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A. Derivation of AR, ARS, and ARSM
A.1. Augmentation of a Categorical Variable

Let us denote 7 ~ Exp(\) as the exponential distribution, with probability density function p(7 | A) = Ae™*7, where A > 0
and 7 > 0. Its mean and variance are E[r] = A~! and var[r] = A2, respectively. It is well known that, e.g. in Ross
(2006), if 7; ~ Exp();) are independent exponential random variables for i = 1, ..., C, then the probability that 7., where
z € {1,...,C}, is the smallest can be expressed as

P(z =arg mile oy ) =P(r. <7, Vi#z) = (17)

Az
Eic=1 i

Note this property, referred to as “exponential racing” in Zhang & Zhou (2018), is closely related to the Gumbel distribution
(also known as Type-I extreme-value distribution) based latent-utility-maximization representation of multinomial logistic
regression (McFadden, 1974; Train, 2009), as well as the Gumbel-softmax trick (Maddison et al., 2017; Jang et al., 2017).
This is because the exponential random variable 7 ~ Exp(\) can be reparameterized as 7 = ¢/), € ~ Exp(1), where
€ ~ Exp(1) can be equivalently generated as ¢ = — logu, u ~ Uniform(0, 1), and hence we have

arg min; 7; 4 arg min,{— logu;/\;} = arg max,{log \; — log(—logu;)},
where 7; ~ Exp(\;), “L» denotes “equal in distribution,” and wu; % Uniform(0, 1); note that if v ~ Uniform(0, 1), then

— log(— log u) follows the Gumbel distribution (Train, 2009).

From (17) we know that if

z=argmineg; ¢y 7, where 7; ~ Exp(e??), (18)

.....

then P(z|¢) = e?-/ 21021 e, and hence (18) is an augmented representation of the categorical distribution z ~
Cat(c(¢)); one may consider 7; ~ Exp(e®') as augmented latent variables, the marginalization of which from z =
argminge; . oy 7i leads to P (2| ¢). Consequently, the expectation with respect to the categorical variable of C categories
can be rewritten as one with respect to C' augmented exponential random variables as

g(¢> = ]EZNCat(U(¢)) [f(Z)] = IE7'1~Exp(e<7’1 ),---sTc~Exp(e®C) [f(arg mini Ti)]' (19)
Since the exponential random variable 7 ~ Exp(e?) can be reparameterized as 7 = ee~?, e ~ Exp(1), we also have

E(p)=E iid [f (arg min, e;e=%%)]. (20)

€1,...,ec ~ Exp(1)

Note as the arg min operator is non-differentiable, the widely used reparameterization trick (Kingma & Welling, 2013;
Rezende et al., 2014) is not applicable to computing the gradient of £(¢) via the reparameterized representation in (20).

A.2. REINFORCE Estimator in the Augmented Space
Using REINFORCE (Williams, 1992) on (19), we have V4&(¢) = [V, E(@), ..., Vs E(¢P)]', where

. c
V¢cg(¢) = ETlNEXp(€¢1),..47TCNEXP(€¢C) f(arg min; Ti)v¢c IOg Hi:l EXP(Ti; 69151,)
= IET] ~Exp(e®1),...,7c ~Exp(e?C) [f(arg mini Ti)vqﬁc IOg EXP(TC; e¢c )]
= Erl ~Exp(e®1),...,7c ~Exp(e?C) [f(arg mini TZ)(l - Tce¢°)] . (21)
Below we show how to merge V4.E(¢) and —V 4 E(¢) by first re-expressing (21) into an expectation with respect to iid

exponential random variables, swapping the indices of these random variables, and then sharing common random numbers
(Owen, 2013) to well control the variance of Monte Carlo integration.
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A.3. Merge of Augment-REINFORCE Gradients

