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Abstract
We propose algorithms for online principal com-
ponent analysis (PCA) and variance minimiza-
tion for adaptive settings. Previous literature has
focused on upper bounding the static adversarial
regret, whose comparator is the optimal fixed ac-
tion in hindsight. However, static regret is not
an appropriate metric when the underlying envi-
ronment is changing. Instead, we adopt the adap-
tive regret metric from the previous literature and
propose online adaptive algorithms for PCA and
variance minimization, that have sub-linear adap-
tive regret guarantees. We demonstrate both the-
oretically and experimentally that the proposed
algorithms can adapt to the changing environ-
ments.

1. Introduction
In the general formulation of online learning, at each time
step, the decision maker makes decision without knowing
its outcome, and suffers a loss based on the decision and
the observed outcome. Loss functions are chosen from a
fixed class, but the sequence of losses can be generated de-
terministically, stochastically, or adversarially.

Online learning is a very popular framework with many
variants and applications, such as online convex optimiza-
tion (Zinkevich, 2003; Shalev-Shwartz et al., 2012), online
convex optimization for cumulative constraints (Yuan &
Lamperski, 2018), online non-convex optimization (Hazan
et al., 2017; Gao et al., 2018), online auctions (Blum et al.,
2004), online controller design (Yuan & Lamperski, 2017),
and online classification and regression (Crammer et al.,
2006). Additionally, recent advances in linear dynamical
system identification (Hazan et al., 2018) and reinforce-
ment learning (Fazel et al., 2018) have been developed
based on the ideas from online learning.
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The standard performance metric for online learning mea-
sures the difference between the decision maker’s cumula-
tive loss and the cumulative loss of the best fixed decision
in hindsight (Cesa-Bianchi & Lugosi, 2006). We call this
metric static regret, since the comparator is the best fixed
optimum in hindsight. However, when the underlying envi-
ronment is changing, due to the fixed comparator (Herbster
& Warmuth, 1998), static regret is no longer appropriate.

Alternatively, to capture the changes of the underlying en-
vironment, (Hazan & Seshadhri, 2009) introduced the met-
ric called adaptive regret, which is defined as the maximum
static regret over any contiguous time interval.

In this paper, we are mainly concerned with the prob-
lem of online Principal Component Analysis (online PCA)
for adaptive settings. Previous online PCA algorithms are
based on either online gradient descent or matrix exponen-
tiated gradient algorithms (Tsuda et al., 2005; Warmuth &
Kuzmin, 2006; 2008; Nie et al., 2016). These works bound
the static regret for online PCA algorithms, but do not ad-
dress adaptive regret. As argued above, static regret is not
appropriate under changing environments.

This paper gives an efficient algorithm for online PCA and
variance minimization in changing environments. The pro-
posed method mixes the randomized algorithm from (War-
muth & Kuzmin, 2008) with a fixed-share step (Herbster
& Warmuth, 1998). This is inspired by the work of (Cesa-
Bianchi et al., 2012b;a), which shows that the Hedge al-
gorithm (Freund & Schapire, 1997) together with a fixed-
share step provides low regret under a variety of measures,
including adaptive regret.

Furthermore, we extend the idea of the additional fixed-
share step to the online adaptive variance minimization in
two different parameter spaces: the space of unit vectors
and the simplex. In the Section 6 on experiments1, we also
test our algorithm’s effectiveness. In particular, we show
that our proposed algorithm can adapt to the changing en-
vironment faster than the previous online PCA algorithm.

While it is possible to apply the algorithm in (Hazan & Se-
shadhri, 2009) to solve the online adaptive PCA and vari-
ance minimization problems with the similar order of the

1code available at https://github.com/yuanx270/online-
adaptive-PCA



Online Adaptive PCA and Its Extensions

adaptive regret as in this paper, it requires running a pool
of algorithms in parallel. Compared to our algorithm, Run-
ning this pool algorithms requires complex implementation
that increases the running time per step by a factor of log T .

1.1. Notation

Vectors are denoted by bold lower-case symbols. The i-th
element of a vector q is denoted by qi. The i-th element of
a sequence of vectors at time step t, xt, is denoted by xt,i.

For two probability vectors q,w ∈ Rn, we use d(q,w)
to represent the relative entropy between them, which is
defined as

∑n
i=1 qi ln( qiwi ). The `1-norm and `2-norm

of the vector q are denoted as ‖q‖1, ‖q‖2, respectively.
q1:T is the sequence of vectors q1, . . . ,qT, and m(q1:T)

is defined to be equal to
T−1∑
t=1

DTV (qt+1,qt), where

DTV (qt,qt−1) is defined as
∑

i:qt,i≥qt−1,i

(qt,i−qt−1,i). The

expected value operator is denoted by E.

