
Supplementary material:
Online Adaptive Principal Component Analysis and Its extensions

The supplementary material contains proofs of the main re-
sults of the paper along with supporting results.

Before presenting the proofs, we need the following lemma
from previous literature:

Lemma 4. (Freund & Schapire, 1997) Suppose 0 ≤ L ≤ L̃
and 0 < R ≤ R̃. Let β = g(L̃/R̃) where g(z) = 1/(1 +√

2/z). Then

−L lnβ +R

1− β
≤ L+

√
2L̃R̃+R

Additionally, we need the following classic bound on traces
for postive semidefinite matrices. See, e.g. (Tsuda et al.,
2005).

Lemma 5. For any positive semi-definite matrixA and any
symmetric matrices B and C, B � C implies Tr(AB) ≤
Tr(AC).

A. Proof of Theorem 1
Proof. Fix 1 ≤ r ≤ s ≤ T . We set qt = q ∈ Bnn−k for
t = r, . . . , s and 0 elsewhere. Thus, we have that ‖qt‖1 is
either 0 or 1.

According to Lemma 1, for both cases of qt, we have

‖qt‖1 wt
T `t(1−exp(−η))−ηqt

T `t ≤
n∑
i=1

qt,i ln(
vt+1,i

ŵt,i
)

(32)

The analysis for
∑n
i=1 qt,i ln(

vt+1,i

ŵt,i
) follows the Proof of

Proposition 2 in (Cesa-Bianchi et al., 2012b). We describe
the steps for completeness, since it is helpful for under-
standing the effect of the fixed-share step, Eq.(4b). This
analysis will be crucial for the understanding how the fixed-
share step can be applied to PCA problems.

∑n
i=1 qt,i ln(

vt+1,i
ŵt,i

) =

n∑
i=1

(
qt,i ln

1

ŵt,i
− qt−1,i ln

1

vt,i

)
︸ ︷︷ ︸

A

+

n∑
i=1

(
qt−1,i ln

1

vt,i
− qt,i ln

1

vt+1,i

)
︸ ︷︷ ︸

B

(33)

For the expression of A, we have

A =
∑

i:qt,i≥qt−1,i

(
(qt,i − qt−1,i) ln 1

ŵt,i
+ qt−1,i ln

vt,i
ŵt,i

)
+

∑
i:qt,i<qt−1,i

(
(qt,i − qt−1,i) ln

1

vt,i︸ ︷︷ ︸
≤0

+qt,i ln
vt,i
ŵt,i

)
(34)

Based on the update in Eq.(4), we have 1/ŵt,i ≤ n/α and
vt,i/ŵt,i ≤ 1/(1− α). Plugging the bounds into the above
equation, we have

A ≤
∑

i:qt,i≥qt−1,i

(qt,i − qt−1,i)︸ ︷︷ ︸
=DTV (qt,qt−1)

ln n
α

+
( ∑
i:qt,i≥qt−1,i

qt−1,i +
∑

i:qt,i<qt−1,i

qt,i
)

︸ ︷︷ ︸
=‖qt‖1−DTV (qt,qt−1)

ln 1
1−α .

(35)

Telescoping the expression of B, substituting the above in-
equality in Eq.(33), and summing over t = 2, . . . , T , we
have

T∑
t=2

n∑
i=1

qt,i ln
vt+1,i

ŵt,i
≤ m(q1:T) ln

n

α
+

( T∑
t=2

‖qt‖1 −m(q1:T)
)

ln
1

1− α
+

n∑
i=1

q1,i ln
1

v2,i
. (36)

Adding the t = 1 term to the above inequality, we have

T∑
t=1

n∑
i=1

qt,i ln
vt+1,i

ŵt,i
≤ ‖q1‖1 ln(n) +m(q1:T) ln n

α

+
( T∑
t=1

‖qt‖1 −m(q1:T)
)

ln 1
1−α .

(37)

Now we bound the right side, using the choices for qt de-
scribed at the beginning of the proof. If r ≥ 2, m(q1:T) =
1, and ‖q1‖1 = 0. If r = 1, m(q1:T) = 0, and ‖q1‖1 = 1.
Thus, m(q1:T) + ‖q1‖1 = 1, and the right part can be up-
per bounded by ln n

α + T ln 1
1−α .

