLU networks, based
on the SDP relaxation proposed by Raghunathan et al.
(2018a). We prove margin bounds using the surrogate
loss and show that if the weight matrix of the first layer
has bounded ¢; norm, the margin bound does not have
explicit dimension dependence. This suggests that in the
adversarial setting, controlling the ¢; norms of the weight
matrices may be a way to improve generalization.

* We conduct experiments on linear classifiers and neural
networks to validate our theoretical findings; more specif-
ically, our experiments show that ¢; regularization could
reduce the adversarial generalization error, and the adver-
sarial generalization gap increases as the dimension of the
feature spaces increases.

Notation We define the set [N] := {1,2,...,N}. For
two sets 4 and 5, we denote by B4 the set of all func-
tions from A to B. We denote the indicator function of
a event A as 1(A). Unless otherwise stated, we denote
vectors by boldface lowercase letters such as w, and the
elements in the vector are denoted by italics letters with
subscripts, such as wy. All-one vectors are denoted by
1. Matrices are denoted by boldface uppercase letters
such as W. For a matrix W € R¥™ with columns
w;, i € [m], the (p, q) matrix norm of W is defined as

Wllp.g = lw1llp, [Wellp, - - s [[Winllp]llg, and we may
use the shorthand notation || - ||, = || - ||,p. We denote the
spectral norm of matrices by || - ||, and the Frobenius norm
of matrices by || - ||r Gee., || - [|[7 = | - [|2)- We use B3 (€)

to denote the /., ball centered at x € R? with radius e, i.e.,
BX(e) ={x' € R . Ix" — x||00 < €}

2. Problem Setup

We start with the general statistical learning framework.
Let X and ) be the feature and label spaces, respectively,
and suppose that there is an unknown distribution D over
X x ). In this paper, we assume that the feature space is a
subset of the d dimensional Euclidean space, i.e., X C R?,
Let 7 C V* be the hypothesis class that we use to make
predictions, where V is another space that might be different
from Y. Let ¢ : V x Y — [0, B] be the loss function.
Throughout this paper we assume that ¢ is bounded, i.e., B
is a positive constant. In addition, we introduce the function
class £ C [0, B]**Y by composing the functions in F
with £(-,y), ie, br = {(x,y) = 4f(x),y) : f € F}.
The goal of the learning problem is to find f € F such
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that the population risk R(f) := E(x )epl[l(f(x),y)] is
minimized.

We consider the supervised learning setting where one has
access to n i.i.d. training examples drawn according to
D, denoted by (x1,¥1), (X2,Y2), - - -, (Xn, Yn). A learning
algorithm maps the n training examples to a hypothesis
f € F. In this paper, we are interested in the gap between
the empirical risk Ry, (f) := 23", (f(x;),y;) and the
population risk R(f), known as the generalization error.

Rademacher complexity (Bartlett & Mendelson, 2002) is
one of the classic measures of generalization error. Here,
we present its formal definition. For any function class
H C RZ, given a sample S = {z1, 2o, ...,2,} of size n,
and empirical Rademacher complexity is defined as

1

s -t
where 01, ..., 0, are i.i.d. Rademacher random variables
with P{o; = 1} = P{o; = —1} = 1. In our learn-
ing problem, denote the training sample by S, i.e., S :=
{(x1,11), (X2,¥2), - - -, (Xn, Yn) }. We then have the follow-
ing theorem which connects the population and empirical
risks via Rademacher complexity.

Theorem 1. (Bartlett & Mendelson, 2002; Mohri et al.,
2012) Suppose that the range of £(f(x),y) is [0, B]. Then,
for any 6 € (0,1), with probability at least 1 — 6, the
Sfollowing holds for all f € F,

log
2n

As we can see, Rademacher complexity measures the
rate that the empirical risk converges to the population
risk uniformly across F. In fact, according to the anti-
symmetrization lower bound by Koltchinskii et al. (2006),
one can show that Rs({r) < supser R(f) — Ru(f) S
Rs(¢r). Therefore, Rademacher complexity is a tight
bound for the rate of uniform convergence of a loss func-
tion class, and in many settings can be a tight bound for
generalization error.