When we refer to a matrix, we use capital letters such as
P and Q with ‖Q‖2 representing the spectral norm. For
the identity matrix, we use I . The quantum relative en-
tropy between two density matrices2 P and Q is defined as
∆(P,Q) = Tr(P lnP ) − Tr(P lnQ), where lnP is the
matrix logarithm for symmetric positive definite matrix P
(and exp(P ) is the matrix exponential).

2. Problem Formulation
The goal of the PCA (uncentered) algorithm is to find a
rank k projection matrix P that minimizes the compression

loss:
T∑
t=1
‖xt − Pxt‖22. In this case, P ∈ Rn×n must be

a symmetric positive semi-definite matrix with only k non-
zero eigenvalues which are all equal to 1.

In online PCA, the data points come in a stream. At each
time t, the algorithm first chooses a projection matrix Pt
with rank k, then the data point xt is revealed, and a com-
pression loss of ‖xt − Ptxt‖22 is incurred.

The online PCA algorithm (Warmuth & Kuzmin, 2008)
aims to minimize the static regret Rs ,which is the differ-
ence between the total expected compression loss and the
loss of the best projection matrix P ∗ chosen in hindsight:

Rs =

T∑
t=1

E[Tr((I−Pt)xtxt
T )]−

T∑
t=1

Tr((I−P ∗)xtxt
T ).

(1)
The algorithm from (Warmuth & Kuzmin, 2008) is ran-

2A density matrix is a symmetric positive semi-definite matrix
with trace equal to 1. Thus, the eigenvalues of a density matrix
form a probability vector.

domized and the expectation is taken over the distribution
of Pt matrices. The matrix P ∗ is the solution to the follow-
ing optimization problem with S being the set of rank-k
projection matrices:

min
P∈S

T∑
t=1

Tr((I − P )xtxt
T ) (2)

Algorithms that minimize static regret will converge to P ∗,
which is the best projection for the entire data set. How-
ever, in many scenarios the data generating process changes
over time. In this case, a solution that adapts to changes
in the data set may be desirable. To model environmen-
tal variation, several notions of dynamically varying regret
have been proposed (Herbster & Warmuth, 1998; Hazan
& Seshadhri, 2009; Cesa-Bianchi et al., 2012b). In this pa-
per, we study adaptive regretRa from (Hazan & Seshadhri,
2009), which results in the following online adaptive PCA
problem:

Ra = max
[r,s]⊂[1,T ]

{ s∑
t=r

E[Tr((I − Pt)xtxt
T )]

−min
U∈S

s∑
t=r

Tr((I − U)xtxt
T )
}

(3)
In the next few sections, we will present an algorithm that
achieves low adaptive regret.

3. Learning the Adaptive Best Subset of
Experts

In (Warmuth & Kuzmin, 2008) it was shown that online
PCA can be viewed as an extension of a simpler problem
known as the best subset of experts problem. In particu-
lar, they first propose an online algorithm to solve the best
subset of experts problem, and then they show how to mod-
ify the algorithm to solve PCA problems. In this section,
we show how the addition of a fixed-share step (Herbster
& Warmuth, 1998; Cesa-Bianchi et al., 2012b) can lead to
an algorithm for an adaptive variant of the best subset of
experts problem. Then we will show how to extend the
resulting algorithm to PCA problems.

The adaptive best subset of experts problem can be de-
scribed as follows: we have n experts making decisions
at each time t. Before revealing the loss vector `t ∈ Rn
associated with the experts’ decisions at time t, we select a
subset of experts of size n − k (represented by vector vt)
to try to minimize the adaptive regret defined as:

Rsubexp
a = max

[r,s]⊂[1,T ]

{ s∑
t=r

E[vt
T `t]− min

u∈Svec

s∑
t=r

uT `t

}
.

(5)
Here, the expectation is taken over the probability distribu-
tion of vt. Both vt and u are in Svec which denotes the
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Algorithm 1 Adaptive Best Subset of Experts
1: Input: 1 ≤ k < n and an initial probability vector

w1 ∈ Bn
n-k.

