
NAS-Bench-101: Towards Reproducible Neural Architecture Search

Supplementary Material

S1. Identifying Isomorphic Cells
Within the NAS-Bench-101 search space of models, there
are models which have different adjacency matrices or have
different labels but are computationally equivalent (e.g., Fig-
ure 1). We call such cells isomorphic. Furthermore, vertices
not on a path from the input vertex to the output vertex do
not contribute to the computation of the cell. Cells with
such vertices can be pruned to smaller cell without changing
the effective behavior of the cell in the network. Due to
the size of the search space, it would be computationally
intractable (and wasteful) to evaluate each possible graph
representation without considering isomorphism.

Figure 1: Two cells which are represented differently ac-
cording to their adjacency matrix and labels but encode the
same computation.

Thus, we utilize an iterative graph hashing algorithm, de-
scribed in (Ying, 2019), which quickly determines whether
two cells are isomorphic. To summarize the algorithm, we
iteratively perform isomorphism-invariant operations on the
vertices of the graph which incorporates information from
both the adjacent vertices as well as the vertex label. The
algorithm outputs a fixed-length hash which uniquely identi-
fies isomorphic cells (i.e., computationally identical graphs
cells to the same value and computationally different cells
hash to different values).

Using such an algorithm allows us to enumerate all unique
cells within the space and choose a single canonical cell to
represent each equivalence class of cells and perform the
expensive train and evaluation procedure on the canonical
cell only. When querying the dataset for a valid model, we
first hash the proposed cell then use the hash to return the
data associated with the evaluated canonical graph.

batch size 256
initial convolution filters 128
learning rate schedule cosine decay
initial learning rate 0.2
ending learning rate 0.0
optimizer RMSProp
momentum 0.9
L2 weight decay 0.0001
batch normalization momentum 0.997
batch normalization epsilon 0.00001
accelerator TPU v2 chip

Table 1: Important training hyperparamters.

S2. Implementation Details
S2.1. Generating the dataset

Table 1 shows the training hyperparameters used for all
models in the space. These values were tuned to be optimal
for the average of 50 randomly sampled cells in the search
space. In practice, we find that these hyperparameters do
not significantly affect the ranking of cells as long as they
are set within reasonable ranges.

S2.2. Benchmarked algorithms

All methods employ the same encoding structure as de-
fined in Section 2.2. For each method except random
search, which is parameterfree, we identified the method’s
key hyperparameters and found a well-performing set-
ting by a simple grid search which follows the same
experimental protocol as described in the main text.
Scripts to reproduce our experiments can be found at
https://github.com/automl/nas benchmarks.

Random search (RS) We used our own implementation
of random search which samples architectures simply from
a uniform distribution over all possible configurations in the
configuration space.

Regularized evolution (RE) We used a publicly avail-
able re-implementation for RE (Real et al., 2018). To mu-
tate an architecture, we first sample uniformly at random an

https://github.com/automl/nas_benchmarks


NAS-Bench-101

edge or an operator. If we sampled an edge we simply flip
it and for operators, we sample a new operator for the set of
all possible operations excluding the current one. RE kills
the oldest member of the population at each iteration after
reaching the population size. We evaluated different values
for the population size (PS) and the tournament size (TS)
(see Figure 4) and set them to PS=100 and TS=10 for the
final evaluation.

Tree-structured Parzen estimator (TPE) We used
the Hyperopt implementation from https://github.
com/hyperopt/hyperopt for TPE. All hyperparame-
ters were left to their defaults, since the open-source imple-
mentation does not expose them and, hence, we could not
adapt them for the comparison.

Hyperband For Hyperband we used the publicly avail-
able implementation from https://github.com/
automl/HpBandSter. We set η to 3 which is also used
in Li et al. (2018) and Falkner et al. (2018). Note that, chang-
ing η will lead to different budgets, which are not included
in NAS-Bench-101.

BOHB For BOHB we also used the implementation from
https://github.com/automl/HpBandSter.
Figure 3 shows the performance of different values for the
fraction of random configurations, the number of samples
to optimize the acquisition function, the minimum allowed
bandwidth for the kernel density estimator and the factor
which is multiplied to the bandwidth. Interestingly, while
the minimum bandwidth and the bandwidth-factor do not
seem to have an influence, the other parameters help to
improve BOHB’s performance, especially at the end of the
optimization, if they are set to quite aggressive values. For
the final evaluation we set the random fraction to 0%, the
number of samples to 4, the minimum-bandwidth to 0.3
(default) and the bandwidth factor to 3 (default).

Sequential model-based algorithm configura-
tion (SMAC) We used the implementation from
https://github.com/automl/SMAC3 for SMAC.

As meta-parameters we exposed the fraction of random
architecture that are evaluated, the maximum number of
function evaluations per architecture and the number of
trees of the random forest (see Figure 2). Since the fraction
of random configurations does not seem to have an influence
on the final performance of SMAC we kept it as its default
(33%). Interestingly, a smaller number of trees seems to
help and we set it to 5 for the final evaluation. Allowing to
evaluate the same configuration multiple times slows SMAC
down in the beginning of the search, hence, we keep it at 1.

Reinforcement Learning Figure 5 right shows the effect
of the learning rate for our reinforcement learning agent
described in Section S4. For the final evaluation we used a
learning rate of 0.5.

S3. Encoding
Besides the encoding described in Section 4, we also tried
another encoding of the architecture space, which implicitly
contains the constraint of a maximum of 9 edges. Instead of
having a binary vector for all the 21 possible edges in our
graph, we defined for each edge i a numerical parameter in
pi ∈ [0, 1]. Additionally, we defined an integer parameter
N ∈ 0, ..., 9. Now, in order to generate an architecture, we
pick the N edges with the highest values. The encoding for
the operators stays the same.