SN

R(f) < Ra(f) +2BRs({r) + 3B

The above discussions can be extended to the adversarial
setting. In this paper, we focus on the /., adversarial attack.
In this setting, the learning algorithm still has access to n
i.i.d. uncorrupted training examples drawn according to D.
Once the learning procedure finishes, the output hypothesis
f is revealed to an adversary. For any data point (x,y)
drawn according to D, the adversary is allowed to perturb
x within some ¢, ball to maximize the loss. Our goal is to
minimize the adversarial population risk, i.e.,

R(f) = E(x,y)~p x,reré?(é)ﬁ(f(#),y) :

and to this end, a natural way is to conduct adversarial
training—minimizing the adversarial empirical risk

n

Y4
n P x;g]g;%((e) (f(x

Let us define the adversarial loss 27( fx),y) =
maxge (o) £(f(x'),y) and the function class Z]—' C
0, B]**¥ as (7 = {{(f(x),y) : f € F}. Since the
range of £(f(x),y) is still [0, B], we have the following
direct corollary of Theorem 1.
Corollary 1. For any § € (0,1), with probability at least
1 — 9, the following holds for all f € F,
log
2n
As we can see, the Rademacher complex1ty of the adversar-
ial loss function class / F.ie.,Rg (Z F) is again the key quan-
tity for the generalization ability of the learning problem. A
natural problem of interest is to compare the Rademacher
complexities in the natural and the adversarial settings, and
obtain generalization bounds for the adversarial loss.

SOIN

R(f) < Ru(f) + 2BRs((x) + 3B

3. Linear Classifiers
3.1. Binary Classification

We start with binary linear classifiers. In this setting, we
define ) = {—1,+1}, and let the hypothesis class 7 C R*
be a set of linear functions of x € X'. More specifically, we
define f (x) := (w, x), and consider prediction vector w
with £, norm constraint (p > 1), i.e.,

F={fwx):[lwl, <W}. 2)
We predict the label with the sign of fy,(x); more specif-
ically, we assume that the loss function ¢( fw(x),y) can
be written as /(fw(x),y) = ¢(y(w,x)), where ¢ : R —
[0, B] is monotonically nonincreasing and L,-Lipschitz. In
fact, if »(0) > 1, we can obtain a bound on the classification

error according to Theorem 1. That is, with probability at
least 1 — 4, for all fy, € F,

]P)(x,y)ND{Sgn(fW (X)) 7é y}

log
2n

SOl

1 n
_ﬁz fw xz Yi +QBSRS(€]:)+3B

In addition, recall that according to the Ledoux-Talagrand
contraction inequality (Ledoux & Talagrand, 2013), we have
Rs (é]:) < L¢§R5 (]:)

For the adversarial setting, we have
U(fw(x),y) = max E(fw( ",y)=¢( min y(w,x)).

x/ €B2 (€) X/ €B2 (¢)
Let us define the following function class F C RYx{1};

F= i ,x) <Wg;. 3
{ i yowoxyswl, < who @)
Again, we have Rg(lr) < LyRs (F). The first major
contribution of our work is the following theoren~1, which
provides a comparison between R s(F) and Rs(F).
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Theorem 2 (Main Result 1). Let F := {fw(x) : ||w||, <
W} and F := {miny cpee (o) y(w, x') : ||wl|, < W} Sup-
pose that % + % = 1. Then, there exists a universal constant

c € (0,1) such that .
masx (R (7). celW T2} < Rs(F) < R(F) + W 2

We prove Theorem 2 in Appendix B. We can see that the
adversarial Rademacher complexity, i.e., Rs(F) is always
at least as large as the Rademacher complexity in the nat-
ural setting. This implies that uniform convergence in the
adversarial setting is at least as hard as that in the natural
setting. In addition, s}nce max{a,b} > (a+1b), we helve
g(%s(}‘) + EW%) < Rs(F) < Rs(F) + EW%.
Therefore, we have a tight bound for R (F) up to a constant
factor. Further, if p > 1 the adversarial Rademacher com-
plexity has an unavoidable polynomial dimension depen-
dence, i.e., Rs(F) is always at least as large as O(eW d\l/% ).
On the other hand, one can easily show that in the natural
setting, Rs(F) = LE,[|| >, 0ixill4), which implies
that R s (F) depends on the distribution of x; and the norm
constraint W, but does not have an explicit dimension depen-
dence. This means that 9is(F) could be order-wise larger
than R s (F), depending on the distribution of the data. An
interesting fact is that, if we have an ¢; norm constraint
on the prediction vector w, we can avoid the dimension

dependence in R s(F).

