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Abstract

Learning a faithful directed acyclic graph (DAG)
from samples of a joint distribution is a chal-
lenging combinatorial problem, owing to the in-
tractable search space superexponential in the
number of graph nodes. A recent breakthrough
formulates the problem as a continuous opti-
mization with a structural constraint that ensures
acyclicity (Zheng et al., 2018). The authors ap-
ply the approach to the linear structural equation
model (SEM) and the least-squares loss function
that are statistically well justified but nevertheless
limited. Motivated by the widespread success of
deep learning that is capable of capturing com-
plex nonlinear mappings, in this work we propose
a deep generative model and apply a variant of
the structural constraint to learn the DAG. At the
heart of the generative model is a variational au-
toencoder parameterized by a novel graph neural
network architecture, which we coin DAG-GNN.
In addition to the richer capacity, an advantage
of the proposed model is that it naturally han-
dles discrete variables as well as vector-valued
ones. We demonstrate that on synthetic data
sets, the proposed method learns more accurate
graphs for nonlinearly generated samples; and on
benchmark data sets with discrete variables, the
learned graphs are reasonably close to the global
optima. The code is available at https://
github.com/fishmoon1234/DAG-GNN.

1. Introduction
Bayesian Networks (BN) have been widely used in machine
learning applications (Spirtes et al., 1999; Ott et al., 2004).
The structure of a BN takes the form of a directed acyclic
graph (DAG) and plays a vital part in causal inference (Pearl,
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1988) with many applications in medicine, genetics, eco-
nomics, and epidemics. Its structure learning problem is
however NP-hard (Chickering et al., 2004) and stimulates a
proliferation of literature.

Score-based methods generally formulate the structure learn-
ing problem as optimizing a certain score function with re-
spect to the unknown (weighted) adjacency matrix A and
the observed data samples, with a combinatorial constraint
stating that the graph must be acyclic. The intractable search
space (with a complexity superexponential in the number
of graph nodes) poses substantial challenges for optimiza-
tion. Hence, for practical problems in a scale beyond small,
approximate search often needs to be employed with addi-
tional structure assumption (Nie et al., 2014; Chow & Liu,
1968; Scanagatta et al., 2015; Chen et al., 2016).

Recently, Zheng et al. (2018) formulate an equivalent
acyclicity constraint by using a continuous function of the
adjacency matrix (specifically, the matrix exponential of
A ◦ A). This approach drastically changes the combina-
torial nature of the problem to a continuous optimization,
which may be efficiently solved by using maturely devel-
oped blackbox solvers. The optimization problem is never-
theless nonlinear, thus these solvers generally return only
a stationary-point solution rather than the global optimum.
Nevertheless, the authors show that empirically such local
solutions are highly comparable to the global ones obtained
through expensive combinatorial search.

With the inspiring reformulation of the constraint, we revisit
the objective function. The score-based objective functions
generally make assumptions of the variables and the model
class. For example, Zheng et al. (2018) demonstrate on
the linear structural equation model (SEM) with a least-
squares loss. While convenient, such assumptions are often
restricted and they may not correctly reflect the actual distri-
bution of real-life data.

Hence, motivated by the remarkable success of deep neural
networks, which are arguably universal approximators, in
this work we develop a graph-based deep generative model
aiming at better capturing the sampling distribution faithful
to the DAG. To this end, we employ the machinery of varia-
tional inference and parameterize a pair of encoder/decoder
with specially designed graph neural networks (GNN). The
objective function (the score), then, is the evidence lower
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bound. Different from the current flourishing designs of
GNNs (Bruna et al., 2014; Defferrard et al., 2016; Li et al.,
2016; Kipf & Welling, 2017; Hamilton et al., 2017; Gilmer
et al., 2017; Chen et al., 2018; Velic̆ković et al., 2018), the
proposed ones are generalized from linear SEM, so that the
new model performs at least as well as linear SEM when
the data is linear.

Our proposal has the following distinct features and advan-
tages. First, the work is built on the widespread use of deep
generative models (specifically, variational autoencoders,
VAE (Kingma & Welling, 2014)) that are able to capture
complex distributions of data and to sample from them. Un-
der the graph setting, the weighted adjacency matrix is an
explicit parameter, rather than a latent structure, learnable to-
gether with other neural network parameters. The proposed
network architecture has not been used before.

Second, the framework of VAE naturally handles various
data types, notably not only continuous but also discrete
ones. All one needs to do is to model the likelihood dis-
tribution (decoder output) consistent with the nature of the
variables.