2: for t = 1 to T do
3: Use Algorithm 2 with input d = n−k to decompose

wt into
∑
j pjrj, which is a convex combination of

at most n corners of rj.
4: Randomly select a corner r = rj with associated

probability pj .
5: Use the k components with zero entries in the drawn

corner r as the selected subset of experts.
6: Receive loss vector `t.
7: Update wt+1 as:

vt+1,i =
wt,i exp(−η`t,i)∑n
j=1 exp(−η`t,j)

(4a)

ŵt+1,i =
α

n
+ (1− α)vt+1,i (4b)

wt+1 = capn-k(ŵt+1) (4c)

where capn-k() calls Algorithm 3.
8: end for

Algorithm 2 Mixture Decomposition (Warmuth &
Kuzmin, 2008)

1: Input: 1 ≤ d < n and w ∈ Bn
d .

2: repeat
3: Let r be a corner for a subset of d non-zero compo-

nents of w that includes all components of w equal
to |w|d .

4: Let s be the smallest of the d chosen components of
r and l be the largest value of the remaining n − d
components.

5: update w as w −min(ds, |w| − dl)r and Output p
and r.

6: until w = 0

vector set with only n− k non-zero elements equal to 1.

Similar to the static regret case from (Warmuth & Kuzmin,
2008), the problem in Eq.(5) is equivalent to:

Rsubexp
a = max

[r,s]⊂[1,T ]

{ s∑
t=r

(n−k)wt
T
`t− min

q∈Bn
n-k

s∑
t=r

(n−k)q
T
`t
}

(6)

where wt ∈ Bn
n-k, and Bn

n-k represents the capped proba-
bility simplex defined as

∑n
i=1 wt,i = 1 and 0 ≤ wt,i ≤

1/(n− k), ∀i.

Such equivalence is due to the Theorem 2 in (Warmuth &
Kuzmin, 2008) ensuring that any vector q ∈ Bn

n-k can be
decomposed as convex combination of at most n corners
of rj by using Algorithm 2, where the corner rj is defined
as having n − k non-zero elements equal to 1/(n − k).
As a result, the corner can be sampled by the associated

Algorithm 3 Capping Algorithm (Warmuth & Kuzmin,
2008)

1: Input: probability vector w and set size d.
2: Let w↓ index the vector in decreasing order, that is,

w1
↓ = max(w).

3: if max(w) ≤ 1/d then
4: return w.
5: end if
6: i = 1.
7: repeat
8: (* Set first i largest components to 1/d and normal-

ize the rest to (d− i)/d *)
9: w̃ = w, w̃↓j = 1/d, for j = 1, . . . , i.

10: w̃↓j = d−i
d

w̃↓j∑n
l=j w̃

↓
l

, for j = i+ 1, . . . , n.

11: i = i+ 1.
12: until max(w̃) ≤ 1/d.

probability obtained from the convex combination, which
is a valid subset selection vector vt with the multiplication
of n− k.

Connection to the online adaptive PCA. The problem
from Eq.(5) can be viewed as restricted version of the on-
line adaptive PCA problem from Eq.(3). In particular, say
that I − Pt = diag(vt). This corresponds to restricting
Pt to be diagonal. If `t is the diagonal of xtxt

T , then the
objectives of Eq.(5) and Eq.(3) are equal.

We now return to the adaptive best subset of experts prob-
lem. When r = 1 and s = T , the problem reduces to the
standard static regret minimization problem, which is stud-
ied in (Warmuth & Kuzmin, 2008). Their solution applies
the basic Hedge Algorithm to obtain a probability distribu-
tion for the experts, and modifies the distribution to select
a subset of the experts.

To deal with the adaptive regret considered in Eq.(6), we
propose the Algorithm 1, which is a simple modification to
Algorithm 1 in (Warmuth & Kuzmin, 2008). More specifi-
cally, we add Eq.(4b) when updating wt+1 in Step 7, which
is called a fixed-share step. This is inspired by the analy-
sis in (Cesa-Bianchi et al., 2012b), which shows that the
online adaptive best expert problem can be solved by sim-
ply adding this fixed-share step to the standard Hedge al-
gorithm.

With the Algorithm 1, the following lemma can be ob-
tained:

Lemma 1. For all t ≥ 1, all `t ∈ [0, 1]n, and for all
qt ∈ Bn

n-k, Algorithm 1 satisfies

wt
T `t(1− exp(−η))− ηqt

T `t ≤
n∑
i=1

qt,i ln(
vt+1,i

ŵt,i
)
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Proof. With the update in Eq.(4), for any qt ∈ Bn
n-k, we

have

d(qt,wt)−d(qt,vt+1) = −ηqt
T `t−ln(

n∑
j=1

wt,j exp(−η`t,j))

(7)

