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Abstract

We present a deep generative model which explic-
itly models object occlusions for compositional
scene representation. Latent representations of
objects are disentangled into location, size, shape,
and appearance, and the visual scene can be gen-
erated compositionally by integrating these rep-
resentations and an infinite-dimensional binary
vector indicating presences of objects in the scene.
By training the model to learn spatial dependences
of pixels in the unsupervised setting, the number
of objects, pixel-level segregation of objects, and
presences of objects in overlapping regions can
be estimated through inference of latent variables.
Extensive experiments conducted on a series of
specially designed datasets demonstrate that the
proposed method outperforms two state-of-the-art
methods when object occlusions exist.

1. Introduction

Perceiving the seemingly chaotic visual scenes structurally
and compositionally is essential for humans to understand
and interact with the complex world (Lake et al., 2017). This
presumably innate ability has been considerably studied for
years in the fields of neuroscience and cognitive science.
Finding the underlying mechanisms is usually termed as the
perceptual grouping problem (Grossberg et al., 1997), which
is a special type of the binding problem (Treisman, 1996)
related to visual perception. The synchronization theory
(Milner, 1974) and the feature integration theory (Treisman
& Gelade, 1980) are two representative theories underpin-
ning the binding problem based on extensive experimental
findings. It is intriguing to build human-like AI systems that
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can automatically segregate the visual scene into conceptual
entities (e.g. objects) through inferring latent compositional
and disentangled representations (Bengio et al., 2013) that
cause the scene, on the basis of these neurodynamical and
psychological theories. Because visual scenes may com-
prise different number of objects, it is also desirable to adap-
tively determine the number of representations in the scene.
Compared with learning a single complex representation
for the entire visual scene, decomposing the visual scene
into multiple conceptual entities and learn a relatively sim-
ple representation for each separately is more advantageous
because better expressiveness and generalizability can be
achieved. By decomposing the raw observations, organized
and compact knowledge of visual scenes can be summa-
rized (Bienenstock et al., 1997). The learned knowledge is
applicable to an infinite number of novel scenes composed
of objetcs similar to the ones that have been observed before
(Biederman, 1987; van den Hengel et al., 2015).

Various methods which are more or less related to the syn-
chronization theory (Milner, 1974) have been proposed for
segregating visual scenes into objects since last century.
(Wang & Terman, 1995; Rao et al., 2008; Reichert & Serre,
2014) use neuronal synchrony as the mechanism and seg-
regate objects based on simulated phases of neurons. Al-
though the achieved results are gratifying, the learned repre-
sentations of objects are not compositional and disentangled,
which limits the expressiveness and generalizability of the
model. In recent years, a series of approaches (Greff et al.,
2016b;a; 2017; Prémont-Schwarz et al., 2017) combining
spatial mixture models with neural networks to segregate
objects have been proposed to learn compositional represen-
tations. In these approaches, the visual scene is modeled as
a pixel-wise weighted summation of the images generated
by individual mixture components, where each object is
expected to be modeled by a single component. Posterior
probabilities of the latent component indicator variables at
each pixel are used as the segregation criterion.

Attend-Infer-Repeat (AIR) (Eslami et al., 2016) is a variable-
sized variational autoencoder (VAE) (Kingma & Welling,
2014) that structurally decompose images into objects. It
can automatically determine the number of objects and
choose the number of inference steps accordingly. AIR
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attends to a cropped region of the visual scene and infers
the latent representation of each object sequentially, which
is similar to the main idea of the feature integration theory
(Treisman & Gelade, 1980). Sequential Attend-Infer-Repeat
(SQAIR) (Kosiorek et al., 2018) applies recurrent neural
networks to model temporal relations between consecutive
frames of videos, and is able to discover and track objects.

Existing deep generative models cannot determine the num-
ber and generate pixel-level segregation of objects simulta-
neously; in addition, they have not explicitly modeled object
occlusions such that overlapping regions are not handled
well without making use of temporal information (Greff
et al., 2017; Kosiorek et al., 2018). In this paper, we focus
on learning compositional representations for static visual
scenes and aim to build a generative model that can deter-
mine the number of objects, generate pixel-level segregation
of objects, and estimate presences of objects in overlapping
regions without supervision. The proposed method takes or-
ders of objects into consideration and explicitly model their
occlusions. When generating a scene, only the forefront
object at each pixel contributes to the result. During the
inference, latent variables of all objects are estimated. By
directly modeling shapes of objects which may be partially
occluded in the visual scene, spatial dependencies of pixels
can be better learned in overlapping regions.