Third, owing to the use of graph neural networks for parame-
terization, each variable (node) can be not only scalar-valued
but also vector-valued. These variables are considered node
features input to/output of the GNNs.

Fourth, we propose a variant of the acyclicity constraint
more suitable for implementation under current deep learn-
ing platforms. The matrix exponential suggested by Zheng
et al. (2018), while mathematically elegant, may not be im-
plemented or supported with automatic differentiation in
all popular platforms. We propose a polynomial alternative
more practically convenient and as numerically stable as the
exponential.

We demonstrate the effectiveness of the proposed method
on synthetic data generated from linear and nonlinear SEMs,
benchmark data sets with discrete variables, and data sets
from applications. For synthetic data, the proposed DAG-
GNN outperforms DAG-NOTEARS, the algorithm pro-
posed by Zheng et al. (2018) based on linear SEM. For
benchmark data, our learned graphs compare favorably with
those obtained through optimizing the Bayesian information
criterion by using combinatorial search.

2. Background and Related Work
A DAGG and a joint distributionP are faithful to each other
if all and only the conditional independencies true in P are
entailed by G (Pearl, 1988). The faithfulness condition
enables one to recover G from P . Given independent and
iid samples D from an unknown distribution corresponding
to a faithful but unknown DAG, structure learning refers to

recovering the DAG from D.

Many exact and approximate algorithms for learning DAG
from data have been developed, including score-based and
constraint-based approaches (Spirtes et al., 2000a; Chicker-
ing, 2002; Koivisto & Sood, 2004; Silander & Myllymaki,
2006; Jaakkola et al., 2010; Cussens, 2011; Yuan & Malone,
2013; Gao & Wei, 2018). Score-based methods generally
use a score to measure the goodness of fit of different graphs
over data; and then use a search procedure—such as hill-
climbing (Heckerman et al., 1995; Tsamardinos et al., 2006;
Gmez et al., 2011), forward-backward search (Chickering,
2002), dynamic programming (Singh & Moore, 2005; Si-
lander & Myllymaki, 2006), A∗ (Yuan & Malone, 2013),
or integer programming (Jaakkola et al., 2010; Cussens,
2011; Cussens et al., 2016)—in order to find the best graph.
Commonly used Bayesian score criteria, such as BDeu and
Bayesian information criterion (BIC), are decomposable,
consistent, locally consistent (Chickering, 2002), and score
equivalent (Heckerman et al., 1995).

To make the DAG search space tractable, approximate
methods make additional assumptions such as bounded
tree-width (Nie et al., 2014), tree-like structures (Chow
& Liu, 1968), approximation (Scanagatta et al., 2015), and
other constraints about the DAG (Chen et al., 2016). Many
bootstrap (Friedman et al., 1999) and sampling-based struc-
ture learning algorithms (Madigan et al., 1995; Friedman
& Koller, 2003; Eaton & Murphy, 2012; Grzegorczyk &
Husmeier, 2008; Niinimäki & Koivisto, 2013; Niinimaki
et al., 2012; He et al., 2016) are also proposed to tackle the
expensive search problem.

Constraint-based methods, in contrast, use (conditional) in-
dependence tests to test the existence of edges between each
pair of variables. Popular algorithms include SGS (Spirtes
et al., 2000b), PC (Spirtes et al., 2000b), IC (Pearl,
2003), and FCI (Spirtes et al., 1995; Zhang, 2008). Re-
cently, there appears a suite of hybrid algorithms that com-
bine score-based and constraint-based methods, such as
MMHC (Tsamardinos et al., 2003), and apply constraint-
based methods to multiple environments (Mooij et al.,
2016).

Due to the NP-hardness, traditional DAG learning methods
usually deal with discrete variables, as discussed above, or
jointly Gaussian variables (Mohan et al., 2012; Mohammadi
et al., 2015). Recently, a new continuous optimization ap-
proach is proposed (Zheng et al., 2018), which transforms
the discrete search procedure into an equality constraint.
This approach enables a suite of continuous optimization
techniques such as gradient descent to be used. The ap-
proach achieves good structure recovery results, although it
is applied to only linear SEM for ease of exposition.

Neural-network approaches started to surface only very re-
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cently. Kalainathan et al. (2018) propose a GAN-style (gen-
erative adversarial network) method, whereby a separate
generative model is applied to each variable and a discrimi-
nator is used to distinguish between the joint distributions of
real and generated samples. The approach appears to scale
well but acyclicity is not enforced.