Also, from the proof of Theorem 1 in (Warmuth &
Kuzmin, 2008), we have − ln(

∑n
j=1 wt,j exp(−η`t,j)) ≥

wt
T `t(1− exp(−η)). Thus, we will get

d(qt,wt)− d(qt,vt+1) ≥ −ηqt
T `t + wt

T `t(1− exp(−η))
(8)

Moreover, Eq.(4c) is the solution to the following projec-
tion problem as shown in (Warmuth & Kuzmin, 2008):

wt = argmin
w∈Bn

n-k

d(w, ŵt) (9)

Since the relative entropy is one kind of Bregman diver-
gence (Bregman, 1967; Censor & Lent, 1981), the Gener-
alized Pythagorean Theorem holds (Herbster & Warmuth,
2001):

d(qt, ŵt)− d(qt,wt) ≥ d(wt, ŵt) ≥ 0 (10)

where the last inequality is due to the non-negativity of
Bregman divergence.

Combining Eq.(8) with Eq.(10) and expanding the left part
of d(qt, ŵt)− d(qt,vt+1), we arrive at Lemma 1.

Now we are ready to state the following theorem to upper
bound the adaptive regretRsubexp

a :

Theorem 1. If we run the Algorithm 1 to select a subset of
n−k experts, then for any sequence of loss vectors `1, . . . ,

`T ∈ [0, 1]n with T ≥ 1, minq∈Bn
n-k

s∑
t=r

(n − k)qT `t ≤ L,

α = 1/(T (n−k)+1),D = (n−k) ln(n(1+(n−k)T ))+1,
and η = ln(1 +

√
2D/L), we have

Rsubexp
a ≤ O(

√
2LD +D)

Proof sktech. After showing the inequality from Lemma
1, the main work that remains is to sum the right side
from t = 1 to T and provide an upper bound. This is
achieved by following the proof of the Proposition 2 in
(Cesa-Bianchi et al., 2012b). The main idea is to expand
the term

∑n
i=1 qt,i ln(

vt+1,i

ŵt,i
) as follows:

∑n
i=1 qt,i ln(

vt+1,i
ŵt,i

) =
n∑
i=1

(
qt,i ln

1

ŵt,i
− qt−1,i ln

1

vt,i

)
︸ ︷︷ ︸

A

+

n∑
i=1

(
qt−1,i ln

1

vt,i
− qt,i ln

1

vt+1,i

)
︸ ︷︷ ︸

B

(11)

Then we can upper bound the expression of A with the
fixed-share step, since ŵt,i is lower bounded by α

n . We

can telescope the expression of B. Then our desired up-
per bound can be obtained with the help of Lemma 4 from
(Freund & Schapire, 1997).

For space purposes, all the detailed proofs for the omit-
ted/sketched proofs are in the appendix.

4. Online Adaptive PCA
Recall that the online adaptive PCA problem is below:

Ra = max
[r,s]⊂[1,T ]

{ s∑
t=r

E[Tr((I − Pt)xtxt
T )]

−min
U∈S

s∑
t=r

Tr((I − U)xtxt
T )
}
(12)

where S is the rank k projection matrix set.

Again, inspired by (Warmuth & Kuzmin, 2008), we first
reformulate the above problem into the following ’capped
probability simplex’ form:

Ra = max
[r,s]⊂[1,T ]

{ s∑
t=r

(n− k) Tr(Wtxtxt
T )

− min
Q∈Bn

n-k

s∑
t=r

(n− k) Tr(Qxtxt
T )
}
(13)

whereWt ∈ Bn
n-k, and Bn

n-k is the set of all density matrices
with eigenvalues bounded by 1/(n − k). Note that Bn

n-k
can be expressed as the convex set {W : W � 0, ‖W‖2 ≤
1/(n− k),Tr(W ) = 1}.

The static regret online PCA is a special case of the above
problem with r = 1 and s = T , and is solved by Algorithm
5 in (Warmuth & Kuzmin, 2008).

Follow the idea in the last section, we propose the Algo-
rithm 4. Compared with the Algorithm 5 in (Warmuth &
Kuzmin, 2008), we have added the fixed-share step in the
update ofWt+1 at step 9, which will be shown to be the key
in upper bounding the adaptive regret of the online PCA.