A key observation of the paper is we can re-express the expectation in (21) as

= iy in. e, % _
Vo£@)=E_ o [flargmin e )1 - ) @)
Furthermore, we note that Exp(1) 4 Gamma(1, 1), letting €1, ..., €c ¢ Exp(1) is the same (e.g., as proved in Lemma IV.3
of Zhou & Carin (2012)) in distribution as letting
€; =me, fori=1,...,C, wherenw ~ Dirichlet (1¢), ¢ ~ Gamma(C, 1),

and arg min; m;e~ % = arg min, em;e~%:. Thus using Rao-Blackwellization (Casella & Robert, 1996), we can re-express
the gradient in (21) as
V4. (@) = EcGamma(C,1), m~birichiet(1) [f (arg min; emie ) (1 — em.)]
= Erpirichlet(1c) [ f (arg min; me” %) (1 — COr.)].
= Er~pirichlet(1) Lf (arg min, 757 e~ %) (1 — Cmrj)), (23)
where j € {1,...,C} is an arbitrarily selected reference category, whose selection does not depends on 7 and ¢.

Another useful observation of the paper is that the function

C
1 o
b(m, ¢, j) = Fol E f(argmin, 7" e 4%)(1 _Cﬂj)
m=1

has zero expectation, as

C
. . & 1
Eﬂ'wDirich]et(lc) [b(ﬂ-v ¢7 J)} = IE‘I\'r\/Dirich]et(lc) f(arg min; m;e ¢1) Z (C B 7Tm>‘| =0. (24)

m=1

Using E[b(7, ¢, j)] as the baseline function and subtracting it from (23) leads to (8). We now conclude the proof of
Theorem 1 for the AR estimator, and Equation 8 for the ARS estimator. Once the ARS estimator is proved, Theorem 2 for
the ARSM estimator directly follows.

Proof of Corollary 3. Note that letting (u, 1 — u) ~ Dir(1, 1) is the same as letting u ~ Uniform(0, 1). Thus regardless of
whether we choose Category 1 or Category 2 for as the reference category, we have

V¢, E(@) = Eutnitorm(o,1) [f (arg min(u, o(¢1 — ¢2)) — f(argmin(l — u, o (¢1 — ¢2))](1/2 — u) (25)
and Vg E(¢p) = —Vg, E(¢). Denote ¢ = ¢1 — ¢ and = ¢1 + 2, wWe have

8¢1 a(bQ

E3 k3

VoE(®) = Vo E(#)

V5, E(P) 5~ = Vo, E(@).

B. Fast Computation for the Swap Step

Computing the pseudo actions z=i = argmin,; ;' e~ due to the swap operations can be efficiently realized: we first
compute 0;; = Inm; — ¢;, z = argmin;(Inm; — ¢;), and omin =Inm, — ¢,;thenform =1...,C, j < m, compute

m, if ¢ {m7j}7 min{omjaojm} < Omin, Omgj < Ojm
ja if z ¢ {mvj}a mil’l{Om]‘,ij} < Omin, Omgj > Ojm;
arg min; (In 7"~ —¢;), if z € {m, j};

)

ZnL=j —

z, otherwise;

and let z9=4 = z for all j, and zm=7 = zi=m for all j > m.
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C. ARSM for Multivariate, Hierarchical, and Sequential Categorical Variables
C.1. ARSM for Multivariate Categorical Variables

Proposition 5 (AR, ARS, and ARSM for multivariate categorical). Denote z = (z1,...,2x), where z;, € {1,...,C},

as a K dimensional vector of C-way categorical variables. Denote II = (m1,..., ) € RE*X as a matrix obtained
by concatenating K column vectors wy, = (Tg1,...,mrc), and ® = (¢y,...,¢x) € RE*K by concatenating ¢, =
(Pk1s-- -, Prc)'. With the multivariate AR estimator, the gradient of

E(®) = E. 1, cuznio(o (2] (26)

with respect to ¢y is expressed as
Vo £(®) = EH~H{;1 Dir(7g;1c) [f(z)(1 = Cmie)],
Zp o =argmincgy oy Trie” Pki, 27

Denoting j = (j1,...,jKk), where ji € {1,...,C} is a randomly selected reference category for dimension k, the
multivariate ARS estimator is expressed as