3. Neural DAG Structure Learning
Our method learns the weighted adjacency matrix of a DAG
by using a deep generative model that generalizes linear
SEM, with which we start the journey.

3.1. Linear Structural Equation Model

Let A ∈ Rm×m be the weighted adjacency matrix of the
DAG with m nodes and X ∈ Rm×d be a sample of a joint
distribution of m variables, where each row corresponds to
one variable. In the literature, a variable is typically a scalar,
but it can be trivially generalized to a d-dimensional vector
under the current setting. The linear SEM model reads

X = ATX + Z, (1)

where Z ∈ Rm×d is the noise matrix. When the graph
nodes are sorted in the topological order, the matrix A is
strictly upper triangular. Hence, ancestral sampling from the
DAG is equivalent to generating a random noise Z followed
by a triangular solve

X = (I −AT )−1Z. (2)

3.2. Proposed Graph Neural Network Model

Equation (2) may be written as X = fA(Z), a general
form recognized by the deep learning community as an
abstraction of parameterized graph neural networks that
take node features Z as input and return X as high level
representations. Nearly all graph neural networks (Bruna
et al., 2014; Defferrard et al., 2016; Li et al., 2016; Kipf &
Welling, 2017; Hamilton et al., 2017; Gilmer et al., 2017;
Chen et al., 2018; Velic̆ković et al., 2018) can be written in
this form. For example, the popular GCN (Kipf & Welling,
2017) architecture reads

X = Â · ReLU(ÂZW 1) ·W 2,

where Â is a normalization of A and W 1 and W 2 are pa-
rameter matrices.

Owing to the special structure (2), we propose a new graph
neural network architecture

X = f2((I −AT )−1f1(Z)). (3)

The parameterized functions f1 and f2 effectively per-
form (possibly nonlinear) transforms on Z and X , re-
spectively. If f2 is invertible, then (3) is equivalent to

f−12 (X) = AT f−12 (X) + f1(Z), a generalized version
of the linear SEM (1).

We will defer the instantiation of these functions in a later
subsection. One of the reasons is that the activation in
f2 must match the type of the variable X , a subject to be
discussed together with discrete variables.

3.3. Model Learning with Variational Autoencoder

Given a specification of the distribution of Z and sam-
ples X1, . . . , Xn, one may learn the generative model (3)
through maximizing the log-evidence

1

n

n∑
k=1

log p(Xk) =
1

n

n∑
k=1

log

∫
p(Xk|Z)p(Z) dZ,

which, unfortunately, is generally intractable. Hence, we
appeal to variational Bayes.

To this end, we use a variational posterior q(Z|X) to ap-
proximate the actual posterior p(Z|X). The net result is the
evidence lower bound (ELBO)

LELBO =
1

n

n∑
k=1

LkELBO,

with

LkELBO ≡ −DKL

(
q(Z|Xk) || p(Z)

)
+ Eq(Z|Xk)

[
log p(Xk|Z)

]
. (4)

Each individual term LkELBO departs from the log-evidence

by DKL

(
q(Z|Xk) || p(Z|Xk)

)
≥ 0, the KL-divergence

between the variational posterior and the actual one.

The ELBO lends itself to a variational autoencoder
(VAE) (Kingma & Welling, 2014), where given a sample
Xk, the encoder (inference model) encodes it into a latent
variable Z with density q(Z|Xk); and the decoder (gener-
ative model) tries to reconstruct Xk from Z with density
p(Xk|Z). Both densities may be parameterized by using
neural networks.

Modulo the probability specification to be completed later,
the generative model (3) discussed in the preceding subsec-
tion plays the role of the decoder. Then, we propose the
corresponding encoder

Z = f4((I −AT )f3(X)), (5)

wheref3 and f4 are parameterized functions that conceptu-
ally play the inverse role of f2 and f1, respectively.

3.4. Architecture and Loss Function

To complete the VAE, one must specify the distributions
in (4). Recall that for now bothXk andZ arem×dmatrices.
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ENCODER DECODER

MLP MLP

Figure 1. Architecture (for continuous variables). In the case of discrete variables, the decoder output is changed from MX , SX to PX .

For simplicity, the prior is typically modeled as the standard
matrix normal p(Z) =MNm×d(0, I, I).

For the inference model, we let f3 be a multilayer perceptron
(MLP) and f4 be the identity mapping. Then, the variational
posterior q(Z|X) is a factored Gaussian with mean MZ ∈
Rm×d and standard deviation SZ ∈ Rm×d, computed from
the encoder

[MZ | logSZ ] = (I −AT )MLP(X,W 1,W 2), (6)

where MLP(X,W 1,W 2) := ReLU(XW 1)W 2, and W 1

and W 2 are parameter matrices.