In order to analyze Algorithm 4, we need a few supporting
results. The first result comes from (Warmuth & Kuzmin,
2006):
Theorem 2. (Warmuth & Kuzmin, 2006) For any sequence
of data points x1, . . . , xT with xtxt

T � I and for any
learning rate η, the following bound holds for any matrix
Qt ∈ Bn

n-k with the update in Eq.(14a):

Tr(Wtxtxt
T ) ≤ ∆(Qt,Wt)−∆(Qt, Vt+1) + ηTr(Qtxtxt

T )

1− exp(−η)

Based on the above theorem’s result, we have the following
lemma:

Lemma 2. For all t ≥ 1, all xt with ‖xt‖2 ≤ 1, and for
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Algorithm 4 Uncentered online adaptive PCA
1: Input: 1 ≤ k < n and an initial density matrix W1 ∈

Bnn−k.
2: for t = 1 to T do
3: Apply eigendecomposition to Wt as Wt =

D̄ diag(wt)D̄
T .

4: Apply Algorithm 2 with d = n− k to the vector wt

to decompose it into a convex combination
∑
j pjrj

of at most n corners rj.
5: Randomly select a corner r = rj with the associated

probability pj .
6: Form a density matrix R = (n− k)D̄ diag(r)D̄T

7: Form a rank k projection matrix Pt = I −R
8: Obtain the data point xt, which incurs the compres-

sion loss ‖xt − Ptxt‖22 and expected compression
loss (n− k) Tr(Wtxtxt

T ).
9: Update Wt+1 as:

Vt+1 =
exp(lnWt − ηxtxt

T )

Tr(exp(lnWt − ηxtxt
T ))

(14a)

ŵt+1,i =
α

n
+ (1− α)vt+1,i, Ŵt+1 = U diag(ŵt+1)U

T

(14b)

Wt+1 = capn−k(Ŵt+1) (14c)

where we apply eigendecomposition to Vt+1 as
Vt+1 = U diag(vt+1)UT , and capn−k(W ) invokes
Algorithm 3 with input being the eigenvalues of W .

10: end for

all Qt ∈ Bnn−k, Algorithm 4 satisfies:

Tr(Wtxtxt
T )(1− exp(−η))− ηTr(Qtxtxt

T )

≤ −Tr(Qt ln Ŵt) + Tr(Qt lnVt+1)
(15)

Proof. First, we need to reformulate the above inequality
in Theorem 2, we have:

∆(Qt,Wt)−∆(Qt, Vt+1)
≥ −ηTr(Qtxtxt

T ) + Tr(Wtxtxt
T )(1− exp(−η))

(16)
which is very similar to the Eq.(8).

As is shown in (Warmuth & Kuzmin, 2008), the Eq.(14c)
is the solution to the following optimization problem:

Wt = argmin
W∈Bn

n-k

∆(W, Ŵt) (17)

As a result, the Generalized Pythagorean Theorem holds
(Herbster & Warmuth, 2001) for any Qt ∈ Bn

n-k:

∆(Qt, Ŵt)−∆(Qt,Wt) ≥ ∆(Wt, Ŵt) ≥ 0 (18)

Combining the above inequality with Eq.(16) and expand-

ing the left part, we have

Tr(Wtxtxt
T )(1− exp(−η))− ηTr(Qtxtxt

T )

≤ −Tr(Qt ln Ŵt) + Tr(Qt lnVt+1)
(19)

which proves the result.

In the next theorem, we show that with the addition of the
fixed-share step in Eq.(14b), we can solve the online adap-
tive PCA problem in Eq.(12).

Theorem 3. For any sequence of data points x1, . . . ,

xT with ‖xt‖2 ≤ 1, and for minQ∈Bn
n-k

s∑
t=r

(n −

k) Tr(Qxtxt
T ) ≤ L, if we run Algorithm 4 with α =

1/(T (n− k) + 1), D = (n− k) ln(n(1 + (n− k)T )) + 1,
and η = ln(1 +

√
2D/L), for any T ≥ 1 we have:

Ra ≤ O(
√

2LD +D)

Proof sktech. The proof idea is the same as in the proof
of Theorem 1. After getting the inequality relationship in
Lemma 2 which has a similar form as in Lemma 1, we need
to upper bound sum over t of the right side. To achieve this,
we first reformulate it as two parts below:

−Tr(Qt ln Ŵt) + Tr(Qt lnVt+1) = Ā+ B̄ (20)

where Ā = −Tr(Qt ln Ŵt) + Tr(Qt−1 lnVt), and B̄ =
−Tr(Qt−1 lnVt) + Tr(Qt lnVt+1).

The first part can be upper bounded with the help of the
fixed-share step in lower bounding the singular value of
ŵt,i. After telescoping the second part, we can get the de-
sired upper bound with the help of Lemma 4 from (Freund
& Schapire, 1997).

