Supplementary material:
Online Adaptive Principal Component Analysis and Its extensions

The supplementary material contains proofs of the main re-
sults of the paper along with supporting results.

Before presenting the proofs, we need the following lemma
from previous literature:

Lemmad. (Freund & Schapire, 1997) Suppose 0 < L < L
and 0 < R < R. Let § = g(L/R) where g(z) = 1/(1 +

\/2/%). Then

%B;R<L+\/2LR+R

Additionally, we need the following classic bound on traces
for postive semidefinite matrices. See, e.g. (Tsuda et al.,
2005).

Lemma 5. For any positive semi-definite matrix A and any
symmetric matrices B and C, B < C implies Tr(AB) <
Tr(AC).

A. Proof of Theorem 1

Proof. Fix 1 <r < s <T. Wesetqy = q € B]_, for
t=r,...,sand 0 elsewhere. Thus, we have that ||q¢||1 is
either O or 1.

According to Lemma 1, for both cases of q, we have

n
Vt+1.4
llaslly we" le(1—exp(—n))—nas" be < ZQt,i 1H(%)
i=1 t,2

(32)

The analysis for . | g ln(vt+1 *) follows the Proof of

Proposition 2 in (Cesa-Bianchi et al., 2012b) We describe
the steps for completeness, since it is helpful for under-
standing the effect of the fixed-share step, Eq.(4b). This
analysis will be crucial for the understanding how the fixed-
share step can be applied to PCA problems.

.
Sy g (L) =

For the expression of A, we have

A= > ((Qt,i —qi—1,4)1In L +qi-1, ﬁt’i)
11q¢,i >qe—1,4
+ > ((Qt,i —qi—1,i) iln :tt : )
4:qt i <qt—1,:
<0
(34)

Based on the update in Eq.(4), we have 1/w;; < n/a and
v /Wi < 1/(1 — ). Plugging the bounds into the above
equation, we have

A< Z

i1qt,i > qt—1,i

(qti —qt—1,i)In 2

=Drvy(at,9t—1)

+ ( Z qt—1,i + Z

1:qt i 2qt—1,4 i:qe i <qt—1,4

qm) In ﬁ

=llatlly —Drv (at,9t—1)

(33)

Telescoping the expression of B, substituting the above in-
equality in Eq.(33), and summing over ¢t = 2,...,7T, we
have

T =n
ZZQHIH YL < (e, T)ln*-‘r

t=2i=1 ti

(; el — marr)) In -

= 1
i In ——. 36
- +;q1,1, no 69

Adding the ¢ = 1 term to the above inequality, we have

Ut+1 i <

INgE

>

t=11

qt,i In lal; In(n) +m(qu.T)In 2

S 1
+( > llaell, — m(q1:T)) In L.
t=1
(37

1

Now we bound the right side, using the choices for q; de-
scribed at the beginning of the proof. If » > 2, m(qq.T) =
L,and |[qq|; = 0. Ifr =1, m(qy.r) = 0,and ||qq1 ||; = 1.
Thus, m(q1.1) + [|q1||; = 1, and the right part can be up-
per bounded by In 2

Combine the above 1nequahty with Eq.(32), setqy = q €

By fort = r,...,s and O elsewhere, and multiply both
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sides by n — k, we have

(1= exp(=m)) 2. (n —k)w by — Z (n—k)q" L,
<(n—k)InZ+(n k)Tln—
(38)
If we set « = 1/(1 4 (n — k)T'), then the right part can be
upper bounded by (n — k) In(n(1+ (n —k)T")) + 1, which
equals to D as defined in the Theorem 1. Thus, the above
inequality can be reformulated as

s ny. (n—k)q"l+ D

T t=r
D (= k)we Tl < —=— (D (39)

t=r

Since the above inequality holds for arbitrary q € Bj ,, we
have

s rg}j’n Z (n—k)q't, + D
S (n—kywe Ty < = (40)
2 o)

We will apply the inequality in Lemma 4 to upper bound
the right part in Eq.(40). With mZISH E(n —k)qlty < L

nk t=7

and n = In(1 + /2D/L), we have

Z(n —k)w¢ 0y — min Z(n —k)q'ty <V2LD+ D
t=r asBn t=r

41
Since the above inequality always holds for all intervals,
[, 5], the result is proved by maximizing the left side over
[r, 5]. O

B. Proof of Theorem 3

Proof. In the proof, we will use two cases of Qy: @Q; €
Br_.and Q; = 0.

We first apply the eigendecomposition_to Q; as Q; =
D diag(q¢) DT, where D = [dy,...,dy]. Since in the
adaptive setting, QQ;_; is either equal to Q; or 0, they
share the same eigenvectors and (;_; can be expressed as
Qi—1 = Ddiag(qs—1)D".