For the generative model, we let f1 be the identity mapping
and f2 be an MLP. Then, the likelihood p(X|Z) is a factored
Gaussian with mean MX ∈ Rm×d and standard deviation
SX ∈ Rm×d, computed from the decoder

[MX | logSX ] = MLP((I −AT )−1Z,W 3,W 4), (7)

where W 3 and W 4 are parameter matrices.

One may switch the MLP and the identity mapping inside
each of the encoder/decoder, but we find that the perfor-
mance is less competitive. One possible reason is that the
current design (7) places an emphasis on the nonlinear trans-
form of a sample (I − AT )−1Z from linear SEM, which
better captures nonlinearity.

Based on (6) and (7), the KL-divergence term in the
ELBO (4) admits a closed form

DKL

(
q(Z|X) || p(Z)

)
=

1

2

m∑
i=1

d∑
j=1

(SZ)
2
ij + (MZ)

2
ij − 2 log(SZ)ij − 1, (8)

and the reconstruction accuracy term may be computed with
Monte Carlo approximation

Eq(Z|X)

[
log p(X|Z)

]
≈

1

L

L∑
l=1

m∑
i=1

d∑
j=1

−
(Xij − (M

(l)
X )ij)

2

2(S
(l)
X )2ij

− log(S
(l)
X )ij − c,

(9)

where c is a constant and M (l)
X and S(l)

X are the outputs of
the decoder (7) by taking as input Monte Carlo samples
Z(l) ∼ q(Z|X), for l = 1, . . . , L.

Note that under the autoencoder framework, Z is consid-
ered latent (rather than the noise in linear SEM). Hence, the
column dimension of Z may be different from d. From the
neural network point of view, changing the column dimen-
sion of Z affects only the sizes of the parameter matrices
W 2 and W 3. Sometimes, one may want to use a smaller
number than d if he/she observes that the data has a smaller
intrinsic dimension.

An illustration of the architecture is shown in Figure 1.

3.5. Discrete Variables

One advantage of the proposed method is that it naturally
handles discrete variables. We assume that each variable
has a finite support of cardinality d.

Hence, we let each row of X be a one-hot vector, where
the “on” location indicates the value of the corresponding
variable. We still use standard matrix normal to model
the prior and factored Gaussian to model the variational
posterior, with (6) being the encoder. On the other hand,
we need to slightly modify the likelihood to cope with the
discrete nature of the variables.

Specifically, we let p(X|Z) be a factored categorical dis-
tribution with probability matrix PX , where each row is a
probability vector for the corresponding categorical variable.
To achieve so, we change f2 from the identity mapping to a
row-wise softmax and modify the decoder (7) to

PX = softmax(MLP((I −AT )−1Z,W 3,W 4)). (10)

Correspondingly for the ELBO, the KL term (8) remains
the same, but the reconstruction term (9) needs be modified
to

Eq(Z|X)

[
log p(X|Z)

]
≈ 1

L

L∑
l=1

m∑
i=1

d∑
j=1

Xij log(P
(l)
X )ij ,

(11)
where P (l)

X is the output of the decoder (10) by taking as in-
put Monte Carlo samples Z(l) ∼ q(Z|X), for l = 1, . . . , L.
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3.6. Connection to Linear SEM

One has seen from the forgoing discussions how the pro-
posed model is developed from linear SEM: We apply non-
linearality to the sampling procedure (2) of SEM, treat the
resulting generative model as a decoder, and pair with it a
variational encoder for tractable learning. Compared with a
plain autoencoder, the variational version allows a modeling
of the latent space, from which samples are generated.

We now proceed, in a reverse thought flow, to establish the
connection between the loss function of the linear SEM
considered in Zheng et al. (2018) and that of ours. We
first strip off the variational component of the autoencoder.
This plain version uses (5) as the encoder and (3) as the
decoder. For notational clarity, let us write X̂ as the output
of the decoder, to distinguish it from the encoder input X .
A typical sample loss to minimize is

1

2

m∑
i=1

d∑
j=1

(Xij − X̂ij)
2 +

1

2

m∑
i=1

d∑
j=1

Z2
ij ,

where the first term is the reconstruction error and the second
term is a regularization of the latent space. One recognizes
that the reconstruction error is the same as the negative
reconstruction accuracy (9) in the ELBO, up to a constant,
if the standard deviation SX is 1, the mean MX is taken
as X̂ , and only one Monte Carlo sample is drawn from
the variational posterior. Moreover, the regularization term
is the same as the KL-divergence (8) in the ELBO if the
standard deviation SZ is 1 and the mean MZ is taken as Z.