5. Extension to Online Adaptive Variance
Minimization

In this section, we study the closely related problem of on-
line adaptive variance minimization. The problem is de-
fined as follows: At each time t, we first select a vector
yt ∈ Ω, and then a covariance matrix Ct ∈ Rn×n such
that 0 � Ct � I is revealed. The goal is to minimize the
adaptive regret defined as:

Rvar
a = max

[r,s]⊂[1,T ]

{ s∑
t=r

E[yt
TCtyt]−min

u∈Ω

s∑
t=r

uTCtu
}

(21)
where the expectation is taken over the probability distri-
bution of yt.

This problem has two different situations corresponding to
different parameter space Ω of yt and u.
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Situation 1: When Ω is the set of {x| ‖x‖2 = 1} (e.g., the
unit vector space), the solution to minu∈Ω

∑s
t=r u

TCtu is
the minimum eigenvector of the matrix

∑s
t=r Ct.

Situation 2: When Ω is the probability simplex (e.g., Ω
is equal to Bn

1), it corresponds to the risk minimization in
stock portfolios (Markowitz, 1952).

We will start with Situation 1 since it is highly related to
the previous section.

5.1. Online Adaptive Variance Minimization over the
Unit vector space

We begin with the observation of the following equivalence
(Warmuth & Kuzmin, 2006):

min
‖u‖2=1

uTCu = min
U∈Bn

1

Tr(UC) (22)

where C is any covariance matrix, and Bn
1 is the set of all

density matrices.

Thus, the problem in (21) can be reformulated as:

Rvar-unit
a = max

[r,s]⊂[1,T ]

{ s∑
t=r

Tr(YtCt)−min
U∈Bn

1

s∑
t=r

Tr(UCt)
}

(23)
where Yt ∈ Bn

1.

To see the equivalence between E[yt
TCtyt] in

Eq.(21) and Tr(YtCt), we do the eigendecompo-
sition of Yt =

∑n
i=1 σiyiyi

T . Then Tr(YtCt) is
equal to

∑n
i=1 σi Tr(yiyi

TCt) =
∑n
i=1 σiyi

TCtyi.
Since Yt ∈ Bn

1, the vector σ is a simplex vector, and∑n
i=1 σiyi

TCtyi is equal to E[yi
TCtyi] with probability

distribution defined by the vector σ.

If we examine Eq.(23) and (13) together, we will see that
they share some similarities: First, they are almost the same
if we set n− k = 1 in Eq.(13). Also, xtxt

T in Eq.(13) is a
special case of Ct in Eq.(23).

Thus, it is possible to apply Algorithm 4 to solving the
problem (23) by setting n−k = 1. In this case, Algorithms
2 and 3 are not needed. This is summarized in Algorithm
5.

The theorem below is analogous to Theorem 3 in the case
that n− k = 1.

Theorem 4. For any sequence of covariance matri-
ces C1, . . . , CT with 0 � Ct � I , and for

minU∈Bn
1

s∑
t=r

Tr(UCt) ≤ L, if we run Algorithm 5 with

α = 1/(T + 1), D = ln(n(1 + T )) + 1, and η =
ln(1 +

√
2D/L), for any T ≥ 1 we have:

Rvar-unit
a ≤ O(

√
2LD +D)

Algorithm 5 Online adaptive variance minimization over
unit sphere

1: Input: an initial density matrix Y1 ∈ Bn1 .
2: for t = 1 to T do
3: Perform eigendecomposition Yt = D̂ diag(σt)D̂

T .
4: Use the vector yt = D̂[:, j] with probability σt,j .
5: Receive covariance matrix Ct, which incurs the loss

yt
TCtyt and expected loss Tr(YtCt).

6: Update Yt+1 as:

Vt+1 =
exp(lnYt − ηCt)

Tr(exp(lnYt − ηCt))
(24a)

σt+1,i =
α

n
+ (1− α)vt+1,i, Yt+1 = Û diag(σt+1)ÛT

(24b)

where we apply eigendecomposition to Vt+1 as
Vt+1 = Û diag(vt+1)ÛT .

7: end for

Proof sktech. Similar inequality can be obtained as in
Lemma 2 by using the result of Theorem 2 in (Warmuth
& Kuzmin, 2006). The rest follows the proof of Theorem
3.

In order to apply the above theorem, we need to either es-
timate the step size η heuristically or estimate the upper
bound L, which may not be easily done.

In the next theorem, we show that we can still upper bound
the Rvar-unit

a without knowing L, but the upper bound is a
function of time horizon T instead of the upper bound L.