The proposed method is evaluated on a series of datasets in
which each image consists of a varying number of hollow
shapes or handwritten digits. Compared with two state-of-
the-art deep generative models, N-EM (Greff et al., 2017)
and AIR (Eslami et al., 2016), which also learn composi-
tional representations of visual scenes in an unsupervised
manner, the proposed method achieves noticeable improve-
ments in handling object occlusions in the absence of tempo-
ral information. Relative orders of objects are also estimated
more accurately if objects can be well segregated.

2. Related Work

Several spatial mixture models have been proposed recently
to learn compositional representations and generate pixel-
level segregation of visual scenes. Reconstruction Cluster-
ing (RC) (Greff et al., 2016b) iteratively masks the input
image with posterior probabilities and reconstructs the im-
age in a compositional manner with a pretrained denoising
autoencoder. Tagger (Greff et al., 2016a) applies a Ladder
Network (Rasmus et al., 2015) to extract high-level features
for tasks like classification and low-level features for tasks
like perceptual grouping. RTagger (Prémont-Schwarz et al.,
2017) extends Tagger to sequential data by substituting the
Ladder Network with a Recurrent Ladder Network. Neural
Expectation Maximization (N-EM) (Greff et al., 2017) uses
neural networks to iteratively update model parameters, and
the update rule is inspired by the Expectation-Maximization

(EM) algorithm. Under the unsupervised setting, N-EM
achieves competitive performance with much fewer parame-
ters compared with Tagger. Relational Neural Expectation
Maximization (van Steenkiste et al., 2018) combines N-EM
with Message Passing Neural Network (Gilmer et al., 2017)
and is able to perform physical reasoning.

Attend-Infer-Repeat (AIR) (Eslami et al., 2016) is a variable-
sized variational autoencoder (VAE) proposed for a task
which also aims to describe scenes with compositional parts
but does not require segregating images at pixel level. It can
simultaneously estimate the number of objects as well as
the representations of individual objects in the image. One
limitation of AIR is that its performance degrades when
occlusions of objects exist. Sequential Attend-Infer-Repeat
(SQAIR) (Kosiorek et al., 2018) extends AIR to sequential
data and is able to discover and track objects in the sequence
of frames. It handles occlusions by utilizing temporal infor-
mation for analyzing motions of objects.

Layered representations have been studied for years in the
computer vision community, and several methods which
handle occlusions have been proposed (Wang & Adelson,
1994; Williams & Titsias, 2004; Le Roux et al., 2011; Huang
& Murphy, 2016; Moreno et al., 2016; Wu et al., 2017). We
also consider occlusions, and propose a deep generative
model that can extract latent representations which fully
characterize objects and background in the visual scene.

The problem settings of N-EM (Greff et al., 2017) and AIR
(Eslami et al., 2016) are closest to ours, and their main ideas
are briefly described below.

2.1. Neural Expectation Maximization (N-EM)

N-EM (Greff et al., 2017) combines finite spatial mixture
models with neural networks to estimate pixel-level segrega-
tions and extract compositional representations of objects in
images. Each object is expected to be modeled by one mix-
ture component, and prior probabilities that each pixel be-
longs to different objects are described by mixture weights.
Let N, C, and K denote numbers of pixels, channels, and
components in each image. The image = € RV is mod-
eled by p(x) = [13 1Y 4oy Plen i =1p(@nl2nk=1) ,
where z € {0, 1}K represents object assignments of pix-
els and each row of it is a one-hot vector. For real-valued
images, p(&y,|zn k= 1) is chosen to be a normal distribu-
tion with mean a,, i € R, and the relation between x, z,
and a is E[z,|= Zlezmkan,k. During inference, model
parameters are estimated using neural networks based on
the Expectation-Maximization (EM) (Dempster et al., 1977)
framework. Because a, i is regularized to be close to a pre-
defined value (e.g., expectation of the background pixels) if
P(z, ,=1|z,) is small, shapes and appearances of objects
are entangled in a. Figure 1(b) illustrates possible values of
z and a that generate the visual scene shown in Figure 1(a).
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Figure 1. Possible values of z and a that generate (a) the visual scene « in (b) N-EM, (c) AIR, and (d) the proposed method. For N-EM,
all components (columns) of a contain information about the background, and the generated @ is not affected by the values of z3 and z~.
For AIR and the proposed method, entries not shown in z and p are all 0, and entries not shown in a have no influences on the generated
. Symbol © represents the operation that first performs element-wise multiplication and then sums the result along the row.