V& (®) = By pis(mpeioylFa™ (M)(1 = i),
) = flze=a) — L0 flame),

. . iy (28)
ze=d i = (27 M,z 2,25 0K,
z;fj’c :=arg minie{lp_”c} 71'2?“ e~ Pki,
Setting j = jly and averaging over all j € {1,...,C}, the multivariate ARSM estimator is expressed as
V4. £(2) =E | [S5o0 fA @) — )] (29)
bre O~[[E, Dir(wy;lo) L 2oj=1JA c — Tkj)]-

Note to obtain V, £ (®) for all k and c based on the ARS estimator in (28), we only need to evaluate f(z!=4),. .., f(z°=9).
Thus regardless of how large K is, to obtain a single Monte Carlo sample estimate of the true gradient, one needs to evaluate
the reward function f(-) as few as zero time, which happens when the number of unique vectors in {z¢=7 }._; ¢ is one, and
as many as C' times, which happens when all z==4 are different from each other. Similarly, if the ARSM estimator in (29) is
used, the number of times one needs to evaluate f(+) is between zero and C'(C' — 1)/2 + 1. In the multivariate setting where
ze{l,..., C}K , we often choose a relatively small C, such as C' = 10, but allows K to be as large as necessary, such
as K = 100. Thus even C¥, the number of unique z’s, could be enormous when K is large, both the ARS and ARSM
estimators remain computationally efficient; this differs them from estimators, such as the one in Titsias & Lazaro-Gredilla
(2015), that are not scalable in the dimension K.

C.2. ARSM for Categorical Stochastic Networks

Let us construct a T-categorical-stochastic-layer network as

G20 (217 | @) = TTis; a(20 | Be), B o= T, (210-1),

a(ze | ®1) = [T, Cat(zens o (b)), (30)
where zg 1= =, 2; := (21, .., 2K,) € {1,...,C} is a K;-dimensional C-way categorical vector at layer t, ¢, :=
(Gk1, - - -, dwc) € RY is the parameter vector for dimension k at layer t, ®; := (¢,y, ..., ¢k, ) € ROF: and Ty, (+)

represents a function parameterized by w; that deterministically transforms z;_1 to ®;. In this paper, we will define Ty, (+)
with a neural network.

Proposition 6. For the categorical stochastic network defined in (30), the ARSM gradient of the objective
g(éliT) = EZl:T~Q<I>1:T(zl:T | ) [f(zliT)] (31)

with respect to wy can be expressed as V5, E(®1.7) = Vo, ( ZkK:tl cczl(V@kcE((I)l;T))qﬁtkc), where

V%kcg(q’l:T) = EH,:NH?L Dir(mer;lc) [Z]C:I ftcA:j (Ht)(% - Wtkj)]’ (32)
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where 7, = (k1 - - ., Teee) is the Dirichlet distributed probability vector for dimension k at layer t and
AL = f(Z77) = & e (20,
Z;777 i ={z10-1, 200 211 ~ @y, (21— | ®),
5= (o mw),
zp T =argminge gy oy Ty e O,

zleiT ~ Qo r (Zerrr | 2101, 277).

C.3. Proofs

Below we show how to generalize Theorem 2 for a univariate categorical variable to Proposition 5 for multivariate categorical
variables, and Proposition 6 for hierarchical multivariate categorical variables.

Proof of Proposition 5. For the expectation in (26), since 2, are conditionally independent given ¢,,, we have

V£ () = Bz ~T,0, Discrete(s,50 (63)) [ Ve Bzpmcat(o () L ()] (33)
Using Theorem 2 to compute the gradient in the above equation directly leads to
c
v(bkcg(@) = ]Ez\k"‘l_[k’¢k Discrete(z,7;0 (@) {]EW;CNDirichlet(lc) [(f(z\kazz Z z\k,zk )(1 - Cﬂ—k]):| } (34)