Before we get to the theorem, we need the following lemma
which lifts the vector case of Lemma 1 in (Cesa-Bianchi
et al., 2012b) to the density matrix case:

Lemma 3. For any η ≥ 0, t ≥ 1, any covariance matrix
Ct with 0 � Ct � I , and for any Qt ∈ Bn1 , Algorithm 5
satisfies:

Tr(YtCt)− Tr(QtCt)

≤ 1
η

(
Tr(Qt lnVt+1)− Tr(Qt lnYt)

)
+ η

2

Now we are ready to present the upper bound on the regret
for Algorithm 5.

Theorem 5. For any sequence of covariance matrices C1,
. . . , CT with 0 � Ct � I , if we run Algorithm 5 with

α = 1/(T + 1) and η =

√
ln(n(1+T ))√

T
, for any T ≥ 1 we

have:
Rvar-unit
a ≤ O

(√
T ln

(
n(1 + T )

))
Proof. In the proof, we will use two cases ofQt: Qt ∈ Bn1 ,
and Qt = 0.
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From Lemma 3, the following inequality is valid for both
cases of Qt:

Tr(YtCt)− Tr(QtCt)

≤ 1
η

(
Tr(Qt lnVt+1)− Tr(Qt lnYt)

)
+ η

2

(25)

Follow the same analysis as in the proof of Theorem
3, we first do the eigendecomposition to Qt as Qt =
D̃ diag(qt)D̃

T . Since ‖qt‖1 is either 1 or 0, we will re-
write the above inequality as:

‖qt‖1 Tr(YtCt)− Tr(QtCt)

≤ 1
η

(
Tr(Qt lnVt+1)− Tr(Qt lnYt)

)
+ η

2 ‖qt‖1
(26)

Analyzing the term Tr(Qt lnVt+1) − Tr(Qt lnYt) in the
above inequality is the same as the analysis of the Eq.(43)
in the appendix.

Thus, summing over t = 1 to T to the above inequality, and
setting Qt = Q ∈ Bn1 for t = r, . . . , s and 0 elsewhere, we
will have

s∑
t=r

Tr(YtCt)− min
U∈Bn1

s∑
t=r

Tr(UCt)

≤ 1
η

(
ln n

α + T ln 1
1−α

)
+ η

2T,
(27)

since it holds for any Q ∈ Bn1 .

After plugging in the expression of η and α, we will have

s∑
t=r

Tr(YtCt)− min
U∈Bn1

s∑
t=r

Tr(UCt)

≤ O
(√

T ln
(
n(1 + T )

))
(28)

Since the above inequality holds for any 1 ≤ r ≤ s ≤ T ,
we will put a max

[r,s]⊂[1,T ]
in the left part, which proves the

result.

5.2. Online Adaptive Variance Minimization over the
Simplex space

We first re-write the problem in Eq.(21) when Ω is the sim-
plex below:

Rvar-sim
a = max

[r,s]⊂[1,T ]

{ s∑
t=r

E[yt
TCtyt]− min

u∈Bn1

s∑
t=r

uTCtu
}

(29)
where yt ∈ Bn1 , and Bn1 is the simplex set.

When r = 1 and s = T , the problem reduces to the static
regret problem, which is solved in (Warmuth & Kuzmin,
2006) by the exponentiated gradient algorithm as below:

yt+1,i =
yt,i exp

(
− η(Ctyt)i

)∑
i yt,i exp

(
− η(Ctyt)i

) (30)

Algorithm 6 Online adaptive variance minimization over
simplex

1: Input: an initial vector y1 ∈ Bn1 .
2: for t = 1 to T do
3: Receive covariance matrix Ct.
4: Incur the loss yt

TCtyt.
5: Update yt+1 as:

vt+1,i =
yt,i exp

(
− η(Ctyt)i

)∑
i yt,i exp

(
− η(Ctyt)i

) , (31a)

yt+1,i =
α

n
+ (1− α)vt+1,i. (31b)

6: end for
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Figure 1. Fig.1(a): The cumulative loss of the toy example with
data samples coming from three different subspaces. Fig.1(b):
The detailed comparison for the two online algorithms.

As is done in the previous sections, we add the fixed-share
step after the above update, which is summarized in Algo-
rithm 6.