3.2. Multi-class Classification

Margin Bounds for Multi-class Classification We pro-
ceed to study multi-class linear classifiers. We start with
the standard margin bound framework for multi-class clas-
sification. In K -class classification problems, we choose
Y = [K], and the functions in the hypothesis class F map
X toRE ie., F C (R¥)?*. Intuitively, the k-th coordinate
of f(x) is the score that f gives to the k-th class, and we
make prediction by choosing the class with the highest score.
We define the margin operator M (z,y) : R x [K] — R
as M(z,y) = z, — max, +, z,,. For a training example
(x,y), a hypothesis f makes a correct prediction if and
only if M(f(x),y) > 0. We also define function class
Mz = {(x,y) = M(f(x),y): f € F} C R**IK] For
multi-class classification problems, we consider a particular
loss function ¢(f(x),y) = ¢(M(f(x),y)), where v > 0
and ¢, : R — [0, 1] is the ramp loss:

1 t<0
b =111 0<i<y @
0 t>n.
One can check that £(f(x), y) satisfies:

1(y # arg yr,rg[tﬁ][f(X)]y/) < U(f(x),y)

<I([fx)y < v+ Iyr}g};[f(X)]y/)-

(&)

Let S = {(xi,yi)}1~q € (X x [K])™ be the i.i.d. training
examples, and define the function class ¢z := {(x,y) —
oy (M(f(x),1)) : f € F} € R¥¥IKL Since o, (1) €
[0,1] and ¢,(-) is 1/~-Lipschitz, by combining (5) with
Theorem 1, we can obtain the following direct corollary as
the generalization bound in the multi-class setting (Mohri
etal., 2012).

Corollary 2. Consider the above multi-class classification
setting. For any fixed v > 0, we have with probability at
least 1 — 6, forall f € F,

Pix,y)~D {y # arg max [f (X)]y’}

y' €[K]

<o I Gkl <7+ maxlfGeoly) + 2 ()

y'#y

log %

3
+ 2n

In the adversarial setting, the adversary tries to maxi-
mize the loss ¢(f(x),y) = ¢,(M(f(x),y)) around an
f ball centered at x. We have the adversarial loss

((f(x),y) = maxy e (o) £(f(x'),y), and the function
class (7 := {(x,y) — {(f(x),y) : f € F} C RY*IK],
Thus, we have the following generalization bound in the
adversarial setting.

Corollary 3. Consider the above adversarial multi-class
classification setting. For any fixed v > 0, we have with
probability at least 1 — 0, forall f € F,

Px,y)~D {El x" € B (€) s.t. y # arg max [f(x’)]y/}
) y' €[K]

g% D1 X € B[/ (X)), <7+ max(f (x))]y)
i=1 o

log %
2n

+2Rs(lF) +3

Multi-class Linear Classifiers We now focus on multi-
class linear classifiers. For linear classifiers, each function
in the hypothesis class is linearly parametrized by a matrix
W c REXd e, f(x) = fw(x) = Wx. Let wi, € R? be
the k-th column of W T, then we have [fw (X)]r = (W, X).
We assume that each wy, has £, norm (p > 1) upper bounded
by W, which implies that F = {fw(x) : [W|p.00 <
W}. In the natural setting, we have the following margin
bound for linear classifiers as a corollary of the multi-class
margin bounds by Kuznetsov et al. (2015); Maximov &

Reshetova (2016).

Theorem 3. Consider the multi-class linear classifiers in
the above setting, and suppose that % + % =1pq>1
For any fixed v > 0 and W > 0, we have with probability
at least 1 — 6, for all W such that [W T ||, .o < W,
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]P(x y)~D {y 7é arg I;Ié?‘})g]<wy’v X>}

<L S 1wy ) < 7 4 mac{wy,x)
— (W, X;) max (wy/, X;
n P vi 7 y' #Yi Y
4KW - [log 2
-&-7/y Es H;Uixin +3 -

We prove Theorem 3 in Appendix C.1 for completeness. In
the adversarial setting, we have the following margin bound.

