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Abstract

Learning with noisy labels is one of the hottest
problems in weakly-supervised learning. Based
on memorization effects of deep neural networks,
training on small-loss instances becomes very
promising for handling noisy labels. This fosters
the state-of-the-art approach “Co-teaching” that
cross-trains two deep neural networks using the
small-loss trick. However, with the increase
of epochs, two networks converge to a consen-
sus and Co-teaching reduces to the self-training
MentorNet. To tackle this issue, we propose a
robust learning paradigm called Co-teaching+,
which bridges the “Update by Disagreement”
strategy with the original Co-teaching. First, two
networks feed forward and predict all data, but
keep prediction disagreement data only. Then,
among such disagreement data, each network
selects its small-loss data, but back propagates
the small-loss data from its peer network and
updates its own parameters. Empirical results
on benchmark datasets demonstrate that Co-
teaching+ is much superior to many state-of-the-
art methods in the robustness of trained models.

1. Introduction
In weakly-supervised learning, learning with noisy labels
is one of the most challenging questions, since noisy labels
are ubiquitous in our daily life, such as web queries (Liu
et al., 2011), crowdsourcing (Welinder et al., 2010), medi-
cal images (Dgani et al., 2018), and financial analysis (Aı̈t-
Sahalia et al., 2010). Essentially, noisy labels are systemat-
ically corrupted from ground-truth labels, which inevitably
degenerates the accuracy of classifiers. Such degeneration
becomes even more prominent for deep learning models
(e.g., convolutional and recurrent neural networks), since

1CAI, University of Technology Sydney 2RIKEN-AIP
3Alibaba Damo Academy 4University of Tokyo. Correspondence
to: Xingrui Yu <xingrui.yu@student.uts.edu.au>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

these complex models can fully memorize noisy labels
(Zhang et al., 2017; Arpit et al., 2017).

To handle noisy labels, classical approaches focus on either
adding regularization (Miyato et al., 2016) or estimating
the label transition matrix (Patrini et al., 2017). Specif-
ically, both explicit and implicit regularizations leverage
the regularization bias to overcome the label noise issue.
Nevertheless, they introduced a permanent regularization
bias, and the learned classier barely reaches the optimal
performance. Meanwhile, estimating the label transition
matrix does not introduce the regularization bias, and the
accuracy of classifiers can be improved by such accurate
estimation. However, the label transition matrix is hard to
be estimated, when the number of classes is large.

Recently, a promising way of handling noisy labels is to
train on small-loss instances (Jiang et al., 2018; Ren et al.,
2018). These works try to select small-loss instances, and
then use them to update the network robustly. Among those
works, the representative methods are MentorNet (Jiang
et al., 2018) and Co-teaching (Han et al., 2018b). For
example, MentorNet pre-trains an extra network, and then
it uses the extra network for selecting clean instances to
guide the training of the main network. When the clean
validation data is not available, self-paced MentorNet has
to use a predefined curriculum (e.g., small-loss instances).
Nevertheless, the idea of self-paced MentorNet is similar
to the self-training approach, and it inherits the same
inferiority of accumulated error.

To solve the accumulated error issue in MentorNet, Co-
teaching has been developed, which simultaneously trains
two networks in a symmetric way (Han et al., 2018b).
First, in each mini-batch data, each network filters noisy
(i.e., big-loss) samples based on the memorization effects.
Then, it teaches the remaining small-loss samples to
its peer network for updating the parameters, since the
error from noisy labels can be reduced by peer networks
mutually. From the initial training epoch, two networks
having different learning abilities can filter different types
of error. However, with the increase of training epochs, two
networks will converge to a consensus gradually and Co-
teaching reduces to the self-training MentorNet in function.

To address the consensus issue in Co-teaching, we should
consider how to always keep two networks diverged within



How does Disagreement Help Generalization against Label Corruption?