2.2. Attend-Infer-Repeat (AIR)

AIR (Eslami et al., 2016) is a type of variational autoencoder
(VAE) that can automatically determine the number and lo-
cations, as well as obtaining compositional representations
of objects in images. AIR assumes that the image x is drawn
from the normal distribution ' (E[x], 0%T). It decomposes
E[x] into a binary component! z and a real-valued compo-
nent a, subject to E[x,,| = >, 2n,k@n k. Different from
N-EM, AIR is an infinite latent feature model which does
not restrict the number of 1’s in each row of z. During infer-
ence, z is jointly determined by outputs (bounding boxes)
of a spatial transform network (STN) (Jaderberg et al., 2015)
and a unary code vector representing the number of objects
in the image, and a is generated by a VAE with crops of
images in the bounding boxes as inputs. Figure 1(a) may
be generated by AIR with values of z (note that the two
dashed bounding boxes in Figure 1(a) correspond to z. ; and
z.2) and a shown in Figure 1(c). Given the construction
E[wg,] = Z;O:Ozg,,kag,,k =as1+as52, as1 and as 2 can-
not be orange and blue, respectively, in order to obtain the
desired value (orange) of E[x] which resembles the scene.

2.3. Limitations in Our Problem Setting

This paper considers learning compositional representations
for static visual scenes and aim to build a generative model
that can determine the number of objects, generate pixel-
level segregation of objects, and estimate presences of ob-
jects in overlapping regions without supervision.

In N-EM, information of shape, appearance, location, and
size of each object is entangled in one feature vector sy,
and the complexity of sy, is relatively high in order to de-
scribe each object well. In addition, no prior distribution
is defined to regularize s;. These two aspects limit the

'In (Eslami et al., 2016), z denotes latent representations of ob-
jects. To compare with N-EM in Figure 1(b) for a better illustration,
here we use z to indicate bounding boxes of objects.

performance of N-EM when object occlusions exist, in the
absence of additional information like relative motions of
objects. Moreover, the number of objects in each image is
not explicitly modeled and cannot be inferred directly.

AIR represents location, size, and attributes (shape and ap-
pearance) separately, and the complexity to describe each
object is lower. Numbers of objects are modeled as ran-
dom variables and estimated during the inference. How-
ever, pixel-level segregation of objects cannot be inferred
directly like N-EM, because each pixel is not assumed to
be generated by a single object. Moreover, overlapping
regions cannot be handled well for the reason that the rela-
tion E[x,,]= Zzioznﬁkan_’k defined by AIR does not take
object occlusions into consideration.

3. Proposed Approach

Inspired by advantages of N-EM and AIR, and realizing
their shortcomings, we propose a deep generative model
which explicitly models occlusions of objects for compo-
sitional scene representation. This method first constructs
a binary matrix z with infinite columns describing shapes
of objects, and then transforms z into another binary ma-
trix p whose infinite columns indicate the perceived ob-
jects/background at each pixel. The representation for each
object is disentangled into latent variables representing lo-
cation, size, shape, and appearance. The background is
modeled differently from the foreground objects because
only the appearance of background may vary among images.
The expectations of appearances of objects and background
are represented by a, in which entries of each column are
identical?. Figure 1(d) shows one solution of z, p, and a
that generates Figure 1(a).

2For conciseness we only consider color as appearance here. It
is straightforward to employ a neural network to generate textures
as appearance; then entries of each column in a are not identical
but composing coherent textures.
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3.1. Generative Model

Each image « is assumed to be generated based on infinite-
dimensional latent variables s, v, 2™, and z9P. The dis-
tributions that generate latent variables and the relations
between observed and latent variables are described below.

s.x ~ Normal (f1, diag(6?%)), k>0
vy, ~ Beta(a, 1), E>1
2 ~ Bernoulli (H:/:1 Vi) E>1
zdep ~ Bernoulli ( fyn (fsnp(s SZP) Sh), k>1
Znk = zz"dzie%, k>1
Pk = Zn,k Hi’_:ll (1 - Zn,k’)a k Z 1
" 1- 2?21 Pk’ k=0
S gt k> 1