Theorem 4 (Main Result 2). Consider the multi-class lin-
ear classifiers in the adversarial setting, and suppose that
%Jr é =1,p,q > 1. For any fixed vy > 0 and W > 0, we
have with probability at least 1 — 6, for all W such that
W0 < W,

! oo
P(xﬁy)ND{H x' € B (e), s.t.y # arg y{ré?%](wy/,x)}

%z”: 2WK[6\qu+i§K:U}+3/

where

1))

By =1((wy,,x;) <7+ mj’;(<wy’7xi>+e||wy’_wyi

U, =Eo [|| Z oix;1

We prove Theorem 4 in Appendix C.2. As we can see, simi-
lar to the binary classification problems, if p > 1, the margin
bound in the adversarial setting has an explicit polynomial
dependence on d, whereas in the natural setting, the margin
bound does not have dimension dependence. This shows
that, at least for the generalization upper bound that we
obtain, the dimension dependence in the adversarial setting
also exists in the multi-class classification problems.

(i = yllq

4. Neural Networks

We proceed to consider feedforward neural networks with
ReLU activation. Here, each function f in the hypothesis
class F is parametrized by a sequence of matrices W =
(W1, Wy, ..., Wp), ie., f = fw. Assume that W, €
Rdn*dn—1_and p(-) be the ReLU function, i.e., p(t) =
max{t,0} for ¢t € R. For vectors, p(x) is vector generated
by applying p(-) on each coordinate of x, i.e., [p(x)]; =
p(z;). We have!

Jw(x) =Wrp(Wr_1p(---p

For K-class classification, we have d; = K, fw(x) :
RY — RE and [fw/(x)]s is the score for the k-th class.
In the special case of binary classification, as discussed in
Section 3.1, we can have ) = {+1, —1}, d;, = 1, and the
loss function can be written as

(Wix) ).

"This implies that dp = d.

U fw(x),y) = o(yfw(x)),

where ¢ : R — [0, B] is monotonically nonincreasing and
L4-Lipschitz.

4.1. Comparison of Rademacher Complexity Bounds

We start with a comparison of Rademacher complexities of
neural networks in the natural and adversarial settings. Al-
though naively applying the definition of Rademacher com-
plexity may provide a loose generalization bound (Zhang
et al., 2016a), when properly normalized by the margin, one
can still derive generalization bound that matches experi-
mental observations via Rademacher complexity (Bartlett
et al., 2017). Our comparison shows that, when the weight
matrices of the neural networks have bounded norms, in
the natural setting, the Rademacher complexity is upper
bounded by a quantity which only has logarithmic depen-
dence on the dimension; however, in the adversarial setting,
the Rademacher complexity is lower bounded by a quantity
with explicit v/d dependence.

We focus on the binary classification. For the natural setting,
we review the results by Bartlett et al. (2017). Let S =
{(xi,¥:) 1y € (X x {—1,+1})™ be the i.i.d. training
examples, and define X := [x1,Xo, -+, X,] € R¥", and
= max{d, dl, dg, N ,dL}.
Theorem 5. (Bartlett et al., 2017) Consider the neu-
ral network hypothesis class F = {fw(x) : W =
(Wi, Wa,... . W), [Whlle < s, [Wy [l21 < ba,h €
[L]} C RY. Then, we have

4 26 log(n) log(2dmax
R (F) < iy + 1B 08l

where A = || X||F ( Hi:l Sh) (2521(3)2/3)3/2

On the other hand, in this work, we prove the following re-
sult which shows that when the product of the spectral norms
of all the weight matrices is bounded, the Rademacher
complexity of the adversarial loss function class is lower
bounded by a quantity with an explicit v/d factor. More
specifically, for binary classification problems, since

U fwix)y) = max (fw(x).y)=¢( min yfw(x)),
and ¢(+) is Lipschitz, we consider the function class

F={(x

dmax

A,

H .
'Y) ,gIlBgl()yfw( x') :

L
JTIWalle <r}c REEED,

h=1
(6)

W=(W,W,,..., W,)

Then we have the following result.