0 25 50 75 100 125 150 175 200

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ot

al
V

ar
ia

ti
on

Disagreement Co-teaching Co-teaching+

Figure 1. Comparison of divergence (evaluated by Total Varia-
tion) between two networks trained by the “Disagreement” strat-
egy, Co-teaching and Co-teaching+, respectively. Co-teaching+
naturally bridges the “Disagreement” strategy with Co-teaching.

the training epochs, or how to slow down the speed that
two networks will reach a consensus with the increase of
epochs. Fortunately, we find that a simple strategy called
“Update by Disagreement” (Malach & Shalev-Shwartz,
2017) may help us to achieve the above target. This strategy
conducts updates only on selected data, where there is a
prediction disagreement between two classifiers.

To demonstrate that the “Disagreement” strategy can keep
two networks diverged during training, we train two 3-layer
MLPs (Goodfellow et al., 2016) on MNIST simultaneously
for 10 trials, and report total variations of Softmax outputs
between two networks in Figure 1. We can clearly observe
that two networks trained by Co-teaching (blue in Figure 1)
converge to a consensus gradually, while two networks
trained by the “Disagreement” strategy (orange in Figure 1)
often keep diverged.

Motivated by this phenomenon, in this paper, we propose
a robust learning paradigm called Co-teaching+ (Figure 2),
which naturally bridges the “Disagreement” strategy with
Co-teaching. Co-teaching+ trains two deep neural net-
works similarly to the original Co-teaching, but it consists
of the disagreement-update step (data update) and the
cross-update step (parameters update). Initially, in the
disagreement-update step, two networks feed forward and
predict all data first, and only keep prediction disagreement
data. This step indeed keeps two networks (trained by Co-
teaching+) diverged (green in Figure 1). Then, in the cross-
update step, each network selects its small-loss data from
such disagreement data, but back propagates the small-loss
data from its peer network and updates its own parameters.
Intuitively, the idea of disagreement-update comes from
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Figure 2. Comparison of error flow among MentorNet (M-Net),
Co-teaching and Co-teaching+. Assume that the error flow
comes from the selection of training instances, and the error flow
from network A or B is denoted by red arrows or blue arrows,
respectively. Left panel: M-Net maintains only one network
(A). Middle panel: Co-teaching maintains two networks (A & B)
simultaneously. In each mini-batch data, each network selects its
small-loss data to teach its peer network for the further training.
Right panel: Co-teaching+ also maintains two networks (A &
B). However, two networks feed forward and predict each mini-
batch data first, and keep prediction disagreement data (!=) only.
Based on such disagreement data, each network selects its small-
loss data to teach its peer network for the further training.

Co-training (Blum & Mitchell, 1998), where two classifiers
should keep diverged to achieve the better ensemble effects.
The intuition of cross-update comes from culture evolving
hypothesis (Bengio, 2014), where a human brain can learn
better if guided by the signals produced by other humans.

We conduct experiments on both simulated and real-world
noisy datasets, including noisy MNIST, CIFAR-10, CIFAR-
100, NEWS, T-ImageNet and three Open-sets (Wang et al.,
2018). Empirical results demonstrate that the robustness
of deep models trained by the Co-teaching+ approach is
superior to many state-of-the-art methods, including Co-
teaching, MentorNet and F-correction (Patrini et al., 2017).
Before delving into details, we clearly emphasize our
contribution as follows.

• We denote that “Update by Disagreement” (i.e., the
Decoupling algorithm) itself cannot handle noisy la-
bels, which has been empirically justified in Section 3.

• We realize that the “Disagreement” strategy can keep
two networks diverged, which significantly boosts the
performance of Co-teaching.

• We summarize three key factors towards training
robust deep networks with noisy labels: (1) using the
small-loss trick; (2) cross-updating parameters of two
networks; and (3) keeping two networks diverged.