With the update of yt in the Algorithm 6, we have the fol-
lowing theorem:

Theorem 6. For any sequence of covariance matrices C1,

. . . , CT with 0 � Ct � I , and for minu∈Bn
1

s∑
t=r

uTCtu ≤

L, if we run Algorithm 6 with α = 1/(T + 1), c =√
2 ln
(

(1+T )n
)

+2
√
L

, b = c
2 , a = b

2b+1 , and η = 2a, for
any T ≥ 1 we have:

Rvar-sim
a ≤ 2

√
2L
(

ln
(
(1 + T )n

)
+ 1
)

+ 2 ln
(
(1 + T )n

)
6. Experiments
In this section, we use two examples to illustrate the effec-
tiveness of our proposed online adaptive PCA algorithm.
The first example is synthetic, which shows that our pro-
posed algorithm (denoted as Online Adaptive PCA) can
adapt to the changing subspace faster than the method of
(Warmuth & Kuzmin, 2008). The second example uses the
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Figure 2. The cumulative loss for the face example with data sam-
ples coming from 20 different persons

practical dataset Yale-B to demonstrate that the proposed
algorithm can have lower cumulative loss in practice when
the data/face samples are coming from different persons.

The other algorithms that are used as comparators are:
1. Follow the Leader algorithm (denoted as Follow the
Leader) (Kalai & Vempala, 2005), which only minimizes
the loss on the past history; 2. The best fixed solution in
hindsight (denoted as Best fixed Projection), which is the
solution to the Problem described in Eq.(2); 3. The online
static PCA (denoted as Online PCA) (Warmuth & Kuzmin,
2008). Other PCA algorithms are not included, since they
are not designed for regret minimization.

6.1. A Toy Example

In this toy example, we create the synthetic data samples
coming from changing subspace/environment, which is a
similar setup as in (Warmuth & Kuzmin, 2008). The data
samples are divided into three equal time intervals, and
each interval has 200 data samples. The 200 data samples
within same interval is randomly generated by a Gaussian
distribution with zero mean and data dimension equal to 20,
and the covariance matrix is randomly generated with rank
equal to 2. In this way, the data samples are from some un-
known 2-dimensional subspace, and any data sample with
`2-norm greater than 1 is normalized to 1. Since the step-
size used in the two online algorithms is determined by
the upper bound of the batch solution, we first find the up-
per bound and plug into the stepsize function, which gives
η = 0.19. We can tune the stepsize heuristically in practice
and in this example we just use η = 1 and α = 1e−5.

After all data samples are generated, we apply the previ-
ously mentioned algorithms with k = 2 and obtain the cu-
mulative loss as a function of time steps, which is shown

in Fig.1. From this figure we can see that: 1. Follow the
Leader algorithm is not appropriate in the setting where the
sequential data is shifting over time. 2. The static regret is
not a good metric under this setting, since the best fixed so-
lution in hindsight is suboptimal. 3. Compared with Static
PCA, the proposed Adaptive PCA can adapt to the chang-
ing environment faster, which results in lower cumulative
loss and is more appropriate when the data is shifting over
time.

6.2. Face data Compression Example

In this example, we use the Yale-B dataset which is a col-
lection of face images. The data is split into 20 time in-
tervals corresponding to 20 different people. Within each
interval, there are 64 face image samples. Like the previous
example, we first normalize the data to ensure its `2-norm
not greater than 1. We use k = 2, which is the same as
the previous example. The stepsize η is also tuned heuris-
tically like the previous example, which is equal to 5 and
α = 1e−4.

We apply the previously mentioned algorithms and again
obtain the cumulative loss as the function of time steps,
which is displayed in Fig.2. From this figure we can see
that although there is no clear bumps indicating the shift
from one subspace to another as the Fig.1 of the toy exam-
ple, our proposed algorithm still has the lowest cumulative
loss, which indicates that upper bounding the adaptive re-
gret is still effective when the compressed faces are coming
from different persons.

7. Conclusion
In this paper, we propose an online adaptive PCA algo-
rithm, which augments the previous online static PCA algo-
rithm with a fixed-share step. However, different from the
previous online PCA algorithm which is designed to mini-
mize the static regret, the proposed online adaptive PCA al-
gorithm aims to minimize the adaptive regret which is more
appropriate when the underlying environment is changing
or the sequential data is shifting over time. We demon-
strate theoretically and experimentally that our algorithm
can adapt to the changing environments. Furthermore, we
extend the online adaptive PCA algorithm to online adap-
tive variance minimization problems.

One may note that the proposed algorithms suffer from the
per-iteration computation complexity of O(n3) due to the
eigendecomposition step, although some tricks mentioned
in (Arora et al., 2012) could be used to make it comparable
with incremental PCA ofO(k2n). For the future work, one
possible direction is to investigate algorithms with slightly
worse adaptive regret bound but with better per-iteration
computation complexity.
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