Theorem 6 (Main Result 3). Let F be defined as in (6).
Then, there exists a universal constant ¢ > 0 such that

Re(F) > cr(%HXHF +6\/g).
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We prove Theorem 6 in Appendix D.1. This result shows
that if we aim to study the Rademacher complexity of the
function class defined as in (6), a v/d dimension dependence
may be unavoidable, in contrast to the natural setting where
the dimension dependence is only logarithmic.

4.2. Generalization Bound for Surrogate Adversarial
Loss

For neural networks, even if there is only one hidden layer,
for a particular data point (x,y), evaluating the adversar-

ial loss £(fw(x),y) = maxy epee (o) {(fw(x'),y) can be
hard, since it requires maximizing a non-concave func-
tion in a bounded set. A recent line of work tries to
find upper bounds for ¢( fw(x),y) that can be computed
in polynomial time. More specifically, we would like

~

to find surrogate adversarial loss ¢( fw(x),y) such that
U fw(x),y) > {(fw(x),y), V x,y, W. These surrogate
adversarial loss can thus provide certified defense against ad-
versarial examples, and can be computed efficiently. In addi-
tion, the surrogate adversarial loss (fw(x),y) should be as
tight as possible—it should be close enough to the original
adversarial loss £( fw (x), ), so that the surrogate adversar-
ial loss can indeed represent the robustness of the model
against adversarial attacks. Recently, a few approaches to
designing surrogate adversarial loss have been developed,
and SDP relaxation (Raghunathan et al., 2018a;b) and LP
relaxation (Kolter & Wong, 2017; Wong et al., 2018) are

two major examples.

In this section, we focus on the SDP relaxation for one hid-
den layer neural network with ReLLU activation proposed
by Raghunathan et al. (2018a). We prove a generalization
bound regarding the surrogate adversarial loss, and show
that this generalization bound does not have explicit di-
mension dependence if the weight matrix of the first layer
has bounded ¢; norm. We consider K -class classification
problems in this section (i.e., Y = [K]), and start with the
definition and property of the SDP surrogate loss. Since
we only have one hidden layer, fw(x) = Wap(Wix).
Let wg . be the k-th column of W2T . Then, we have the
following results according to Raghunathan et al. (2018a).

Theorem 7. (Raghunathan et al., 2018a) For any (X, vy),
Wi, Wy, and y' # v,

max ([fw(x)]y = [fw (X)) < [fw (x)]y = [fw (X)]y

X' €BE ()

€ ,— W,).P
4Pt075rili}(<P)§1<Q(W2,y w2y, W1), P),

where Q(v,W) :=

0 0 1TW T diag(v)
0 0 W diag(v) |. (7)
diag(v)TW1 diag(v)'W 0

Since we consider multi-class classification problems in this
section, we use the ramp loss ¢, defined in (4) composed

with the margin operator as our loss function. Thus, we have

U(fw(x),y) = o4(M(fw(x),y)) and L(fw(x),y) =
maXys cpee () Py (M (fw(x'),y)). Here, we design a sur-

~

rogate loss ¢( fw (x), y) based on Theorem 7.
Lemma 1. Define

o~

U fw(0,9) = 6 (M (Fw (x).9)

. (2Q(Wae, W), P) ).

- = max max
2 ke[K],z=41P>0,diag(P)<1

Then, we have

x| I(y # arg Jnas [fw (X)) < (fw(x),y)

< 1 (M(fw(x),)

(2Q(Wap, W1),P) < 7).

€
—_ = max max
2 ke[K],z=+1P>0,diag(P)<1

We prove Lemma 1 in Appendix D.2. With this surro-
gate adversarial loss in hand, we can develop the follow-
ing margin bound for adversarial generalization. In this
theorem, we use X = [x1,X3, - ,X,] € R4*"  and
dmax = max{d,d;, K}.

Theorem 8 (Main Result 4). Consider the neural net-
work hypothesis class F = {fwkx) : W =
(W17W2)’HW}LHU < spho= 1,2 ||W1||1 <
b1, |W3q |21 < be}. Then, for any fixed v > 0, with
probability at least 1 — 6, we have for all fw(-) € F,
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We prove Theorem 8 in Appendix D.3. Similar to linear
classifiers, in the adversarial setting, if we have an ¢; norm
constraint on the matrix matrix W, then the generalization
bound of the surrogate adversarial loss does not have an
explicit dimension dependence.