The rest of this paper is organized as follows. In Section 2,
we propose our robust learning paradigm Co-teaching+.
Experimental results are discussed in Sections 3 and 4.
Conclusions are given in Section 5.
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2. Co-teaching+: Towards Training of Robust
Deep Networks with Noisy Labels

Similar to Co-teaching, we also train two deep neural
networks. As in Figure 2, in each mini-batch data, each
network conducts its own prediction, then selects instances
for which there is a prediction disagreement between two
networks. Based on such disagreement data, each network
further selects its small-loss data, but back propagates the
small-loss data selected by its peer network and updates
itself parameters. We call such algorithm as Co-teaching+
(Algorithm 1), which consists of disagreement-update step
and cross-update step. This brings the question as follows.

How does disagreement benefit Co-teaching? To an-
swer this question, we should first understand the main
drawback of Co-teaching. In the early stage of training,
the divergence of two networks mainly comes from dif-
ferent (random) parameter initialization. Intuitively, this
divergence between two networks pushes Co-teaching to
become more robust than self-paced MentorNet, since
two diverged networks have different abilities to filter
different types of error. However, with the increase of
training epochs, two networks will gradually converge to
be close to each other (blue in Figure 1). Thus, Co-
teaching degenerates to self-paced MentorNet, and will
not promote the learning ability to select clean data any
more. To overcome this issue, we need to keep the constant
divergence between two networks or slow down the speed
that two networks reach a consensus. This intuition comes
from Co-training algorithm, where in semi-supervised
learning (Chapelle et al., 2009), the better ensemble effects
require to keep diverged more between two classifiers.

Fortunately, the “Disagreement” strategy (Malach &
Shalev-Shwartz, 2017) can help us to keep two networks
diverged (orange in Figure 1), since this strategy conducts
algorithm updates only on selected data, where there is
a prediction disagreement between the two classifiers.
Therefore, within the whole training epochs, if two
networks always select the disagreement data for further
training, the divergence of two networks will be always
maintained. Specifically, during the training procedure of
Co-teaching, if we use the “Disagreement” strategy to keep
two networks diverged, then we can prevent Co-teaching
reducing to self-training MentorNet in function. This
brings us the new robust training paradigm Co-teaching+
(Algorithm 1, green in Figure 1).

Take “complementary peer learning” as an illustrative
example for Co-teaching+. When students prepare for
their exams, the peer learning will normally more boost
their review efficiency than the solo learning. However,
if two students are identically good at math but not good at
literature, their review process in literature will have no any

Algorithm 1 Co-teaching+. Step 4: disagreement-update;
Step 5-8: cross-update.
1: Inputw(1) andw(2), training setD, batch sizeB, learning rate
η, estimated noise rate τ , epoch Ek and Emax;
for e = 1, 2, . . . , Emax do

2: Shuffle D into |D|
B

mini-batches; //noisy dataset
for n = 1, . . . , |D|

B
do

3: Fetch n-th mini-batch D̄ from D;
4: Select prediction disagreement D̄′ by Eq. (1);
5: Get D̄

′(1) = arg minD′:|D′|≥λ(e)|D̄′| `(D′;w(1));
//sample λ(e)% small-loss instances
6: Get D̄

′(2) = arg minD′:|D′|≥λ(e)|D̄′| `(D′;w(2));
//sample λ(e)% small-loss instances
7: Update w(1) = w(1) − η∇`(D̄

′(2);w(1)); //update
w(1) by D̄

′(2);
8: Update w(2) = w(2) − η∇`(D̄

′(1);w(2)); //update
w(2) by D̄

′(1);
end
9: Update λ(e) = 1−min{ e

Ek
τ, τ} or 1−min{ e

Ek
τ, (1 +

e−Ek
Emax−Ek

)τ};
end
10: Output w(1) and w(2).

progress. Thus, the optimal peer should be complementary,
which means that a student who is good at math should
best review with another student who is good at literature.
This point also explains why the diverged peer has more
powerful learning ability than the identical peer.

Algorithm description. Algorithm 1 consists of the
disagreement-update step (step 4) and the cross-update
step (step 5-8), where we train two deep neural networks
in a mini-batch manner.