n.k = ac|
z?pck( ?20)7 k = 0

T, ~ Z pn,k Normal(a, k, 62I)
k=0

Variable s is a matrix of finite rows and infinite columns.
Each column corresponds to one object/background, and
the number of rows is the dimension of latent representation
for each object/background. s.j, can be further divided into
s, sszp, and %", which describe appearance, shape, and
relative scale and translation of the kth object/background.
v contains parameters of the spatially independent Bernoulli
distributions from which entries of 2™ are sampled, and
21" i5 an infinite-dimensional binary vector of which the kth
entry determines whether to include the object/background
described by s in the image. 2™ can be seen as a binary
matrix with one row and infinite columns which is obtained
using the stick-breaking construction (Teh et al., 2007) for
the Indian Buffet Process (IBP) (Ghahramani & Griffiths,
2006; Griffiths & Ghahramani, 2011). 2%P is a binary ma-
trix with finite rows and infinite columns. The number of
rows equals the number of pixels in each image. Entries
of z%P are sampled from spatially dependent Bernoulli dis-
tributions whose parameters are determined by s*"P and
gt pdep together with 2™ determines z,,, which is in turn
transformed into another binary vector p,,. Because of the
construction rule defined for p,, 1, it is guaranteed that p,,
contains exactly one 1. a,,  is the expectation of appear-
ance of the kth object/background at the nth pixel. fi, 2,
52, and « are hyperparameters of the distributions of latent
Varlables fotns fsnps fapc, and f;fk are neural networks that
map latent representations s to other latent variables. The
generative model is illustrated in Figure 2.

The background of the image spans all the pixels that
are not occupied by any foreground objects, and is ac-
cordingly modeled by a sgemal component with index
k = 0. Latent variables s, ssg’, 10, Zo , and z P are
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Figure 2. The proposed generative model. Circles represent the ob-
served and latent variables, and squares represent neural networks.
Variables in dashed circles are deterministic given all the parents.

not sampled but fixed to constant values based on the
prior knowledge of this property of the background. Let
h={s%c g$hP gstn 1, zind >deP1 be the collection of latent
variables, and @ be the collection of all hyperparameters and
neural networks’ parameters. The joint probability of the

image x and latent variables h is

o0
h) = Hpe(
H(pe (20 V1) Hpa o 52p735?)>

HPB P)pe (s )pe (i)

=T

Z Pn,kP6 wn|an k) (l)
1 k=0

3.2. Variational Inference

The posterior probability pg(h|x) is computationally in-
tractable. Latent variables h are thus inferred by approx-
imating pg(h|z) with a variational distribution g4 (h|x)
that minimizes the Kullback-Leibler (KL) divergence
Dxi.(gp(h|x)||pe(h|z)) under certain tractability con-
straints. Similar to the variational methods proposed by
(Blei & Jordan, 2004) for the Dirichlet process, inference
of the infinite-dimensional latent variables are handled by
the truncated stick-breaking process bounded by K. For
all k > K, HZ,:KH v is assumed to be 0. As a result,
pn.k = 0,Vk > K, and pixel ,, may only be drawn from
po(xn|an. k) with indexes 0 <k < K. The variational distri-
bution is factorized as

qag(hlz) = q¢(s HCJ¢ ()40 (857185 g0 (50|80
K

H(%(Vklsk a6 (2185 qus ol 5?’739}?)) (2)
k=1

All the probability distributions on the right-hand side of
(2) condition on x, which is omitted for conciseness. The
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Figure 3. The inference model. Solid circles denote the observed
and latent variables, and squares denote neural networks. Dashed
circles are parameters of the inference distribution as well as the
intermediate nodes w and w which determine these parameters.

specific forms of these distributions are

45 (7 |30) = Normal(s'y; g, diag (o, 2))
q¢(Vk|sStn

)=
( ind | Sstn)
)=

q:;b( dCP |SSZP7 Ssien

Beta(uk; T1 k,TQ k)

Bernoulli(zi™; ¢;.)

Bernoulli(zmk; $n,k)

All parameters of the distributions above are generated by
neural networks with image x and latent variables these
distributions conditioned on as inputs. ¢ in the subscripts
of the distributions is the collection of all neural network
parameters. Ti , T2.k, Gk, as well as entries of p ;. and a?k

that characterize gg(s|s*") and g (s°°|s%") depend on
s%". &, depends on s 2 and s°%}. For notational simplicity,

these dependences are omitted in the expressions.