The advantage of this encoding is that by design no archi-
tecture violates the maximum number of edges constraint.
The major disadvantage is that some methods, such as regu-
larized evolution or reinforcement learning, are not easily
applicable without major changes due to the continuous
nature of the search space.

Figure 6 shows the comparison of all the methods that can be
trivially applied to this encoding. We used the same setup
as described in Section 4. Additionally, we also include
Vizier, which is not applicable to the default encoding. All
hyperparameters are the same as described in Section S2.2.
Interestingly the ranking of algorithms changed compared
to the results in Figure 7. TPE achieves a much better per-
formance now than on the default encoding and outperforms
SMAC and BOHB. We assume that, since we used the hy-
perparameters of SMAC and BOHB that were optimized for
the default encoding in Section S2.2, they do not translate
to this new encoding.

S4. REINFORCE Baseline Approach
We attempted to benchmark a reinforcement learning (RL)
approach using a 1-layer LSTM controller trained with PPO,
as proposed by Zoph et al. (2018). With no additional
hyperparameter tuning, the controller seems to fail to learn
to traverse the space and tends to converge quickly to a far-
from-optimal configuration. We suspect that one reason for
this is the highly conditional nature of the space (i.e., cells
with more than 9 edges are ”invalid”). Further tuning may
be required to get RL techniques to work on NAS-Bench-
101, and this constitutes an interesting direction for future
work.

We did, however, successfully train a naive REINFORCE-
based (Williams, 1992) controller which simply outputs a
multinomial probability distribution at each of the 21 pos-
sible edges and 5 operations and samples the distribution

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter
https://github.com/automl/SMAC3


NAS-Bench-101

Figure 2: Performance of different meta parameters of SMAC. Left: fraction of random architectures; Middle: maximum
number of function evaluations per architecture; Right: Number of trees in the random forest model.

Figure 3: Performance of different meta parameters of BOHB. Left: fraction of random architectures; Middle Left: number
of samples to optimize the acquisition function; Middle Right: minimum allowed bandwidth of the kernel density estimator;
Right: Factor that is multiplied on the bandwidth for exploration.

Figure 4: Meta parameters of RE. Left: Tournament Size; Right: Population Size.

to get a new model. We believe that this sampling behavior
allows it to find more diverse models than the LSTM-PPO
method. The results, when run in the same context as Sec-
tion 4.2, are shown in Figure 8. REINFORCE appears to
perform around as strongly as non-regularized evolution
(NRE) but both NRE and REINFORCE tends to be weaker
than regularized evolution (RE). All methods beat the base-
line random search.

S5. The NAS-HPO-Bench Datasets
The NAS-HPO-Bench datasets consists of 62208 hyperpa-
rameter configurations of a 2-layer feedforward networks
on four different non-image regression domains, making

them complementary to NAS-Bench-101. We varied the
number of hidden units, activation types and dropout in each
layer as well as the learning rate, batch size and learning
rate schedule. While the graph space is much smaller than
NAS-Bench-101, it has the important advantage of includ-
ing hyperparameter choices in the search space, allowing us
to measure their interaction and relative importance. For a
full description of these datasets, we refer to Klein & Hutter
(2019).



NAS-Bench-101

Figure 5: Right: Learning rate of our reinforcement learning
agent.

Figure 6: Comparison with a different encoding of architec-
tures (see Section S3 for details). The experimental setup
is the same as for Figure 7 in the main text, but note that
the hyperparameters of BOHB and SMAC were determined
based on the main encoding and are not optimal for this
encoding.

S6. Guidelines for Future Benchmarking of
Experiments on NAS-Bench-101

To facilitate a standardized use of NAS-Bench-101 in the
future benchmarking of algorithms, we recommend the fol-
lowing practices:

1. Perform many runs of the various NAS algorithms (in
our experiments, we ran 500).

2. Plot performance as a function of estimated wall clock
time and/or number of function evaluations (as in our
Figure 7, left). This allows judging the performance
of algorithms under different resource constraints. To
allow this, every benchmarked algorithm needs to keep
track of the best architecture found up to each time
step.

Figure 7: The Spearman rank correlation between accuracy
at different number of epoch pairs (rows) for different per-
centiles of the top architectures (columns) in NAS-Bench-
101. E.g., the accuracies between 36 and 108 epochs across
the top-10% of architectures have a 0.365 correlation.

3. Do not use test set error during the architecture search
process. In particular, the choice of the best architec-
ture found up to each time step can only be based on
the training and validation sets. The test error can only
be used for offline evaluation once the search runs are
complete.

4. To assess robustness of the algorithms with respect
to the seed of the random number generator, plot the
empirical cumulative distribution of the many runs
performed; see our Figure 7 (right) for an example.

5. Compare algorithms using the same hyperparameter
settings for NAS-Bench-101 as for other benchmarks.
Even though tabular benchmarks like NAS-Bench-101
allow for cheap comprehensive evaluations of different
hyperparameter settings (see the next point), in practice
NAS algorithms need to come with a set of defaults
that the authors propose to use for new NAS bench-
marks (or an automated/adaptive method for setting
the hyperparameters online); the performance of these
defaults should be evaluated.

6. Report performance with different hyperparameter set-
tings to produce a quantitative sensitivity analysis (as
in Figures 2-5 of this appendix).

7. If applicable, also study performance for alternative
encodings, such as the continuous encoding discussed
in Appendix S3.



NAS-Bench-101

Figure 8: Comparing REINFORCE against regularized evo-
lution (RE), non-regularized evolution (NRE), and a random
search baseline (RS).