According to Lemma 2, the following inequality is true for
both cases of );:

laell; Tr(Wexexe ™) (1 — exp(—n)) — 0 Tr(Qexext ™)
S — ’I‘I‘(Qt In Wt) + TT(Qt In V;+1)
(42)

The next steps extend proof of Proposition 2 in (Cesa-
Bianchi et al., 2012b) to the matrix case.

We analyze the right part of the above inequality, which can
be expressed as:

—TH(QInW,) + Tr(QIn Vi) = A+ B (43)

where A = —Tr(Q,InW,) + Tr(Q;_; nV;), and B =
—Tr(Qi—1InV;) + Tr(Q In Vitq).

We will first upper bound the A term, and then telescope
the B term.

A can be expressed as:

i- ¥

1:qt,i > qt—1,i

(_ Tr ((qtzala:f — ¢—1,:did{ ) In /Wt)

@

+ Tr(Qtfl,iaiaiT In V;&) - Tr(qt,u&i&? In Wt) )

©)

—Tr ((QtzalalT — q—1,:did{ ) In Vi)

®

+ Tr(qtyiai&iT nV;) — Tr(qt,iaiaiT In Wt) )

@

+ X

4:qe, i <qi—1,i

(44)
For @, it can be expressed as:
@ :Tr(( && —q_ 1Z(~i(~i )antfl)
< Tr ((q“d d:‘r—qt “dd ) In %) (45)
= (Qt,z_q -1, >1na

The inequality holds because the update in Eq.(14b) im-
plies In W; L <7 In % and furthermore, (qtyi&i&iT —
qi—1,:d;d7) is positive semi-definite.
gives the result.

Thus, Lemma 5,

The expression for @ can be bounded as

@ = Tr(qt,l_,ialiaiT ln(VtWt_l)) (46)
<q1,ilng=—

where the equality is due to the fact that V; and /Wt
have the same eigenvectors The inequality follows since
In(V;W; ') = IlnL, due to the update in Eq.(14b),

while ¢;_; ;d;d] is p0s1t1ve semi-definite. Thus Lemma
5 gives the result.

The bound @ can be expressed as:

(3) = Tr ((—qedsdf + ge—1,d:d7) InV;) <0 (47)

Here, the inequality follows since InV; =< 0 and and
(—qr.idid! + q;—1,:d;dY) is positive semi-definite. Thus,
Lemma 5 gives the result.
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For @, we have @ < q,;In 2=, which follows the

same argument used to bound the term @

Thus, A can be upper bounded as follows:

A< Z

4:qt,i > qt—1,i

(gti — qt—1,4)In 2

=Dry(at,at—1)

+ ( Z gt—1,i + Z

4Gt >qt—1,4 i:qt,; <qt—1,4

qm) L

=llatlly —Drv (at,at—1)
(48)
Then we telescope the B term, substitute the above inequal-
ity for A into Eq.(43), and sum over t = 2,...,T to give:

T —
> ( — Tr(Q¢ In Wy) + Tr(Q¢ In Vt+1))
=2

t
T
<m(qur)n 2 + (3 llacl, = maur)) In i — Tr(Qi InV2)
t=2
(49)

Adding the ¢ = 1 term to the above inequality, we have

T —
z¥1 ( — Tr(Q¢ In Wy) + Tr(Q¢ In VH—l))
T
< llq1ll; In(n) + m(qz.T)In 2 + (f;l lacll, — m(q1:-r)) In

(50)

For the above inequality, we set @y = @ € B)'_, fort =
r,...,sand 0O elsewhere, which makes q; = q € B)!_, for
t=r,...,sand 0 elsewhere. If » > 2, m(qq.T) = 1, and
llgill; = 0. If r = 1, m(qq.7) = 0, and ||q1||; = 1. Thus,
m(d1:t) + |lq1]; = 1, and the right part can be upper
bounded by In % + T'In

l—o”
The rest of the steps follow exactly the same as in the proof
of Theorem 1. O

C. Proof of Lemma 3
Proof. We first deal with the term Tr(Q; In V34 1). Accord-
ing to the update in Eq.(24a), we have
xp(In Yy —nCy
Tr(QInViyq) =Tr (Qt In (’I‘re(e)rzlg(lnytnné)t))>>

=Tr (Qt(lnYt — nCt)) —In (Tr (exp(lnYt — nCt))),
(51)
since Q¢ € BY and Tr(Q;) = 1.

As a result, we have Tr(Q;InViyq) — Tr(Q:InY;) =
—nTr(Q:Cy) — In (Tr (exp(InY; — nCt))).