Figure 3 describes the relations between observed/latent
variables and parameters of the variational distribution. The
neural networks modeling these relations for £ = 0 and
1<k < K are not identical, because the background (k=0)
differs from foreground objects (1 <k < K) in that s’} is
the only latent variable required to be inferred. According
to the feature integration theory (FIT) (Treisman & Gelade,
1980), humans attend to a particular location of the visual
scene at a certain time when performing perceptual grouping.
Latent variables of all objects are not inferred simultane-
ously in the proposed method in order to follow this theory.
The coordinate ascent algorithm, which is commonly used

in the mean-field variational inference, updates parameters
of the variational distribution alternately and accords with
FIT if parameters of each object are updated sequentially.
Because of the non-linearities of neural networks, closed-
form solutions of coordinate ascent cannot be derived for
the proposed model. We utilize long short-term memo-
ries (LSTMS) o, gaJ, and g% to imitate the procedure
of coordinate ascent by alternately updating w., and w.x
which determine the variational distribution parameters of
each object, conditioned on the image and the rest objects.
qo (8% depends solely on w.y, and w.;, provides additional
information for other distributions which are conditioned
on s?}f. In order to decrease the number of iterations and
increase the inference speed, w.; and w.; are initialized
with neural networks instead of random values. Approxi-
mating the behavior of coordinate descent using LSTMs is
similar to learning to learn by gradient descent with LSTMs
(Andrychowicz et al., 2016), whose idea is used by Neural
Expectation Maximization (N-EM) (Greff et al., 2017) to
concurrently update all randomly initialized mixture model
parameters based on manually derived gradient expressions.

3.3. Structures of Neural Networks

In the generative model, f,p is a convolutional neural net-

work (CNN) that transforms latent representations sfzp to
shapes of objects in object-level coordinates that are inde-

pendent of sizes and locations of objects in the image. f°bJ
and f;’;fk are multilayer perceptrons (MLPs) that compute
the means of normal distributions of object/background ap-
pearances based on s” k fsm first uses tanh and sigmoid
functions to compute the relative scales and translations of
objects based on s%, and then transforms fshp( ") from

object-level coordinates to the image-level coordlnate.

In the inference model, g, g2, g%k and the neural net-

works used for initializations are combinations of CNNs and

LSTMs. g¢ is a combination of CNN and affine transform.

bj
Gstn> Gshp» ga(l)pgn g;’l‘,’gk, gr, and g¢ are MLPs.

3.4. Learning of Neural Networks

Parameters of all neural networks are jointly learned by min-
imizing the KL divergence Dxi (g (h|Z)||pe(h|z)). An
equivalent objective is to maximize the evidence lower
bound (ELBO) defined by

L = En~g,(logpe(z|h)] — DxL(gg(hlz)||pe(h)) (3)

By sampling latent variables h from g (h|x) and estimat-
ing the gradients of (3), neural network parameters can be
optimized using gradient-based methods. Although z”‘d and

if,’g are discrete latent variables, applying the generic but
relatively high-variance black box methods such as BBVI
(Ranganath et al., 2014) and NVIL (Mnih & Gregor, 2014)

to compute their gradients is not necessary, because expec-



Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation

tations of log pe (x| k) with respect to 21" and 2 can be
computed analytically. Except for v, which is 7sampled
from a beta distribution, all the continuous latent variables
are sampled from normal distributions and the reparame-
terization trick (Salimans et al., 2013; Kingma & Welling,
2014) is applicable to reduce the variance of the gradient
estimator. vy, appears only in the KL divergence terms.
Dy (q(ve|s?)||lp(vi)) can be computed analytically, and
Vi, in this term is marginalized out. The only problem is /1.5
in Dk (ge(21M]s%0)||p(2iM|v1.1,)), which may be handled
in two ways. The first is to utilize the generalized repa-
rameterization gradient (Ruiz et al., 2016) to obtain low-
variance estimate of the gradient. The second is to apply
the multinomial approximation to E, [log(1 — lez/=1 Vi )]
as mentioned in (Doshi et al., 2009) and obtain an upper
bound of Dy, (qg (210 |s50)] \p(z"‘d|u1 %)) that has a closed-
form solution. We adopt the latter and optimize parameters
of neural networks with respect to a lower bound of (3).
Details are provided in the supplementary material.

4. Experiments

Datasets: The perceptual grouping performance of the com-
pared methods are evaluated on a series of datasets derived
from the publicly released datasets provided by (Greff et al.,
2016bsa; 2017). The size of images in all datasets is 48 x 48,
and each image may contain 2 ~ 4 binary hollow shapes
(referred as Shapes) or real-valued handwritten digits (re-
ferred as MNIST). To evaluate the perceptual grouping per-
formance from different perspectives, these datasets differ
from one another in multiple aspects. Samples of images in
different datasets are illustrated in the first row of Figure 4.
In all datasets, 50,000, 10,000, and 10,000 images are used
for training, validation, and test, respectively.