The term inside [-] of (34) can already be used to estimate the gradient, however, in the worst case scenario that all the
elements of {2} 7 },;—1 ¢ are different, it needs to evaluate the function f(z\y, 2} ~)forj =1,...,C, and hence C' times
for each k and K C times in total. To reduce computation and simplify implementation, exchanging the order of the two
expectations in (34), we have

m=j

c
A {(1 = O Bz Ty Disrete(io (@) | f 20k 25 7) = Z (2\k» 2}, )] }
- (35)
Note that
BTy oy Diseree(zr o) [F (20 20
= ]Ee\kNHk’#k T, Exp(egrqie®si) [f (2 = argmine (o €nie” O )z, 2]
) EE\WHW’" [T Exp(eprize™s') (2 = argmingegy oy €07 € sk, zzﬂ)]
= B, ~[T,,., Dirichlet(my i1c) [f (20 = argminge gy oy w7 e )psr, 25 )]
= B, ~[1,, Dirichlet(m51¢) [f(z?ij’ z;{ﬁj)]

Plugging the above equation into (35) leads to a simplified representation as (29) shown in Proposition 5, with which,
regardless of the dimensions C, we draw IT = {1, ..., 7 } once to produce correlated 2z¢=J’g, and evaluate the function
f(-) at most C' times. O

Proof of Proposition 6. For multi-layer stochastic network ¢, . (z1.7 | ) = g, (21 | @) [Hz:ll 9@, (Ze41 | zt)] , the
gradient of the ¢-th layer parameter ®; is
Va,8(Prr) =K., ~qzriile) Ve, Byz |z 1) ft(Z1:4)

where fi(21:¢) = Eq(z,, 0|2, [f (21.:7)]. To compute the ARSM gradient estimator, first draw a single sample z1.;_1 ~
q(z1.4—1 |x) if t > 1 and compute the pseudo action vector for the ¢-th layer according to Proposition 5 as

C_’J — 3 c=j 7(;5 »
Zy T = argmilyery oy Ty € 0
for c,j € {1,...,C}. For each pseudo action vector z;*, sample zy 7. ~ q(ze41.7 | 2; ) and compute fy(2°7) =

f(z1:4-1, zf:?j ). Replacing f(z°=7) in Proposition 5 with the f;(2°=7) leads to the gradient estimator in Proposition 6. []
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Proof of Proposition 4. We first write the objective function J (@) in terms of the intermediate parameters ¢, = Tg(s:), and
then apply the chain rule to obtain the policy gradient Vg.J(8). Since

o)
J(¢O:oo) = EP(SO) [1720 P(st+1 | s¢,a¢)Cat(as;o(dp,)) [Z ')/t’f‘(st, at)]

t=0
we have
t—1
J(¢p.o.) =E _ E > A r(se,av) + 7' Qse, a)
0:00 P(s0)[T15, P(suri1 | s4r.a0)Cat(ayrio(ehy))] | Hae~Cat(o(¢,)) v t/y Gt v ty At
t'=0

}

+ 1[579(30)[1‘[:107>(st,+l | 87,0,0)Cat(a,r30 ()] {ancat(cr(zbt)) [VtQ(Stv at)]} ) (36)

¢

t—1
tl
= EP(SO)[HL_:IOP(S,/_H|s,/7at/)Cat(at/;a(¢t,))] {]ancat(a(q&t)) lz%’Y (s, ay)
/=

where Q(s¢, a:) is the discounted action-value function defined as

oo
Q<3t7 at) = E’Hf?:t Cat(ayr 4 1;0(Pyr 1)) P (84741 | 847,047) [Z ’yt _tr(st’ ) at’)‘| :

t'=t

The first summation term in (36) can be ignored for computing V¢, J (. ), and the second one can be re-expressed as
Ep (s, | s0,m0)P(s0) 1 Ba~ca(o(g,)) [V Q815 a1)] } (37

where P(s; | so,7g) is the marginal form of the joint distribution Hi,_:lo P(se41]|8e,ar)Cat(ar;o(d,)). Applying
Theorem 2 to (37), we have
v¢tcj(¢0:oo) = EP(St | s0,m0)P(s0) {’thtﬁtcEatNCal(o(qbt)) [Q(5t7 at)]}
= Ep(s, | so,70)P(s0) {7V Eeoinbir(1o) [9te] } » (38)

where
< - 1
Jte = fo;j(wt) <C’ - Wtj) ;
j=1

C

(@) = Qe ™) — 5 D Qs ),

c=j

P— 3 c=j —dig
Ay L= argmlnie{l’m)c} Wy "€ L.