If we further strip off the (possibly nonlinear) mappings f1
to f4, then the encoder (5) and decoder (3) read, respectively,
Z = (I −AT )X and X̂ = (I −AT )−1Z. This pair results
in perfect reconstruction, and hence the sample loss reduces
to

1

2

m∑
i=1

d∑
j=1

Z2
ij =

1

2
‖(I −AT )X‖2F , (12)

which is the least-squares loss used and justified by Zheng
et al. (2018).

3.7. Acyclicity Constraint

Neither maximizing the ELBO (4) nor minimizing the least-
squares loss (12) guarantees that the corresponding graph
of the resulting A is acyclic. Zheng et al. (2018) pair the
loss function with an equality constraint, whose satisfaction
ensures acyclicity.

The idea is based on the fact that the positivity of the (i, j)
element of the k-th power of a nonnegative adjacency ma-
trix B indicates the existence of a length-k path between
nodes i and j. Hence, the positivity of the diagonal of Bk

reveals cycles. The authors leverage the trick that the matrix

exponential admits a Taylor series (because it is analytic on
the complex plane), which is nothing but a weighted sum of
all nonnegative integer powers of the matrix. The coefficient
of the zeorth power (the identity matrix Im×m) is 1, and
hence the trace of the exponential of B must be exactly m
for a DAG. To satisfy nonnegativity, one may let B be the
elementwise square of A; that is, B = A ◦A.

Whereas the formulation of this acyclicity constraint is math-
ematically elegant, support of the matrix exponential may
not be available in all deep learning platforms. To ease the
coding effort, we propose an alternative constraint that is
practically convenient.

Theorem 1. Let A ∈ Rm×m be the (possibly negatively)
weighted adjacency matrix of a directed graph. For any
α > 0, the graph is acyclic if and only if

tr[(I + αA ◦A)m]−m = 0. (13)

We use (13) as the equality constraint when maximizing the
ELBO. The computations of both (I + αB)m and exp(B)
may meet numerical difficulty when the eigenvalues of B
have a large magnitude. However, the former is less severe
than the latter with a judicious choice of α.

Theorem 2. Let α = c/m > 0 for some c . Then for any
complex λ, we have (1 + α|λ|)m ≤ ec|λ|.

In practice, α may be treated as a hyperparameter and its
setting depends on an estimation of the largest eigenvalue of
B in magnitude. This value is the spectral radius of B, and
because of nonnegativity, it is bounded by the maximum
row sum according to the Perron–Frobenius theorem.

3.8. Training

Based on the foregoing, the learning problem is

min
A,θ

f(A, θ) ≡ −LELBO

s.t. h(A) ≡ tr[(I + αA ◦A)m]−m = 0,

where the unknowns include the matrix A and all the
parameters θ of the VAE (currently we have θ =
{W 1,W 2,W 3,W 4}). Nonlinear equality-constrained
problems are well studied and we use the augmented La-
grangian approach to solve it. For completeness, we sum-
marize the algorithm here; the reader is referred to standard
textbooks such as Section 4.2 of Bertsekas (1999) for details
and convergence analysis.

Define the augmented Lagrangian

Lc(A, θ, λ) = f(A, θ) + λh(A) +
c

2
|h(A)|2,

where λ is the Lagrange multiplier and c is the penalty
parameter. When c = +∞, the minimizer of Lc(A, θ, λ)
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must satisfy h(A) = 0, in which case Lc(A, θ, λ) is equal
to the objective function f(A, θ). Hence, the strategy is
to progressively increase c, for each of which minimize
the unconstrained augmented Lagrangian. The Lagrange
multiplier λ is correspondingly updated so that it converges
to the one under the optimality condition.

There exist a few variants for updating λ and increasing c,
but a typical effective rule reads:

(Ak, θk) = argmin
A,θ

Lck(A, θ, λ
k), (14)

λk+1 = λk + ckh(Ak), (15)

ck+1 =

{
ηck, if |h(Ak)| > γ|h(Ak−1)|,
ck, otherwise,

(16)

where η > 1 and γ < 1 are tuning parameters. We find that
often η = 10 and γ = 1/4 work well.

The subproblem (14) may be solved by using blackbox
stochastic optimization solvers, by noting that the ELBO is
defined on a set of samples.