In step 4, two networks feed forward and predict the same
mini-bach of data D̄={(x1, y1), (x2, y2), · · · , (xB , yB)}
first, where the batch size is B. Then, they keep pre-
diction disagreement data D̄′ (Eq. (1)) according to their
predictions {ȳ(1)1 , ȳ

(1)
2 , . . . , ȳ

(1)
B } (predicted by w(1)) and

{ȳ(2)1 , ȳ
(2)
2 , . . . , ȳ

(2)
B } (predicted by w(2)):

D̄′ = {(xi, yi) : ȳ
(1)
i 6= ȳ

(2)
i }, (1)

where i ∈ {1, . . . , B}. The intuition of this step
comes from Co-training, where two classifiers should keep
diverged to achieve the better ensemble effects.

In step 5-8, from the disagreement data D̄′, each network
w(1) (resp. w(2)) selects its own small-loss data D̄′(1)

(resp. D̄′(2)), but back propagates the small-loss data D̄′(1)

(resp. D̄′(2)) to its peer network w(2) (resp. w(1)) and
updates parameters. The intuition of step 5-8 comes from
the aforementioned culture evolving hypothesis (Bengio,
2014), where a human brain can learn better if guided by
the signals produced by other humans.
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In step 9, we update λ(e), which controls how many small-
loss data should be selected in each training epoch. Due to
the memorization effects, deep networks will fit clean data
first and then gradually over-fit noisy data.

Thus, at the beginning of training, we keep more small-
loss data (with a large λ(e)) in each mini-batch, which is
equivalent to dropping less data. Since deep networks will
fit clean data first, noisy data do not matter at the initial
training epochs. With the increase of epochs, we keep less
small-loss data (with a small λ(e)) in each mini-batch. As
deep networks will over-fit noisy data gradually, we should
drop more data. The gradual decrease of λ(e) prevents
deep networks over-fitting noisy data to some degree.

Similar to Co-teaching, we decrease λ(e) quickly at the
first Ek epochs to stop networks over-fitting to the noisy
data, namely λ(e) = 1 − e

Ek
τ . However, after Ek epochs,

Co-teaching+ has two types of λ(e). The first type keeps
a constant λ(e), where λ(e) = 1 − τ ; while the second
type further decreases λ(e) slowly, where λ(e) = 1− (1 +

e−Ek

Emax−Ek
)τ . We take an example to explain the difference.

Assume that the estimated noise rate τ is 30%. It
means that, after Ek epochs, the first type will constantly
fetch 70% small-loss data in each mini-batch as “clean”
data. However, the τ estimation tends to be inaccurate
in practice. Therefore, given the estimated τ , we should
fetch less data, e.g., 60% small-loss data, to keep remained
data more clean. This explains why, in real-world noisy
datasets, Co-teaching+ chooses the second type to further
decrease λ(e) slowly after Ek epochs (Section 4).

Relations to other approaches. We compare our Co-
teaching+ with related approaches in Table 1. We try to find
the connections among them, and pinpoint the key factors
that can handle noisy labels. First, self-paced MentorNet
(Jiang et al., 2018) employs the small-loss trick to handle
noisy labels. However, this idea is similar to the self-
training approach, and it inherits the same inferiority of
accumulated error caused by the sample-selection bias.
Inspired by Co-training (Blum & Mitchell, 1998) that
trains double classifiers and cross updates parameters, Co-
teaching (Han et al., 2018b) has been developed to cross
train two deep networks, which addresses the accumulated
error issue in MentorNet. Note that, Co-training does not
exploit the memorization in deep neural networks, while
Co-teaching does (i.e., leveraging small-loss trick).