Thus, to prove the inequality in Lemma 3, it is enough to
prove the following inequality

2
n Tr(YtCt)—%—l—ln (Tr (exp(lnY}—nC’t))) <0 (52)

Before we proceed, we need the following lemmas:

Lemma 6 (Golden-Thompson inequality). For any sym-
metric matrices A and B, the following inequality holds:

Tr (exp(A + B)) < Tr (exp(A) exp(B))

Lemma 7 (Lemma 2.1 in (Tsuda et al., 2005)). For any
symmetric matrix A such that0 < A < I and any p1, p2 €
R, the following holds:

exp (Apy + (I — A)pa) < Aexp(p1) + (I — A) exp(p2)

Then we apply the Golden-Thompson inequality to the
term Tr (exp(InY; — 1C;)), which gives us the inequal-
ity below:

Tr (exp(lnYt — r]C’t)) < Tr(Yzexp(—nCy)).  (53)

For the term exp(—nC}), by applying the Lemma 7 with
p1 = —n and pa = 0, we will have the following inequal-

ity:
exp(—nCy) 2 I — Cy(1 — exp(—n)). (54)

Thus, we will have
Tr(Y;exp(—nC)) < 1 — Tr(Y:Ct)(1 — exp(—n)), (55)
and

Tr (exp(lnYt — nCt)) <1—Tr(Y;C)(1 — exp(—n)),
(56)
since Y; € B} and Tr(Y:) = 1.

Thus, it is enough to prove the following inequality

2
NTe(Y,Co) = 5+ In (1= Te(¥iC)(1 — exp(-)) <0
(57)

Since In(1 — z) < —z, we have

In (17Tr(Y}Ct)(lfeXp(f17))) < — Te(Y:C)(1—exp(—n)).

(58)
Thus, it suffices to prove the following inequality:
2
(n— 14 exp(—n)) Te(Y:Cy) — > <0 (59)

Note that by using convexity of exp(—n), n — 1 +
exp(—n) = 0.

By applying Lemma 5 with A = Y;, B =Cy,and C = 1,

we have Tr(Y;Cy) < Tr(Y;) = 1. Thus, whenn > 0, itis

enough to prove the following inequality

o
2

n—1+exp(—n) <0. (60)

This inequality follows from convexity of § — exp(—n)
overn > 0. O



Online Adaptive PCA and Its Extensions

D. Proof of Theorem 6

Proof. First, since 0 < Cy = I, we have max; ; |Cy(4, j)|
<1.

Before we proceed, we need the following lemma from
(Warmuth & Kuzmin, 2006)

Lemma 8 (Lemma 1 in (Warmuth & Kuzmin, 2006)). Let
max; ; |Ci (i, j)| < 5, then for any ug € B”, any constants

a and b such that 0 < a< andn = we have

1+ 1+rd’ 1+rb’

ays ' Crye — bug Crug < d(ug, ye) — d(ug, V)

Now we apply Lemma 8 under the conditions r = 2, a =

b — _c
Tﬂ,n—2a,andb—2.

Recall that d(ut, }’t) — d(ut, Vt+1) E Up ; In (1}1+1 Ji ) )

Yt,i
Combining this with the inequality in Lemma 8 and the fact

that ||ug||; = 1, we have

Vi1,
a||ut||1}’t Ciyt — bug Ctut<zut11n< t; Z)
t,0

(61)
Note that the above inequality is also true when u; = 0.

Note that the right side of the above inequality is the same
as the right part of the Eq.(32) in the proof of Theorem 1.

As a result, we will use the same steps as in the
proof of Theorem 1. Then we will set uy = u =
argming e gn Z ql'Ciqfort =r,...,s, and 0 elsewhere.

Summing from t = lupto T, gives the following inequal-
ity:

CL[ZYtTCth}
t=r

<In—+TIn
(62)

Since « = 1/(T + 1), TIn~ < 1. Then the above
inequality becomes

Q[Z YtTCth}
t=r

lerlgI}LZu Cyu] <In ((14+T)n)+1

(63)
Plugging in the expressions of a = ¢/(2¢ + 2), b = ¢/2,
4/21n ((1+T)n) +2

7T we will have

and ¢ =

S
Z yt! Cryy — mingepr > u’'Cyu
t=r

< c[mmuegn u Ctu} + 2"Jrl (ln ((1 —|—T)n) + 1)
<cL+2 (In (14 T)n )+1)

= 2\/2L(ln (1+T)n) + 1) +2In ((14T)n)

(64)

R n 1
_b[grég%’;u Ciu] < o -

Since the inequality holds for any 1 < r» < s < T, the

proof is concluded by maximizing over [r, s] on the left.
O