4. Experiments
In this section, we present a comprehensive set of exper-
iments to demonstrate the effectiveness of the proposed
method DAG-GNN. In Section 4.1, we compare with DAG-
NOTEARS, the method proposed by Zheng et al. (2018)
based on linear SEM, on synthetic data sets generated by
sampling generalized linear models, with an emphasis on
nonlinear data and vector-valued data (d > 1). In Sec-
tion 4.2, we showcase the capability of our model with
discrete data, often seen in benchmark data sets with ground
truths for assessing quality. To further illustrate the use-
fulness of the proposed method, in Section 4.3 we apply
DAG-GNN on a protein data set for the discovery of con-
sensus protein signaling network, as well as a knowledge
base data set for learning causal relations.

Our implementation is based on PyTorch (Paszke et al.,
2017). We use Adam (Kingma & Ba, 2015) to solve the
subproblems (14). To avoid overparameterization, we pa-
rameterize the variational posterior q(Z|X) as a factored
Gaussian with constant unit variance, and similarly for the
likelihood p(X|Z). When extracting the DAG, we use
a thresholding value 0.3, following the recommendation
of Zheng et al. (2018). For benchmark and application data
sets, we include a Huber-norm regularization of A in the
objective function to encourage more rapid convergence.

4.1. Synthetic Data Sets

The synthetic data sets are generated in the following man-
ner. We first generate a random DAG by using the Erdős–
Rényi model with expected node degree 3, then assign uni-

formly random weights for the edges to obtain the weighted
adjacency matrix A. A sample X is generated by sampling
the (generalized) linear modelX = g(ATX)+Z with some
function g elaborated soon. The noise Z follows standard
matrix normal. When the dimension d = 1, we use lower-
case letters to denote vectors; that is, x = g(ATx) + z. We
compare DAG-GNN with DAG-NOTEARS and report the
structural Hamming distance (SHD) and false discovery rate
(FDR), each averaged over five random repetitions. With
sample size n = 5000, we run experiments on four graph
sizes m ∈ {10, 20, 50, 100}. In Sections 4.1.1 and 4.1.2
we consider scalar-valued variables (d = 1) and in Sec-
tion 4.1.3 vector-valued variables (d > 1).

4.1.1. LINEAR CASE

This case is the linear SEM model, with g being the identity
mapping. The SHD and FDR are plotted in Figure 2. One
sees that the graphs learned by the proposed method are
substantially more accurate than those by DAG-NOTEARS
when the graphs are large.

Figure 2. Structure discovery in terms of SHD and FDR to the true
graph, on synthetic data set generated by x = ATx+ z.

4.1.2. NONLINEAR CASE

We now consider data generated by the following model

x = ATh(x) + z,

for some nonlinear function h. Taking first-order approxima-
tion h(x) ≈ h(0)1+h′(0)x (ignoring higher-order terms of
x), one obtains an amendatory approximation of the graph
adjacency matrix, h′(0)A. This approximate ground truth
maintains the DAG structure, with only a scaling on the
edge weights.

We take h(x) = cos(x+ 1) and plot the SHD and FDR in
Figure 3. one observes that DAG-GNN slightly improves
over DAG-NOTEARS in terms of SHD. Further, FDR is
substantially improved, by approximately a factor of three,
which indicates that DAG-GNN tends to be more accurate
on selecting correct edges. This observation is consistent
with the parameter estimates shown in Figure 4, where the
ground truth is set as − sin(1)A. The heat map confirms
that DAG-GNN results in fewer “false alarms” and recovers
a relatively sparser matrix.
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Figure 3. Structure discovery in terms of SHD and FDR to the true
graph, on synthetic data set generated by x = AT cos(x+ 1) + z.

Figure 4. Parameter estimates (before thresholding) of the graph
on synthetic data set generated by x = AT cos(x+ 1) + z.

We further experiment with a more complex nonlinear gen-
eration model, where the nonlinearity occurs after the linear
combination of the variables, as opposed to the preceding
case where nonlinearity is applied to the variables before
linear combination. Specifically, we consider

x = 2 sin(AT (x+ 0.5 · 1)) +AT (x+ 0.5 · 1) + z,

and plot the results in Figure 5. One sees that with higher
nonlinearity, the proposed method results in significantly
better SHD and FDR than does DAG-NOTEARS.

Figure 5. Structure discovery in terms of SHD and FDR to the true
graph, on synthetic data set generated by x = 2 sin(AT (x+ 0.5 ·
1)) +AT (x+ 0.5 · 1) + z.