However, with the increase of training epochs, two net-
works trained by Co-teaching will converge to a consensus,
and Co-teaching will reduce to the self-training MentorNet.
This brings us to think how to address the consensus issue
in Co-teaching. Although Decoupling algorithm (Malach
& Shalev-Shwartz, 2017) (i.e., “Update by Disagreement”)
itself cannot combat with noisy labels effectively, which

has been empirically justified in Section 3, we clearly
realize that the “Disagreement” strategy can always keep
two networks diverged. Such divergence effects can boost
the performance of Co-teaching and bring us Co-teaching+,
since the better ensemble effects require to keep diverged
more between two classifiers due to Co-training.

To sum up, there are three key factors that can contribute
to effectively handle noisy labels (first column of Table 1).
First, we should leverage the memorization effects of deep
networks (i.e., the small-loss trick). Second, we should
train two deep networks simultaneously, and cross update
their parameters. Last but not least, we should keep two
deep networks diverged during the whole training epochs.

3. Experiments on Simulated Noisy Datasets
3.1. Experimental setup

Datasets. First, we verify the efficacy of our approach
on four benchmark datasets (Table 2), including three
vision datasets (i.e., MNIST, CIFAR-10, and CIFAR-100)
and one text dataset (i.e., NEWS). Then, we verify our
approach on a larger and harder dataset called Tiny-
ImageNet (abbreviated as T-ImageNet) 1. These datasets
are popularly used for the evaluation of learning with noisy
labels in the literature (Reed et al., 2015; Goldberger &
Ben-Reuven, 2017; Kiryo et al., 2017).

Since all datasets are clean, following (Reed et al., 2015;
Patrini et al., 2017), we need to corrupt these datasets
manually by the label transition matrix Q, where Qij =
Pr(ỹ = j|y = i) given that noisy ỹ is flipped from clean y.
Assume that the matrixQ has two representative structures:
(1) Symmetry flipping (van Rooyen et al., 2015); (2) Pair
flipping (Han et al., 2018b): a simulation of fine-grained
classification with noisy labels, where labelers may make
mistakes only within very similar classes.

Baselines. We compare Co-teaching+ (Algorithm 1) with
the following state-of-art approaches, and implement all
methods with default parameters by PyTorch, and conduct
all the experiments on a NVIDIA Titan Xp GPU.

(i). MentorNet (Jiang et al., 2018). An extra teacher
network is pre-trained and then used to filter out noisy in-
stances for its student network to learn robustly under noisy
labels. Then, student network is used for classification. We
used self-paced MentorNet in this paper;

(ii). Co-teaching (Han et al., 2018b), which trains two
networks simultaneously and cross-updates parameters of
peer networks. This method can deal with a large number
of classes and is more robust to extremely noisy labels;

(iii). Decoupling (Malach & Shalev-Shwartz, 2017), which

1https://tiny-imagenet.herokuapp.com/
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Table 1. Comparison of state-of-the-art and related techniques with our Co-teaching+ approach. In the first column, “small loss”:
regarding small-loss samples as “clean” samples, which is based on the memorization effects of deep neural networks; “double
classifiers”: training two classifiers simultaneously; “cross update”: updating parameters in a cross manner instead of a parallel manner;
“divergence”: keeping two classifiers diverged during the whole training epochs.

MentorNet Co-training Co-teaching Decoupling Co-teaching+
small loss X 7 X 7 X

double classifiers 7 X X X X
cross update 7 X X 7 X
divergence 7 X 7 X X

Table 2. Summary of data sets used in the experiments.
# of train # of test # of class size

MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32
CIFAR-100 50,000 10,000 100 32×32

NEWS 11,314 7,532 7 1000-D
T-ImageNet 100, 000 10, 000 200 64×64

updates the parameters only using the instances which have
different prediction from two classifiers.

(iv). F-correction (Patrini et al., 2017), which corrects the
prediction by the label transition matrix. As suggested by
the authors, we first train a standard network to estimate the
transition matrix Q.

(v). As a simple baseline, we compare Co-teaching+ with
the standard deep network that directly trains on noisy
datasets (abbreviated as Standard).