Compared Methods: N-EM (Greff et al., 2017) and AIR
(Eslami et al., 2016) are chosen as the compared methods.
The number of objects in each image cannot be estimated
based on posterior inference in N-EM, and pixel-level seg-
regations of objects are not generated in AIR. To evaluate
the performance of N-EM and AIR in these aspects with-
out modifying their core algorithms, we apply heuristic
post-processing to the results of N-EM and AIR. For N-
EM, the number of objects in each image is determined by
classifying each mixture component as modeling object or
background, based on the posterior probabilities. For AIR,
objects are segregated in pixel level heuristically based on
the similarity between reconstructions of individual objects
and the original image at each pixel. Pixels are assumed
to belong to objects with the highest similarities. For the
proposed method, both the number of objects and pixel-
level segregation results can be inferred directly, and no
additional operations are required. All three methods are
trained on images containing 2 or 3 objects with K =4.

Datas tb
Grav-S/M R(BIS MM R(B_ R(BSS M RGB4-S/M
’§ 5 ﬁ 3
N EM
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Figure 4. Examples of qualitative results evaluated on different
datasets. “S/M” in the names of datasets stand for Shapes and
MNIST, respectively. For each method, the 1st row presents recon-
structions of scenes, the 2rd—5th rows illustrate reconstructions of
individual objects, and the 6th row displays segregation results.

segre

Evaluation Metrics: Four metrics are used to assess the
performance: (1) Adjusted Mutual Information (AMI) is a
normalized version of mutual information used to assess seg-
regation results. (2) Mean Squared Error (MSE) measures
similarities between reconstructions of individual objects
and the ground truth. (3) Object Counting Accuracy (OCA)
measures the quality of estimated number of objects in each
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Table 1. Comparison of segregation and counting performance with existence of occlusion.

N-EM

DATA SET AMI (%) MSE (E-3) OCA (%)

AMI (%)

MSE (E-3) OCA (%)

AIR PROPOSED

AMI (%) MSE (E-3) OCA (%)

GRAY-S |77.34 2E-1

GRAY-M |30.5+ 1E-1 22+ 6E-2 13.5£1.0

10+ 1E-1 56.2+ 6E-1|85.4+ 1E-1 6.5+ 3E-2 80.9+ 2E-1|94.6+ 9E-2 2.9+ 3E-2 90.5+ 1E-1
62.8+ 4E-2 9.0+ 9E-3 66.04 2E-1|71.14 1E-1 7.5+ 4E-2 77.6+ 3E-1

RGBI1-S |81.84+ 3E-1 5.6+ 8E-2
RGB1-M |57.0% 2E-1 9.4+ 4E-2

742+ 1.2
16.3+£2.4

95.3+ 6E-2 2.4+ 1E-2 88.8+ 2E-1|98.3+ 5E-2 1.1+ 1E-2 95.1+ 2E-1
78.2+ 8E-2 3.5+ 8E-3 67.94 5E-1|82.0+ 5E-2 3.1+ 1E-2 74.8+ 4E-1

RGB2-S [66.2+ 2E-1 9.0+ 6E-2
RGB2-M |34.94+ 2E-1 13+ 1E-2

60.8+ 1.4

85. 7+ 4E-2 3.7+ 7E-3 84.4% 1E-1|92.3+ 1E-1 2.2+ 3E-2 86.3+ 3E-1
12.5+ 9e-1|64.1+ 1E-1 4.8+ 8E-3 69.8+ 2E-1|67.9+ 2E-1 4.7+ 2E-2 71.0+ 5E-1

RGB3-S [29.6+ 1E-1

RGB3-M |15.44+ 2E-1 22+ 3E-1

21+ 8E-3 7.44£ 6E-1|91.3£ 8E-2 3.9+ 9E-3 90.3+ 2E-1|97.4+ 6E-2 1.4+ 2E-2 92.54+ 2E-1
2.30+ 3E-1|67.5+ 7E-2 5.4+ 3E-3 60.5£ 1E-1|77.9£ 1E-1 3.8+ 9E-3 68.6+ 7E-1

RGB4-S |24.7+ 3E-1
RGB4-M |3.82+ 1E-1

20+ 4E-2
32+ 2E-1

10.3+ 2E-1|86.7+ 2E-2 4.0+ 3E-3 78.34 1E-1[90.7+ 8E-2 2.5+ 2E-2 83.3+ 9E-2
2.35+ 4E-1|56.9+ 4E-2 6.3+ 3E-3 58.2+ 3E-1|67.9£ 7E-2 4.6% 2E-2 77.3+ 3E-1

image. (4) Object Ordering Accuracy (OOA) computes the
weighted sum of pairwise order estimation accuracies. More
details are provided in the supplementary material.