Applying the chain rule, we obtain the gradient as

0 C
= Z EP(SO)’P(st | s0,me) {’YtEthDir(lc) [Ve Z gtc¢tc‘| }

t=0 c=1
C
= ESthTr(S) {Ewthir(lc) [VO Z.%dbtc] } ) (39
c=1

where pr(s) := > ,2,7"P(s; = s| so, me) is the unnormalized discounted state visitation frequency. This concludes the
proof of the ARSM policy gradient estimator. The proof of the ARS policy gradient estimator can be similarly derived,
omitted here for brevity. O
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D. Additional Figures and Tables

Table 3. The constructions of variational auto-encoders. The following symbols “—”, “|”, ), and “~~” represent deterministic linear
transform, leaky rectified linear units (LeakyReLU) (Maas et al., 2013) nonlinear activation, softmax nonlinear activation, and discrete
stochastic activation, respectively, in the encoder; their reversed versions are used in the decoder.

One layer Two layers

Encoder 784—512]—256]—200)~-200 784—512]—256]—200)~+200 — 200) ~~200
Decoder  784¢~(7844—[5124-[2564-200 784«~(7844—[5124-[2564-200 -~ (200 < 200

True REINFORCE AR ARS ARSM
1.06
1.06 13 L0014 1.0000
°
S 1.04 12 1.0012 0.9975 1.04
: 11 0.9950
< 1.02 g 1.0010 1.02
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10 1.0008
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Figure 4. Analogous plots to these in Figure 1, obtained with C' = 1, 000.

True REINFORCE 410000 AR ARS ARSM
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B 1.0075 3 -00010 1002 1.0075
2 10050 12 1.001 1.0050
H 0.00008 . -
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1.0025 1.0025
0.00006 1.000
1.0000 1.0 1.0000
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2 -1.94 4 1.25 2
5] 1.0
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°© 2 0.5
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= 4 x104 4 x10°4
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o
<
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< 00
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5 -25 3
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Figure 5. Analogous plots to these in Figure 1, obtained with C' = 10, 000.
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0.0 — AR 301 —— ARSM
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Figure 6. Trace plots of the log variance of the gradient estimators for categorical VAE on MNIST. The variance is estimated by
exponential moving averages of the first and second moments with a decay factor of 0.999. The variance is averaged over all elements of
the gradient vector.
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Figure 7. The entropy of latent categorical distributions and the number of distinct pseudo actions, which differ from their corresponding
true actions, both decrease as the training progresses. We plot the average entropy for {z;;} forallt =1: 7T and k = 1 : K. The pseudo
action proportion for the k-th categorical random variable at the ¢-th stochastic layer is calculated as the number of unique values in
{25 g Ye=1:0,5=1:0\ 2k divided by C' — 1, the maximum number of distinct pseudo actions that differ from the true action z:x. We plot
the average pseudo action proportion for {2z} forallt = 1: T and k = 1 : K. Subplots (a), (b), and (c) correspond to the Toy data
(T = K =1, C = 30), VAE with a single stochastic layer (7" = 1, K = 20, C' = 10), and Acrobot RL task (0 < 7' < 500, K =1,
C' = 3); other settings yield similar trace plots.

° ° ° ° ° "
° v 1S by ® °

o



A U B W N =

26
27
28

ARSM: Augment-REINFORCE-Swap-Merge Gradient for Categorical Variables

160

150

—— REINFORCE

— AR

—— RELAX
Gumbel-S.