5. Experiments

In this section, we validate our theoretical findings for linear
classifiers and neural networks via experiments. Our experi-
ments are implemented with Tensorflow (Abadi et al., 2016)
on the MNIST dataset (LeCun et al., 1998).
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5.1. Linear Classifiers

We validate two theoretical findings for linear classifiers:
(i) controlling the ¢; norm of the model parameters can
reduce the adversarial generalization error, and (ii) there
is a dimension dependence in adversarial generalization,
i.e., adversarially robust generalization is harder when the
dimension of the feature space is higher. We train the multi-
class linear classifier using the following objective function:
RS /

o 2 (w0 + W ©
where £(-) is cross entropy loss and fw (x) = Wx. Since
we focus on the generalization property, we use a small
number of training data so that the generalization gap is
more significant. More specifically, in each run of the train-
ing algorithm, we randomly sample n = 1000 data points
from the training set of MNIST as the training data, and
run adversarial training to minimize the objective (8). Our
training algorithm alternates between mini-batch stochastic
gradient descent with respect to W and computing adver-
sarial examples on the chosen batch in each iteration. Here,
we note that since we consider linear classifiers, the adver-
sarial examples can be analytically computed according to
Appendix C.2.

In our first experiment, we vary the values of € and A, and
for each (e, A) pair, we conduct 10 runs of the training
algorithm, and in each run we sample the 1000 training
data independently. In Figure 2, we plot the adversarial
generalization error as a function of € and )\, and the error
bars show the standard deviation of the 10 runs. As we
can see, when )\ increases, the generalization gap decreases,
and thus we conclude that ¢; regularization is helpful for
reducing adversarial generalization error.
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Figure 1. Linear classifiers. Adversarial generalization error vs £oo
perturbation e and regularization coefficient A.

In our second experiment, we choose A = 0 and study the
dependence of adversarial generalization error on the dimen-
sion of the feature space. Recall that each data point in the
original MNIST dataset is a 28 x 28 image, i.e., d = 784.
We construct two additional image datasets with d = 196
(downsampled) and d = 3136 (expanded), respectively. To
construct the downsampled image, we replace each 2 x 2
patch—say, with pixel values a, b, ¢, d—on the original im-
age with a single pixel with value va2 + b2 + ¢2 + d2. To
construct the expanded image, we replace each pixel—say,

with value a—on the original image with a 2 x 2 patch,
with the value of each pixel in the patch being a/2. Such
construction keeps the 5 norm of the every single image
the same across the three datasets, and thus leads a fair com-
parison. The adversarial generalization error is plotted in
Figure 2, and as we can see, when the dimension d increases,
the generalization gap also increases.
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Figure 2. Linear classifiers. Adversarial generalization error vs {oo
perturbation € and dimension of feature space d.

5.2. Neural Networks

In this experiment, we validate our theoretical result that /1
regularization can reduce the adversarial generalization er-
ror on a four-layer ReLU neural network, where the first two
layers are convolutional and the last two layers are fully con-
nected. We use PGD attack (Madry et al., 2017) adversarial
training to minimize the ¢; regularized objective (8). We
use the whole training set of MNIST, and once the model is
obtained, we use PGD attack to check the adversarial train-
ing and test error. We present the adversarial generalization
errors under the PGD attack in Figure 3. As we can see, the
adversarial generalization error decreases as we increase the
regularization coefficient A; thus ¢; regularization indeed
reduces the adversarial generalization error under the PGD
attack.
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Figure 3. Neural networks. Adversarial generalization error vs
regularization coefficient \.

6. Related Work

During the preparation of the initial draft of this paper, we
become aware of another independent and concurrent work
by Khim & Loh (2018), which studies a similar problem. In
this section, we first compare our work with Khim & Loh
(2018) and then discuss other related work. We make the
comparison in the following aspects.

» For binary classification problems, the adversarial
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Rademacher complexity upper bound by Khim & Loh
(2018) is similar to ours. However, we provide an adver-
sarial Rademacher complexity lower bound that matches
the upper bound. Our lower bound shows that the adver-
sarial Rademacher complexity is never smaller than that
in the natural setting, indicating the hardness of adversar-
ially robust generalization. As mentioned, although our
lower bound is for Rademacher complexity rather than
generalization, Rademacher complexity is a tight bound
for the rate of uniform convergence of a loss function
class (Koltchinskii et al., 2006) and thus in many settings
can be a tight bound for generalization. In addition, we
provide a lower bound for the adversarial Rademacher
complexity for neural networks. These lower bounds do
not appear in the work by Khim & Loh (2018).