4.1.3. VECTOR-VALUED CASE

The proposed method offers a modeling benefit that the vari-
ables can be vector-valued with d > 1. Moreover, since Z
resides in the latent space of the autoencoder and is not in-
terpreted as noise as in linear SEM, one may take a smaller
column dimension dZ < d if he/she believes that the vari-
ables have a lower intrinsic dimension. To demonstrate
this capability, we construct a data set where the different
dimensions come from a randomly scaled and perturbed

sample from linear SEM. Specifically, given a graph adja-
cency matrixA, we first construct a sample x̃ ∈ Rm×1 from
the linear SEM x̃ = AT x̃ + z̃, and then generate for the
k-th dimension xk = ukx̃+ vk + zk, where uk and vk are
random scalars from standard normal and zk is a standard
normal vector. The eventual sample is X = [x1|x2| · · · |xd].

We let d = 5 and dZ = 1 and compare DAG-GNN with
DAG-NOTEARS. The SHD and FDR are plotted in Figure 6.
The figure clearly shows the significantly better performance
of the proposed method. Moreover, the parameter estimates
are shown in Figure 7, compared against the ground-truth
A. One sees that the estimated graph from DAG-GNN
successfully captures all the ground truth edges and that
the estimated weights are also similar. On the other hand,
DAG-NOTEARS barely learns the graph.

Figure 6. Structure discovery in terms of SHD and FDR to the true
graph, on synthetic vector-valued data set.

Figure 7. Parameter estimates (before thresholding) of the graph
on synthetic vector-valued data set.

4.2. Benchmark Data Sets

A benefit of the proposed method is that it naturally han-
dles discrete variables, a case precluded by linear SEM. We
demonstrate the use of DAG-GNN on three discrete bench-
mark data sets: Child, Alarm, and Pigs (Tsamardinos et al.,
2006). For comparison is the state-of-the-art exact DAG
solver GOPNILP (Cussens et al., 2016), which is based on a
constrained integer programming formulation. We use 1000
samples for learning.

One sees from Table 1 that our results are reasonably close
to the ground truth, whereas not surprisingly the results
of GOPNILP are nearly optimal. The BIC score gap ex-
hibits by DAG-GNN may be caused by the relatively simple
autoencoder architecture, which is less successful in ap-
proximating multinomial distributions. Nevertheless, it is
encouraging that the proposed method as a unified frame-
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work can handle discrete variables with only slight changes
in the network architecture.

Table 1. BIC scores on benchmark datasets of discrete variables.

Dataset m Groundtruth GOPNILP DAG-GNN
Child 20 -1.27e+4 -1.27e+4 -1.38e+4
Alarm 37 -1.07e+4 -1.12e+4 -1.28e+4
Pigs 441 -3.48e+5 -3.50e+5 -3.69e+5

4.3. Applications

We consider a bioinformatics data set (Sachs et al., 2005)
for the discovery of a protein signaling network based on
expression levels of proteins and phospholipids. This is
a widely used data set for research on graphical models,
with experimental annotations accepted by the biological
research community. The data set offers continuous mea-
surements of expression levels of multiple phosphorylated
proteins and phospholipid components in human immune
system cells, and the modeled network provides the ordering
of the connections between pathway components. Based on
n = 7466 samples of m = 11 cell types, Sachs et al. (2005)
estimate 20 edges in the graph.

In Table 2, we compare DAG-GNN with DAG-NOTEARS
as well as FSG, the fast greedy search method proposed
by Ramsey et al. (2017), against the ground truth offered
by Sachs et al. (2005). The proposed method achieves the
lowest SHD. We further show in Figure 8 our estimated
graph. One observes that it is acyclic. Our method success-
fully learns 8 out of 20 ground-truth edges (as marked by
red arrows), and predicts 5 indirectly connected edges (blue
dashed arrows) as well as 3 reverse edges (yellow arrows).

Table 2. Results on protein signaling network: comparison of the
predicted graphs with respect to the ground truth.

Method SHD # Predicted edges
FGS 22 17

NOTEARS 22 16
DAG-GNN 19 18

For another application, we develop a new causal infer-
ence task over relations defined in a knowledge base (KB)
schema. The task aims at learning a BN, the nodes of which
are relations and the edges indicate whether one relation sug-
gests another. For example, the relation person/Nationality
may imply person/Language, because the spoken language
of a person naturally associates with his/her nationality. This
task has a practical value, because most existing KBs are
constructed by hand. The success of this task helps suggest
meaningful relations for new entities and reduce human ef-
forts. We construct a data set from FB15K-237 (Toutanova
et al., 2015) and list in Table 3 a few extracted causal re-

Figure 8. Estimate protein signaling network.

lations. Because of space limitation, we defer the details
and more results in the supplementary material. One sees
that these results are quite intuitive. We plan a comprehen-
sive study with field experts to systematically evaluate the
extraction results.