Combine the above inequality with Eq.(32), set qt = q ∈
Bn

n-k for t = r, . . . , s and 0 elsewhere, and multiply both
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sides by n− k, we have

(1− exp(−η))
s∑
t=r

(n− k)wt
T `t − η

s∑
t=r

(n− k)qT `t

≤ (n− k) ln n
α + (n− k)T ln 1

1−α
(38)

If we set α = 1/(1 + (n− k)T ), then the right part can be
upper bounded by (n− k) ln(n(1 + (n− k)T )) + 1, which
equals to D as defined in the Theorem 1. Thus, the above
inequality can be reformulated as

s∑
t=r

(n− k)wt
T `t ≤

η
s∑
t=r

(n− k)qT `t +D

1− exp(−η)
(39)

Since the above inequality holds for arbitrary q ∈ Bn
n-k, we

have

s∑
t=r

(n− k)wt
T `t ≤

η min
q∈Bn

n-k

s∑
t=r

(n− k)qT `t +D

1− exp(−η)
(40)

We will apply the inequality in Lemma 4 to upper bound

the right part in Eq.(40). With min
q∈Bn

n-k

s∑
t=r

(n − k)qT `t ≤ L

and η = ln(1 +
√

2D/L), we have

s∑
t=r

(n− k)wt
T `t− min

q∈Bn
n-k

s∑
t=r

(n− k)qT `t ≤
√

2LD+D

(41)

Since the above inequality always holds for all intervals,
[r, s], the result is proved by maximizing the left side over
[r, s].

B. Proof of Theorem 3
Proof. In the proof, we will use two cases of Qt: Qt ∈
Bnn−k, and Qt = 0.

We first apply the eigendecomposition to Qt as Qt =
D̃ diag(qt)D̃

T , where D̃ = [d̃1, . . . , d̃n]. Since in the
adaptive setting, Qt−1 is either equal to Qt or 0, they
share the same eigenvectors and Qt−1 can be expressed as
Qt−1 = D̃ diag(qt−1)D̃T .

According to Lemma 2, the following inequality is true for
both cases of Qt:

‖qt‖1 Tr(Wtxtxt
T )(1− exp(−η))− ηTr(Qtxtxt

T )

≤ −Tr(Qt ln Ŵt) + Tr(Qt lnVt+1)
(42)

The next steps extend proof of Proposition 2 in (Cesa-
Bianchi et al., 2012b) to the matrix case.

We analyze the right part of the above inequality, which can
be expressed as:

−Tr(Qt ln Ŵt) + Tr(Qt lnVt+1) = Ā+ B̄ (43)

where Ā = −Tr(Qt ln Ŵt) + Tr(Qt−1 lnVt), and B̄ =
−Tr(Qt−1 lnVt) + Tr(Qt lnVt+1).

We will first upper bound the Ā term, and then telescope
the B̄ term.

Ā can be expressed as:

Ā =
∑

i:qt,i≥qt−1,i

(
−Tr

(
(qt,id̃id̃

T
i − qt−1,id̃id̃

T
i ) ln Ŵt

)︸ ︷︷ ︸
1

+ Tr(qt−1,id̃id̃
T
i lnVt)− Tr(qt−1,id̃id̃

T
i ln Ŵt)︸ ︷︷ ︸

2

)

+
∑

i:qt,i<qt−1,i

(
−Tr

(
(qt,id̃id̃

T
i − qt−1,id̃id̃

T
i ) lnVt

)︸ ︷︷ ︸
3

+ Tr(qt,id̃id̃
T
i lnVt)− Tr(qt,id̃id̃

T
i ln Ŵt)︸ ︷︷ ︸

4

)
(44)

For 1 , it can be expressed as:

1 = Tr
(
(qt,id̃id̃

T
i − qt−1,id̃id̃

T
i ) ln Ŵ−1

t

)
≤ Tr

(
(qt,id̃id̃

T
i − qt−1,id̃id̃

T
i ) ln n

α

)
= (qt,i − qt−1,i) ln n

α .

(45)

The inequality holds because the update in Eq.(14b) im-
plies ln Ŵ−1

T � I ln n
α and furthermore, (qt,id̃id̃

T
i −

qt−1,id̃id̃
T
i ) is positive semi-definite. Thus, Lemma 5,

gives the result.