* We discuss the generalization bounds for the multi-class
setting, whereas Khim & Loh (2018) focus only on binary
classification.

* Both our work and Khim & Loh (2018) prove adversar-
ial generalization bound using surrogate adversarial loss
(upper bound for the actual adversarial loss). Khim &
Loh (2018) use a method called tree transform whereas
we use the SDP relaxation proposed by (Raghunathan
et al., 2018a). These two approaches are based on differ-
ent ideas and thus we believe that they are not directly
comparable.

We proceed to discuss other related work.

Adversarially robust generalization As discussed in
Section 1, it has been observed by Madry et al. (2017) that
there might be a significant generalization gap when train-
ing deep neural networks in the adversarial setting. This
generalization problem has been further studied by Schmidt
et al. (2018), who show that to correctly classify two sep-
arated d-dimensional spherical Gaussian distributions, in
the natural setting one only needs (1) training data, but
in the adversarial setting one needs ©(1/d) data. Getting
distribution agnostic generalization bounds (also known as
the PAC-learning framework) for the adversarial setting is
proposed as an open problem by Schmidt et al. (2018). In a
subsequent work, Cullina et al. (2018) study PAC-learning
guarantees for binary linear classifiers in the adversarial
setting via VC-dimension, and show that the VC-dimension
does not increase in the adversarial setting. This result does
not provide explanation to the empirical observation that
adversarially robust generalization may be hard. In fact,
although VC-dimension and Rademacher complexity can
both provide valid generalization bounds, VC-dimension
usually depends on the number of parameters in the model
while Rademacher complexity usually depends on the norms
of the weight matrices and data points, and can often pro-
vide tighter generalization bounds (Bartlett, 1998). Suggala
et al. (2018) discuss a similar notion of adversarial risk but
do not prove explicit generalization bounds. Attias et al.

(2018) prove adversarial generalization bounds in a setting
where the number of potential adversarial perturbations is
finite, which is a weaker notion than the ¢, attack that we
consider.

Provable defense against adversarial attacks Besides
generalization property, another recent line of work aim to
design provable defense against adversarial attacks. Two
examples of provable defense are SDP relaxation (Raghu-
nathan et al., 2018a;b) and LP relaxation (Kolter & Wong,
2017; Wong et al., 2018). The idea of these methods is to
construct upper bounds of the adversarial risk that can be
efficiently evaluated and optimized. The analyses of these
algorithms usually focus on minimizing training error and
do not have generalization guarantee; in contrast, we focus
on generalization property in this paper.

Generalization of neural networks Generalization of
neural networks has been an important topic, even in the nat-
ural setting where there is no adversary. The key challenge
is to understand why deep neural networks can general-
ize to unseen data despite the high capacity of the model
class. The problem has received attention since the early
stage of neural network study (Bartlett, 1998; Anthony &
Bartlett, 1999). Recently, understanding generalization of
deep nets is raised as an open problem since traditional tech-
niques such as VC-dimension, Rademacher complexity, and
algorithmic stability are observed to produce vacuous gen-
eralization bounds (Zhang et al., 2016a). Progress has been
made more recently. In particular, it has been shown that
when properly normalized by the margin, using Rademacher
complexity or PAC-Bayesian analysis, one can obtain gen-
eralization bounds that tend to match the experimental re-
sults (Bartlett et al., 2017; Neyshabur et al., 2017; Arora
et al., 2018; Golowich et al., 2017). In addition, in this
paper, we show that when the weight vectors or matrices
have bounded ¢; norm, there is no dimension dependence in
the adversarial generalization bound. This result is consis-
tent and related to several previous works (Lee et al., 1996;
Bartlett, 1998; Mei et al., 2018; Zhang et al., 2016b).

A few other lines of work have conducted theoretical analy-
sis of adversarial examples (Wang et al., 2017; Bubeck et al.,
2018; Gilmer et al., 2018b; Dohmatob, 2018; Mahloujifar
et al., 2018). We provide additional discussions on related
work in Appendix A.
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