Table 3. Examples of extracted edges with high confidence.

film/ProducedBy ⇒ film/Country
film/ProductionCompanies ⇒ film/Country

person/Nationality ⇒ person/Languages
person/PlaceOfBirth ⇒ person/Languages

person/PlaceOfBirth ⇒ person/Nationality
person/PlaceLivedLocation ⇒ person/Nationality

5. Conclusion
DAG structure learning is a challenging problem that has
long been pursued in the literature of graphical models. The
difficulty, in a large part, is owing to the NP-hardness in-
curred in the combinatorial formulation. Zheng et al. (2018)
propose an equivalent continuous constraint that opens the
opportunity of using well developed continuous optimiza-
tion techniques for solving the problem. In this context, we
explore the power of neural networks as functional approxi-
mators and develop a deep generative model to capture the
complex data distribution, aiming at better recovering the
underlying DAG with a different design of the objective
function. In particular, we employ the machinery of varia-
tional autoencoders and parameterize them with new graph
neural network architectures. The proposed method handles
not only data generated by parametric models beyond linear,
but also variables in general forms, including scalar/vector
values and continuous/discrete types. We have performed
extensive experiments on synthetic, benchmark, and appli-
cation data and demonstrated the practical competitiveness
of the proposal.
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pects of score equivalence in Bayesian network structure
learning. Mathematical Programming, pp. 1–40, 2016.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In NIPS, 2016.

Eaton, D. and Murphy, K. Bayesian structure learning
using dynamic programming and MCMC. arXiv preprint
arXiv:1206.5247, 2012.

Friedman, N. and Koller, D. Being Bayesian about network
structure. a Bayesian approach to structure discovery in
Bayesian networks. Machine learning, 50(1-2):95–125,
2003.

Friedman, N., Goldszmidt, M., and Wyner, A. Data analysis
with Bayesian networks: A bootstrap approach. In UAI,
1999.

Gao, T. and Wei, D. Parallel bayesian network structure
learning. In International Conference on Machine Learn-
ing, pp. 1671–1680, 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Grzegorczyk, M. and Husmeier, D. Improving the structure
MCMC sampler for Bayesian networks by introducing a
new edge reversal move. Machine Learning, 71(2-3):265,
2008.

Gmez, J., Mateo, J., and Puerta, J. Learning Bayesian
networks by hill climbing: efficient methods based on
progressive restriction of the neighborhood. Data Mining
and Knowledge Discovery, 22(1-2):106–148, 2011.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017.

He, R., Tian, J., and Wu, H. Structure learning in Bayesian
networks of a moderate size by efficient sampling. Jour-
nal of Machine Learning Research, 17(1):3483–3536,
2016.

Heckerman, D., Geiger, D., and Chickering, D. M. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.
Learning Bayesian network structure using LP relax-
ations. 2010.

Kalainathan, D., Goudet, O., Guyon, I., Lopez-Paz, D., and
Sebag, M. SAM: Structural agnostic model, causal dis-
covery and penalized adversarial learning. arXiv preprint
arXiv:1803.04929, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In ICLR, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Koivisto, M. and Sood, K. Exact Bayesian structure discov-
ery in Bayesian networks. Journal of Machine Learning
Research, 5:549–573, 2004.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. In ICLR, 2016.

Madigan, D., York, J., and Allard, D. Bayesian graphical
models for discrete data. International Statistical Re-
view/Revue Internationale de Statistique, pp. 215–232,
1995.



DAG-GNN: DAG Structure Learning with Graph Neural Networks

Mohammadi, A., Wit, E. C., et al. Bayesian structure learn-
ing in sparse Gaussian graphical models. Bayesian Anal-
ysis, 10(1):109–138, 2015.

Mohan, K., Chung, M., Han, S., Witten, D., Lee, S.-I.,
and Fazel, M. Structured learning of Gaussian graphical
models. In NIPS, 2012.

Mooij, J. M., Magliacane, S., and Claassen, T. Joint
causal inference from multiple contexts. arXiv preprint
arXiv:1611.10351, 2016.
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