Network structure. For MNIST, we use a 2-layer MLP.
For CIFAR-10, we use a network architecture with 2
convolutional layers and 3 fully connected layers. For
CIFAR-100, the 7-layer network architecture in our paper
follows (Wang et al., 2018). For NEWS, we borrowed
the pre-trained word embeddings from GloVe (Pennington
et al., 2014), and a 3-layer MLP is used with Softsign
active function. For T-ImageNet, we use a 18-layer Pre-
act ResNet (He et al., 2016). The network structure here is
standard test bed for weakly-supervised learning, and the
details are in Table 3.

Optimizer. Adam optimizer (momentum=0.9) is with an
initial learning rate of 0.001, and the batch size is set to
128 and we run 200 epochs. The learning rate is linearly
decayed to zero from 80 to 200 epochs. As deep networks
are highly nonconvex, even with the same network and
optimization method, different initializations can lead to
different local optimal. Thus, following (Malach & Shalev-
Shwartz, 2017), we also take two networks with the same
architecture but different initializations as two classifiers.

Initialization. Assume that the noise rate τ is known. To
conduct a fair comparison in benchmark datasets, we set

the ratio of small-loss samples λ(e) as identical as Co-
teaching:

λ(e) = 1−min{ e
Ek

τ, τ}, (2)

where Ek = 10.

If τ is not known in advanced, τ can be inferred using
validation sets (Liu & Tao, 2016; Yu et al., 2018). Note
that λ(e) only depends on the memorization effect of deep
networks but not any specific datasets.

Measurement. To measure the performance, we use the
test accuracy, i.e., test accuracy = (# of correct predictions)
/ (# of test dataset). Intuitively, higher test accuracy means
that the algorithm is more robust to the label noise.

3.2. Comparison with the State-of-the-Arts

Results on MNIST. Figure 3 shows test accuracy vs.
number of epochs on MNIST. In all three plots, we can
clearly see the memorization effects of deep networks. For
example, test accuracy of Standard first reaches a very high
level since deep network will first fit clean labels. Over the
increase of epochs, deep network will over-fit noisy labels
gradually, which decreases its test accuracy accordingly.
Thus, a robust training method should alleviate or even stop
the decreasing trend in test accuracy.

In the easiest Symmetry-20% case, all new approaches
work better than Standard obviously, which demonstrates
their robustness. Co-teaching+ and F-correction work
significantly better than Co-teaching, MentorNet and De-
coupling. However, F-correction cannot combat with the
other two harder cases, i.e., Pair-45% and Symmetry-50%.
Especially in the hardest Pair-45% case, F-correction can
learn nothing at all, which greatly restricts its practical
usage in the wild. Besides, in two such cases, Co-teaching+
achieves higher accuracy than Co-teaching and MentorNet.

Results on CIFAR-10. Figure 4 shows test accuracy vs.
number of epochs on CIFAR-10. Similarly, we can clearly
see the memorization effects of deep networks, namely test
accuracy of Standard first reaches a very high level then
decreases gradually. In the easiest Symmetry-20% case,
Co-teaching+ works much better than all other baselines,
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Table 3. MLP and CNN models used in our experiments on MNIST, CIFAR-10, CIFAR-100/Open-sets, and NEWS.
MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100/Open-sets MLP on NEWS

28×28 Gray Image 32×32 RGB Image 32×32 RGB Image 1000-D Text
3×3 Conv, 64 BN, ReLU 300-D Embedding

5×5 Conv, 6 ReLU 3×3 Conv, 64 BN, ReLU Flatten→ 1000×300
2×2 Max-pool 2×2 Max-pool Adaptive avg-pool→ 16×300

3×3 Conv, 128 BN, ReLU
Dense 28×28→ 256, ReLU 5×5 Conv, 16 ReLU 3×3 Conv, 128 BN, ReLU Dense 16×300→ 4×300

2×2 Max-pool 2×2 Max-pool BN, Softsign
3×3 Conv, 196 BN, ReLU

Dense 16×5×5→ 120, ReLU 3×3 Conv, 196 BN, ReLU Dense 4×300→ 300
Dense 120→ 84, ReLU 2×2 Max-pool BN, Softsign

Dense 256→ 10 Dense 84→ 10 Dense 256→ 100/10 Dense 300→ 7

Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+
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Figure 3. Test accuracy vs. number of epochs on MNIST dataset.

where F-correction works similar to MentorNet but a bit
worse than Co-teaching.