— ARS

—— ARSM
Gumbel-S._2layer

—— ARSM_2layer

140

130

-ELBO

120

110

100

%0 -1 0 1 2 3 4 5 6 7

log(Time(min))

Figure 8. Plots of —ELBOs (nats) on binarized MNIST against wall clock times on NVIDIA Tesla V100 GPU (analogous ones against
training iterations are shown in Figure 2). The solid and dash lines correspond to the training and testing respectively (best viewed in
color).

E. Algorithm

Algorithm 1 ARS/ARSM gradient for K -dimensional C-way categorical vector z = (z1, - , 2k ), where 2, € {1,...,C}.

input :Reward function f(z;0) parameterized by 0;
output : Distribution parameter ® = (¢, -+ , Py ) € RE*¥ and reward function parameter @ that maximize the expected reward as

S(Q’ 0) = EZNHszl Cat(zy;0(Pr)) [f(z? 0)]’

Initialize ® and 6 randomly;
while not converged do
Sample 7, ~ Dirichlet(1¢) fork =1,..., K;
Let z, = argmin;e gy, oy (Inmh; — @k;) for k = 1,..., K to obtain the true action vector z = (21, . .., 2k);
if Using the ARS estimator then
Using a single reference vector j = (j1, ..., jx ) for the variable-swapping operations, where all j;, are uniformly at random
selected from {1,...,C};
forc=1,...,C (in parallel) do
Letz; ’F = argmin,cg; oy (In T K — i) fork =1,..., K;
Denote ze=3 = (27 ’',..., 25 '¥) as the cth pseudo action vector;
end
Let f =&, f(ze)
Let 9ére = (f(ZC:j) — f)(l — Cﬂkjk) for all (k, C) S {(k, C)}k:l:K, c=1:C»
end
if Using the ARSM estimator then
Initialize the diagonal of reward matrix F' € RE*¢ with f(z), which means letting F.. = f(z) forc=1,...,C;
for (¢, j) € {(c,j) }e=1:C, j<c (in parallel) do
Let j = j1k, which means j, = j forallk € {1,...,K};
Let z; 77 = argmin,c ¢ oy(Inmp; — ¢w) fort =1,..., K;
Denote z°=3 = (2{=7,...,257) as the (c, j)th pseudo action vector;
Let Foj = Fje = f(zc=j);
end
LetFj=LtC Fjforj=1,...,C;
Let 9oy, = 25—y (Fej — F3)(& — may) forall (¢,¢) € {(t,¢) bem1.k, e=1:03
end
D =D+ py{9s,, tr=1.T, c=1:c,  With step-size py;
0 =0+1nVof(z;0), withstep-size no
end
*Note if the categorical distribution parameter @ itself is defined by neural networks with parameter w, standard backpropagation can be

applied to compute the gradient with w = % 22~ Vw( SIS, 9oy, Dic)-
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Algorithm 2 ARS/ARSM gradient for T layer K-dimensional C-way categorical vector z; = (241, - , 2tk ), Where
ted{l,....,T},zu €{1,...,C}.

input :Reward function f(z1.7; @) parameterized by 0;
output : Distribution parameter ®; = (¢b,1, - , P, ) € RX*C and parameter @ that maximize the expected reward as £(®1.7, 0) :=

E T-1
zvqe (21 @)1=y 98, (Ze41 |2t

0 [f(z;0)]; g8, (z¢ | 2¢-1) = HkK:I Categorical (zik|o (¢, (2e-1)));