4.1. Qualitative Results

Some examples of qualitative results of the compared meth-
ods evaluated on different datasets are shown in Figure
4. Compared with N-EM and AIR, the proposed method
performs noticeably better when occlusions exist; and its
segregation results are sharper because representations of
shapes and appearances are disentangled. By explicitly mod-
eling object occlusions, the proposed method can infer the
shapes of objects well in overlapping regions.

4.2. Performance of Segregation and Counting

In N-EM, information of background appearance is used to
define a regularization term in the loss function in order to
learn specialized representations. In AIR, no latent variable
is assigned to the background. To compare with N-EM and
AIR in a controlled setting, we fix a.g to the background
appearance and do not infer s°)°. Performance of the pro-
posed method when the background appearance is unknown
is provided in the supplementary material.

Without Existence of Occlusion: When no object occlu-
sions exist, the average AMI/MSE/OCA scores of N-EM,
AIR, and the proposed method are 53.3%/13.8¢e-3/38.2%,
98.3%/1.2¢-3/96.4%, and 98.6%/1.1e-3/97.5%, respec-
tively. Detailed results are shown in the supplementary
material. N-EM works well when images are composed of
hollow shapes and backgrounds are black (Gray-S, RGB1-S,
and RGB2-S), and its performance degrades when colors of
backgrounds may vary among images (RGB3 and RGB4)
or objects are relatively complex to represent (MNIST). It is
probably because information of each object is entangled in
a single feature vector, and no prior distribution is defined

Table 2. Comparison of ordering performance.

OOA (%) WITH ORIGINAL ORDER

DATA SET ‘ N-EM AIR PROPOSED
RGB1-S | 49.3+1.3 57.0£0.2 77.5£0.4
RGBI-M | 49.6£1.0 553+£0.4 57.0+04
RGB3-S | 49.6+1.2 57.4£0.2 68.9+0.6
RGB3-M | 50.1£0.5 54.7£0.2 59.1+£0.5

OOA (%) WITH ADJUSTED ORDER

DATA SET ‘ N-EM AIR PROPOSED
RGBI1-S | 51.2+09 67.4%£0.7 95.3£0.5
RGBI-M | 454+0.4 45.1£0.8 59.9+1.0
RGB3-S | 47.0£0.6 50.2£0.2 91.2+0.6
RGB3-M | 47.1£1.3 46.7£0.5 54.7+1.3

to regularize this vector. N-EM can handle moving hand-
written digits even if occlusions exist (Greff et al., 2017).
However, if the temporal information is not available, the
high complexities of representations limit its performance
on relatively complex scenes. Both AIR and the proposed
method achieve gratifying and comparable performance on
all datasets. When no object occlusion exists, they can accu-
rately segregate objects, generate the visual scene containing
a single object, and determine the number of objects.

With Existence of Occlusion: Performance evaluated when
objects may be overlapped are shown in Table 1. Compared
with the situation that no occlusion exists, all approaches
achieve worse results. For AIR and the proposed method,
performance on the datasets consist of hollow shapes de-
grades less than handwritten digits. The possible reason
is that hollow shapes exhibit less variations and can be
better reconstructed when partially occluded. Because the
proposed method explicitly models object occlusions, it out-
performs AIR and N-EM when objects may be overlapped.
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Table 3. Comparison of generalizability with existence of occlusion (tested on images containing 4 objects with K =4).

N-EM
DATA SET| AMTI (%) MSE (£-3)

OCA (%) | AMI (%)

AIR
MSE (E-3) OCA (%)

PROPOSED

AMI (%) MSE (E-3) OCA (%)