However, F-correction cannot combat with two harder
cases easily, i.e., Pair-45% and Symmetry-50%. In the
Symmetry-50% case, F-correction works better than Stan-
dard and Decoupling, but worse than Co-teaching and Co-
teaching+. In the hardest Pair-45% case, F-correction
almost learns nothing. In such two harder cases, our Co-
teaching+ consistently achieves higher accuracy than Co-
teaching and MentorNet.

Results on CIFAR-100. Figure 5 shows test accuracy vs.
number of epochs on CIFAR-100. Similarly, we can clearly
see the memorization effects of deep networks, namely test
accuracy of Standard first reaches a very high level then
decreases gradually. In the easiest Symmetry-20% case,
Co-teaching+ and F-correction work significantly better
than Co-teaching, MentorNet and Decoupling.

However, F-correction cannot combat with two harder
cases easily, i.e., Pair-45% and Symmetry-50%. In the
Symmetry-50% case, F-correction works better than Stan-
dard and Decoupling, but worse than the other three
approaches. In the hardest Pair-45% case, F-correction
almost learns nothing. In such two harder cases, our Co-

teaching+ consistently achieves higher accuracy than Co-
teaching and MentorNet. An interesting phenomenon is,
in the easiest case, Co-teaching+ not only fully stop the
decreasing trend in test accuracy, but also performs better
and better with the increase of epochs.
Results on NEWS. To verify Co-teaching+ comprehen-
sively, we conduct experiments not only on vision datasets,
but also on text dataset NEWS. Figure 6 shows test accuracy
vs. number of epochs on NEWS.

Similar to results on vision datasets, we can still see the
memorization effects of deep networks in all three plots,
i.e., test accuracy of Standard first reaches a very high
level and then gradually decreases. However, Co-teaching+
mitigates such memorization issue, and works much better
than others across three cases. Note that F-correction
cannot combat with all three cases, even in the easiest
Symmetry-20% case. This interesting phenomenon in F-
correction does not occur in vision datasets.

Results on T-ImageNet. To verify our approach on a
complex scenario, Table 4 shows averaged/maximal test
accuracy on T-ImageNet over last 10 epochs. As we can
see, for both Symmetry cases, Co-teaching+ is the best. For
the Pair case, Co-teaching and Co-teaching+ outperform
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Figure 4. Test accuracy vs. number of epochs on CIFAR-10 dataset.
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Figure 5. Test accuracy vs. number of epochs on CIFAR-100 dataset.

other four baselines.

4. Experiments on Real-world Noisy Datasets
4.1. Experimental setup

Dataset. To verify the efficacy of our approach in real-
world scenario, we conduct experiments on open-set noisy
datasets (abbreviated as Open-sets) (Wang et al., 2018).
Specifically, Open-sets are built by replacing some training
images in CIFAR-10 by outside images, while keeping the
labels and the number of images per class unchanged. The
“mislabeled” images come from different outside datasets,
including CIFAR-100, ImageNet-32 (32 × 32 ImageNet
images) and SVHN. Note that outside images whose labels
exclude 10 classes in CIFAR-10 are considered.

Network & Optimizer & Initialization. We follow the
experimental settings in (Wang et al., 2018). Specifically,
we use a network architecture with 6 convolutional layers
and 1 fully-connected layer, and its details can be found
in the third column of Table 3. Batch normalization (BN)
is applied in each convolutional layer before the ReLU
activation, and a max-pooling layer is implemented every
two convolutional layers. All networks are trained by
Stochastic Gradient Descent (SGD) with learning rate 0.01,
weight decay 10−4 and momentum 0.9, and the learning
rate is divided by 10 after 40 and 80 epochs (100 in total).