29 Initialize ®1.7 and 6 randomly;
30 while not converged do

31
32

33
34
35

36
37
38

39

40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

end

fort=1:Tdo
Sample 74, ~ Dirichlet(1¢) for k = 1,..., K; Let 24, = arg mine g, oy (In7regi — Puri) fork = 1,..., K to obtain the
true action vector z; = (241, .. ., 2tK);
if Using the ARS estimator then
Let j, = (je1,---,Jek ), where jy € {1,...,C} is a randomly selected reference category for dimension k at layer ¢.
forc=1,...,C (inparallel) do
Let z, 't i= argming ey oy Ty, t* e %kifork=1,...,K;
Denote z; 7t = (25771, 25727 as the cth pseudo action vector;
end

end

9 =

Let fi = & S0, f(z77)
Let 9étke = (f(zg_']t) - ft )(1 - Cﬂ-kjtk) for all (k7 C) € {(k7 C)}kil:K, c=1:C5
end
if Using the ARSM estimator then
Let () ¢ RE*¢
Ift > 1, sample z1.4—1 ~ q(Z1:¢—1]2) ;
for (c, j) € {(c,j)}e=1:c, j<c (in parallel) do
Let j = j1k, which means j, = j forall k € {1,..., K},
o} Tikr e %tkiforallk € {1,...,K};
Denote z{ 7 = (25,77,...,25%7) as the (c, j)th pseudo action vector;
If t < T, sample ngijo ~ q(zer1:7)|2577);
Let FC?; = Fj(z) z f(z<1:)t—1, ztc?j);
~(t t .
Let Fj/ = %Zclecj forj=1,...,C;

Let gg,,. = S0 (F) — F)(& — miy) forall (k, ¢) € {(k, ¢)}r=r.k, e=1:0%

Let z;, 7 := argmin,¢

.....

end

end
By = P + po,{gpipe fh=1:K, c=1:c,  With step-size ps,;

0 +1n9Vef(z;0), with step-size 1y




ARSM: Augment-REINFORCE-Swap-Merge Gradient for Categorical Variables

Algorithm 3 ARSM policy gradient for reinforcement learning with a discrete-action space of C' actions.

input : Maximum number of state-pseudo-action rollouts Sy, allowed in a single iteration;
output: Optimized policy parameter 6;

59 while not converged do

60 Given a random state sy and environment dynamics P(S;+1 | at, S¢), we run an episode till its termination (or a
predefined number of steps) by sampling a true-action trajectory (ag, S1, a1, Sa,...) given policy mg(a; | s;) =
Cat(as;0(¢,)), ¢, := To(s:), where we sample each a; by first sampling (041, . . ., @) ~ Dir(1¢) and then letting
ar = argmin;c gy oy (Inwy — du);

61 Record the termination time step of the episode as T, and set the rollout set as H = [] and Sy = 0;

62 for ¢ € RandomPermute(0,...,T) do

63 Let A; = {(C,.j)}czl;cg j<c

64 Initialize a;~’ = a for all c and j;

65 for (c,j) € A (in parallel) do

66 ‘ Leta;™ =a]~° = arg minie{lw,c}(ln wy =)

67 end

68 Let S; = unique({a; " }¢ ;)\a:, which means S; is the set of all unique values in {a; "’ }. ; that are different from

the true action a;; Denote the cardinality of S; as |S;|, where 0 < |Sy| < C' — 1}

69 if So + |St| < Smax then

70 So = Sp + |St‘

71 Append t to H

72 else

73 | break

74 end

75 end

76 for t € H (in parallel) do

77 Initialize Ryy,; = Q(sy, a;) = ZtT,:t A =t (s, ap) forallm, j € {1,...,C} fork e {1,...,]S:|} (in parallel)

do

78 Let as, = S;(k) be the kth unique pseudo action at time ¢;

79 Evaluate Q(s;,as), which in this paper is set as 7(s;,dw) + 7 Dttt At =D (3,0, Gy ), where
(8¢, Qtk, St41,Ata1, - --) is a state-pseudo-action rollout generated by taking pseudo action ay at state s;
and then following the environment dynamics and policy mg;

80 Let Rim; = Q(8t, asx) for all (m, 5) in {(m, §) : a]"~% = au.};

81 end

82 end

83 Esimate the ARSM policy gradient as

84

c | c e 1
Vol (0)~ VoD > | (thj -5 Rtmj> (C - wtj) Grc ¢
teH c=1 | j=1 m=1
0 =0+1yJ(0), with step-size np;

85 end