The expression for 2 can be bounded as

2 = Tr(qt−1,id̃id̃
T
i ln(VtŴ

−1
t ))

≤ qt−1,i ln 1
1−α

(46)

where the equality is due to the fact that Vt and Ŵt

have the same eigenvectors. The inequality follows since
ln(VtŴ

−1
t ) � I ln 1

1−α , due to the update in Eq.(14b),
while qt−1,id̃id̃

T
i is positive semi-definite. Thus Lemma

5 gives the result.

The bound 3 can be expressed as:

3 = Tr
(
(−qt,id̃id̃

T
i + qt−1,id̃id̃

T
i ) lnVt

)
≤ 0 (47)

Here, the inequality follows since lnVt � 0 and and
(−qt,id̃id̃

T
i + qt−1,id̃id̃

T
i ) is positive semi-definite. Thus,

Lemma 5 gives the result.
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For 4 , we have 4 ≤ qt,i ln 1
1−α , which follows the

same argument used to bound the term 2 .

Thus, Ā can be upper bounded as follows:

Ā ≤
∑

i:qt,i≥qt−1,i

(qt,i − qt−1,i)︸ ︷︷ ︸
=DTV (qt,qt−1)

ln n
α

+
( ∑
i:qt,i≥qt−1,i

qt−1,i +
∑

i:qt,i<qt−1,i

qt,i
)

︸ ︷︷ ︸
=‖qt‖1−DTV (qt,qt−1)

ln 1
1−α

(48)

Then we telescope the B̄ term, substitute the above inequal-
ity for Ā into Eq.(43), and sum over t = 2, . . . , T to give:

T∑
t=2

(
− Tr(Qt ln Ŵt) + Tr(Qt lnVt+1)

)
≤ m(q1:T) ln n

α +
( T∑
t=2
‖qt‖1 −m(q1:T)

)
ln 1

1−α − Tr(Q1 lnV2)

(49)

Adding the t = 1 term to the above inequality, we have
T∑
t=1

(
− Tr(Qt ln Ŵt) + Tr(Qt lnVt+1)

)
≤ ‖q1‖1 ln(n) +m(q1:T) ln n

α +
( T∑
t=1
‖qt‖1 −m(q1:T)

)
ln 1

1−α

(50)

For the above inequality, we set Qt = Q ∈ Bnn−k for t =
r, . . . , s and 0 elsewhere, which makes qt = q ∈ Bnn−k for
t = r, . . . , s and 0 elsewhere. If r ≥ 2, m(q1:T) = 1, and
‖q1‖1 = 0. If r = 1, m(q1:T) = 0, and ‖q1‖1 = 1. Thus,
m(q1:T) + ‖q1‖1 = 1, and the right part can be upper
bounded by ln n

α + T ln 1
1−α .

The rest of the steps follow exactly the same as in the proof
of Theorem 1.

C. Proof of Lemma 3
Proof. We first deal with the term Tr(Qt lnVt+1). Accord-
ing to the update in Eq.(24a), we have

Tr(Qt lnVt+1) = Tr

(
Qt ln

(
exp(lnYt−ηCt)

Tr(exp(lnYt−ηCt))

))
= Tr

(
Qt(lnYt − ηCt)

)
− ln

(
Tr
(

exp(lnYt − ηCt)
))
,

(51)
since Qt ∈ Bn1 and Tr(Qt) = 1.

As a result, we have Tr(Qt lnVt+1) − Tr(Qt lnYt) =

−ηTr(QtCt)− ln
(

Tr
(

exp(lnYt − ηCt)
))

.

Thus, to prove the inequality in Lemma 3, it is enough to
prove the following inequality

ηTr(YtCt)−
η2

2
+ln

(
Tr
(

exp(lnYt−ηCt)
))
≤ 0 (52)

Before we proceed, we need the following lemmas:

Lemma 6 (Golden-Thompson inequality). For any sym-
metric matrices A and B, the following inequality holds:

Tr
(

exp(A+B)
)
≤ Tr

(
exp(A) exp(B)

)
Lemma 7 (Lemma 2.1 in (Tsuda et al., 2005)). For any
symmetric matrix A such that 0 � A � I and any ρ1, ρ2 ∈
R, the following holds:

exp
(
Aρ1 + (I −A)ρ2

)
� A exp(ρ1) + (I −A) exp(ρ2)

Then we apply the Golden-Thompson inequality to the
term Tr

(
exp(lnYt − ηCt)

)
, which gives us the inequal-

ity below:

Tr
(

exp(lnYt − ηCt)
)
≤ Tr(Yt exp(−ηCt)). (53)

For the term exp(−ηCt), by applying the Lemma 7 with
ρ1 = −η and ρ2 = 0, we will have the following inequal-
ity:

exp(−ηCt) � I − Ct(1− exp(−η)). (54)

Thus, we will have

Tr(Yt exp(−ηCt)) ≤ 1−Tr(YtCt)(1− exp(−η)), (55)

and

Tr
(

exp(lnYt − ηCt)
)
≤ 1− Tr(YtCt)(1− exp(−η)),

(56)
since Yt ∈ Bn1 and Tr(Yt) = 1.