81.5+ 5E-2
56.4+ 8E-2

75.0+ 3E-1 16+ 2E-1
38.6+ 2E-1 31+ 9E-2

69.5+ 9e-1
1.354 2E-1

GRAY-S
GRAY-M

9.6+ 3E-2 52.84+ 3E-1
14+ 3E-2 18.5+ 4E-1

93.6+ 6E-2
66.5+ 3E-2

3.6+ 2E-2
134+ 4E-2

72.8+ 2E-1
61.0+ 5E-1

91.6+ 6E-2
73.14+ 7E-2

RGB1-S
RGB1-M

82.84+ 2B-1 7.4+ 7E-2
65.1+ 3B-1 134+ 6E-2

23.7+ 4E-1
0.794+ 2E-1

4.8+ 1E-2 95.4+ 2E-1
5.9+ 1E-2 90.5+ 9E-2

97.0+ 5E-2
79.7+ 1E-1

1.9+ 1E-2
5.2+ 1E-2

95.9+ 2E-1
88.6+ SE-1

19.9+1.9
1.16+ 2E-1

81.1+ 3g-2
58.0+ 4E-2

RGB2-S
RGB2-M

68.7+ 1E-1 12+ 7E-2
42.4+ 6E-2 184 3E-2

5.9+ 1E-2 58.6+ 2E-1
7.5+ 1E-2 31.74 5E-1

90.0+ 1E-1
64.1+ 5E-2

2.8+ 4E-2
7.8+ 2E-2

63.0+ 5E-1
55.6+ 2E-1

77.0+ 1E-2
60.9+ 7E-2

RGB3-S
RGB3-M

28.0+ 1E-1 22+ 2E-2
15.4+ 1E-1 224 3E-1

7.92+ 5E-1
31.23+ 6E-1

8.0+ 1E-2 83.64 3E-1
8.0+ 9E-3 68.9% 4E-1

94.2+ 1E-1
75.0+ 1E-1

2.3+ 2E-2
6.3+ 4E-2

85.2+ 3E-1
85.5+ 3E-1

RGB4-S
RGB4-M

233+ 2E-1 25+ 4E-2
3.64+ 1E-1 37+ 3E-1

4.85+ 3E-1
48.8°+ 5E-1

70.8+ 7E-2
45.14+ SE-2

87.6+ 7E-2
60.8+ 3E-2

3.3+ 2E-2
7.4+ 1E-2

54.8+ 6E-1
24.94 2E-1

8.0£ 3E-3 45.8% 2E-1
9.94 8E-3 2.91+ 1E-1

4.3. Performance of Ordering

The OOA scores of N-EM, AIR, and the proposed method
evaluated under two settings are shown in Table 2.

Original Order: For N-EM, indices of mixture components
are chosen as the estimated order. For AIR and the proposed
method, the order determined by LSTMs are used. Because
mixture components in N-EM are exchangeable, the OOA
scores of N-EM are close to 50% (random guess). For AIR
and the proposed method, the orders determined by LSTMs
are better than random guess. The possible reason is that
objects which are not occluded exhibit more integrities and
are more likely to be noticed by the attention mechanism.
Because the proposed method explicitly models object oc-
clusions, it achieves higher OOA than AIR.

Adjusted Order: The similarities between the original im-
age and reconstructions of individual objects can be used
to define the estimated order. The main idea is that objects
more similar to the original image in the regions occupied
by them are less likely to be occluded. For N-EM and AIR,
regions of objects are determined by the segregation results
which contain shape information. The proposed method
disentangles shapes and appearance, which allows the us-
age of inferred shapes as such regions. Using this scheme,
the proposed method achieves significant improvements on
datasets composed of hollow shapes. The performance on
datasets containing handwritten digits are not changed much.
It is probably because high variations prevent handwritten
digits to be reconstructed well when occlusions exist.

4.4. Generalization to Novel Scenes

When object occlusions exist, the generalizabilities evalu-
ated with K =4 are presented in Table 3. All three methods
generalize well in terms of segregation performance. The
proposed method generalizes better than AIR on datasets
in which background appearances may vary among images

(RGB3 and RGB4). It is probably because occlusions are
explicitly modeled, and representations of objects are inde-
pendent of background. The counting performance of all
methods generalizes less well compared with the segrega-
tion performance. The possible reason is that objects in test
images are more likely to be heavily occluded, which makes
the counting problem much harder. The results evaluated
with K =10 are included in the supplementary material.

Performances evaluated with K =4 and 10 under the situ-
ation that no occlusions occur are provided in the supple-
mentary material. The proposed method generalize well in
terms of both segregation and counting performance.

5. Conclusion

In this paper, we have proposed a deep generative model
which explicitly models object occlusions for compositional
scene representation. By learning spatial dependencies of
pixels in the unsupervised setting, this model can determine
the number of objects, generate pixel-level segregation of
objects, and estimate presences of objects in overlapping
regions. We have demonstrated that the proposed method
outperforms two state-of-the-art methods when object oc-
clusions exist, and generalizes well to novel scenes.

The proposed method falls in the framework of Learnable
Deep Priors (LDP) (Yuan et al., 2019), which facilitates
integrating rich and structured prior knowledge. It has been
observed that regularizing latent representations of objects
with normal distributions alone is not sufficient when objects
may be occluded and shapes of them exhibit high variations.
Integrating stronger prior knowledge of spatial dependen-
cies and learning compositional representations for more
sophisticated scenes will be investigated in our future work.

3For N-EM, the OCA scores computed based on the heuris-
tic post-processing are relatively high on these datasets when K
equals the number of objects in each image.
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