Note that Open-sets are real-world noisy datasets. To
handle these complex scenarios, we should set the ratio of
small-loss samples λ(e) as follows.

λ(e) = 1−min{ e
Ek

τ, (1 +
e− Ek

Emax − Ek
)τ}, (3)

where Ek = 10 and Emax = 200.
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Figure 6. Test accuracy vs. number of epochs on NEWS dataset.

Table 4. Averaged/maximal test accuracy (%) of different approaches on T-ImageNet over last 10 epochs. The best results are in bold.
Flipping-Rate(%) Standard Decoupling F-correction MentorNet Co-teaching Co-teaching+

Pair-45% 26.14/26.32 26.10/26.61 0.63/0.67 26.22/26.61 27.41/27.82 26.54/26.87
Symmetry-50% 19.58/19.77 22.61/22.81 32.84/33.12 35.47/35.76 37.09/37.60 41.19/41.77
Symmetry-20% 35.56/35.80 36.28/36.97 44.37/44.50 45.49/45.74 45.60/46.36 47.73/48.20

Table 5. Averaged/maximal test accuracy (%) of different approaches on Open-sets over last 10 epochs. The best results are in bold.
Open-set noise Standard MentorNet Iterative (Wang et al., 2018) Co-teaching Co-teaching+

CIFAR-10+CIFAR-100 62.92 79.27/79.33 79.28 79.43/79.58 79.28/79.74
CIFAR-10+ImageNet-32 58.63 79.27/79.40 79.38 79.42/79.60 79.89/80.52

CIFAR-10+SVHN 56.44 79.72/79.81 77.73 80.12/80.33 80.62/80.95

4.2. Comparison with the State-of-the-Arts

Results on three Open-sets. Following (Wang et al.,
2018), we report the classification accuracy on CIFAR-
10 noisy datasets with 40% open-set noise in Table 5.
The Standard and Iterative results are borrowed from
(Wang et al., 2018). For MentorNet, Co-teaching and Co-
teaching+, we report the averaged/maximal test accuracy
over the last 10 epochs. As can be seen, our approach
outperforms other baselines on all three open-set noisy
datasets. For CIFAR-100 noise and ImageNet-32 noise,
both Co-teaching and Co-teaching+ are better than Itera-
tive. For SVHN noise, Co-teaching+ is significantly better
than Iterative; while MentorNet and Co-teaching also work
better than Iterative.

Reflection of results. Different algorithm designs lead
to different results. To sum up, self-paced MentorNet is
concluded as training single deep network using the small-
loss trick. Co-teaching moves further step, which is viewed
as cross-training double deep networks using the small-
loss trick. Based on Co-teaching, Co-teaching+ is regarded
as cross-training double diverged deep networks using
the small-loss trick. Thus, keeping two deep networks

diverged is one of the key ingredients to train robust deep
networks. This point has been empirically verified by the
result difference between Co-teaching and Co-teaching+.

5. Conclusion
This paper presents a robust learning paradigm called Co-
teaching+, which trains deep neural networks robustly
under noisy supervision. Our key idea is to maintain
two networks simultaneously that find the prediction dis-
agreement data. Among such disagreement data, our
method cross-trains on data screened by the “small loss”
criteria. We conduct experiments to demonstrate that, our
proposed Co-teaching+ can train deep models robustly with
the extremely noisy supervision beyond Co-teaching and
MentorNet. More importantly, we summarize three key
points towards training robust deep networks with noisy
labels: (1) using small-loss trick based on memorization
effects of deep networks; (2) cross-updating parameters of
two networks; and (3) keeping two deep networks diverged
during the whole training epochs. In future, we will
investigate the theory of Co-teaching+ from the view of
disagreement-based algorithms (Wang & Zhou, 2017).
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