Thus, it is enough to prove the following inequality

ηTr(YtCt)−
η2

2
+ ln

(
1−Tr(YtCt)(1− exp(−η))

)
≤ 0

(57)

Since ln(1− x) ≤ −x, we have

ln
(

1−Tr(YtCt)(1−exp(−η))
)
≤ −Tr(YtCt)(1−exp(−η)).

(58)
Thus, it suffices to prove the following inequality:

(
η − 1 + exp(−η)

)
Tr(YtCt)−

η2

2
≤ 0 (59)

Note that by using convexity of exp(−η), η − 1 +
exp(−η) ≥ 0.

By applying Lemma 5 with A = Yt, B = Ct, and C = I ,
we have Tr(YtCt) ≤ Tr(Yt) = 1. Thus, when η ≥ 0, it is
enough to prove the following inequality

η − 1 + exp(−η)− η2

2
≤ 0. (60)

This inequality follows from convexity of η2

2 − exp(−η)
over η ≥ 0.
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D. Proof of Theorem 6
Proof. First, since 0 � Ct � I , we have maxi,j |Ct(i, j)|
≤ 1.

Before we proceed, we need the following lemma from
(Warmuth & Kuzmin, 2006)

Lemma 8 (Lemma 1 in (Warmuth & Kuzmin, 2006)). Let
maxi,j |Ct(i, j)| ≤ r

2 , then for any ut ∈ Bn1 , any constants
a and b such that 0 ≤ a ≤ b

1+rb , and η = 2b
1+rb , we have

ayt
TCtyt − but

TCtut ≤ d(ut,yt)− d(ut,vt+1)

Now we apply Lemma 8 under the conditions r = 2, a =
b

2b+1 , η = 2a, and b = c
2 .

Recall that d(ut,yt)− d(ut,vt+1) =
∑
i ut,i ln

(
vt+1,i

yt,i

)
.

Combining this with the inequality in Lemma 8 and the fact
that ‖ut‖1 = 1, we have

a ‖ut‖1 yt
TCtyt − but

TCtut ≤
∑
i

ut,i ln
(vt+1,i

yt,i

)
(61)

Note that the above inequality is also true when ut = 0.

Note that the right side of the above inequality is the same
as the right part of the Eq.(32) in the proof of Theorem 1.

As a result, we will use the same steps as in the
proof of Theorem 1. Then we will set ut = u =

argminq∈Bn1

s∑
t=r

qTCtq for t = r, . . . , s, and 0 elsewhere.

Summing from t = 1 up to T , gives the following inequal-
ity:

a
[ s∑
t=r

yt
TCtyt

]
−b
[

min
u∈Bn1

s∑
t=r

uTCtu
]
≤ ln

n

α
+T ln

1

1− α
(62)

Since α = 1/(T + 1), T ln 1
1−α ≤ 1. Then the above

inequality becomes

a
[ s∑
t=r

yt
TCtyt

]
−b
[

min
u∈Bn1

s∑
t=r

uTCtu
]
≤ ln

(
(1+T )n

)
+1

(63)

Plugging in the expressions of a = c/(2c + 2), b = c/2,

and c =

√
2 ln
(

(1+T )n
)

+2
√
L

we will have

s∑
t=r

yt
TCtyt −minu∈Bn1

s∑
t=r

uTCtu

≤ c
[

minu∈Bn1 uTCtu
]

+ 2 c+1
c

(
ln
(
(1 + T )n

)
+ 1
)

≤ cL+ 2 c+1
c

(
ln
(
(1 + T )n

)
+ 1
)

= 2

√
2L
(

ln
(
(1 + T )n

)
+ 1
)

+ 2 ln
(
(1 + T )n

)
(64)

Since the inequality holds for any 1 ≤ r ≤ s ≤ T , the
proof is concluded by maximizing over [r, s] on the left.


