Differential Inclusions for Modeling Nonsmooth ADMM Variants: A Continuous Limit Theory

A. Preliminaries of Differential Inclusion

Recall that we denote F'(z) = f(x) + g(Ax), and Assumption 4 holds. To transit from the smooth case to the nonsmooth
case, we use the tool of differential inclusion to build the connection between subdifferentiable F' and differentiable functions.
One basic example of a differential inclusion takes the form of:

(t) € OF (z(t))

To bridge the gap between differentiable objective functions and nondifferentiable objective functions, we follow Vassilis
et al. (2018) and consider the Moreau-Yosida Approximation, which is a standard tool in convex analysis.

Definition 15 (Moreau-Yosida Approximation). Moreau-Yosida Approximation of a convex function F' with parameter
> 0 is defined as

. 1
Fuo) =t { P+ oy — a3

Use J,,(x) to denote the unique point that achieves the infimum above, then VF,(x) = %(w — Ju(x)) by the Envelope

Theorem (Afriat, 1971; Takayama, 1985). For any . > 0, F}, is a convex, continuously differentiable function.

‘We take the Definition 3.1 in Vassilis et al. (2018) of a shock solution to define a solution of a differential inclusion. The
existence of a shock solution are described in Section 3 of Vassilis et al. (2018). More specifically, we can build a sequence
x,,(t) such that its subsequence converges, where x,,(t) are the solutions to the Approximate Differential Equation (ADE)
defined below:

Approximate Differential Equation (ADE)

We consider the Moreau-Yosida approximation F),(x) of the objective F'(x) with x > 0. We consider the following
approximating ODE:

{j:u(t) + VE,(z,(t) =0

,,(0) 0

Here V F}, can approximate 0F and F), is differentiable as is shown in the theory of Moreau-Yosida approximation.
The convergence to a shock solution is described as the Approximation Scheme (AS):
Approximation Scheme (AS)

Let {F),},>0 be a family of functions such that F), is the Moreau—Yosida approximation of F* for all ;1 > 0. Then there
exists a subsequence {z,, },>0 of solutions of (ADE) that converges to a shock solution x of differential inclusion in the
following sense:

e 1, — z uniformly on [0,T] forall T > Oaspu — 0
e i, — @in LP([0,T];RY) forall p € [1,00) forall 7" > 0 as yu — 0

e F,(z,) — F(x)in LP([0, T];R?Y) forall p € [1,00) forall T > 0 as u — 0

B. Proofs of the Theorems Related to Linearized ADMM and Gradient-Based ADMM

In this following sections, we prove the main results provided in Section 2.1. Sections B.1, B.2 and B.3 prove Theorems 5, 6
and 8, respectively.
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B.1. Proof of Theorem 5

Proof of Theorem 5. Due to the strong convexity of the optimization subproblems (5a) and (5b), it is easy to verify that the
sequence {xy, 2, uy } is unique. We have from the first-order optimality conditions of (5a) and (5b) that

0€0f(zht1) + 71 {l'k—o—l - (J?k - %AT(AM — 2K+ Uk))} ; (14a)
1
0¢e ;ag(zkﬂ) — (@Azpi1 + (1 — )z — 241 + ug) - (14b)

We detail the proof in the following:

(i) Adding up (14b) and (5¢) eliminates the common term (aAxgy1 + (1 — @)zk — 2k4+1 + ug) and reduces to a simple
u-update:
U1 € %39(2‘%1)- (15)
Taking the continuous limit p — co gives U (t) = 0, and hence U (t) = 0.
(i) Reorganize (14a) into the following form:
0 € 8f(xrs1) + 7o (Thi1 — 1) + pAT (Azp — 25 + up). (16)

Bringing (15) into (16) leads to:

0 € Of (wpg1) + AT0g(z) + 7o (Tpsr — k) + pAT (Azy — 21). (17)
Again from (5c),
U1 — U = @Azp1 + (1 — @)z — 241
= aA(xp41 — zk) — (2k41 — 2k) + a(Az, — 2),
and hence

1
Az — 21, = a[(uk-i-l —ug) + (2r+1 — 21)] — A(@p41 — Tk)- (18)

Plugging (18) into (17) gives
0€0f(rpyr)+ ATag(zk) + 70 (Tht1 — Tx) + PAT (;[(Ukﬂ —ug) + (2pg1 — 21)] — Al@py1 — fk)>' (19
Taking the limit p — oo and letting 71, /p — ¢, using the fact that U (t) = 0, (19) reduces to
0€ OF(X (1)) + ATOg(Z(t) + (e — ATA) X(t) + éATz'(t). (20)
(iii) We directly take the p — oo limit in (5c¢) with the fact that u,, — v and 251 — 2x, we conclude

Z(t)=AX(t),  Z(t)=AX(t).

It is straightforward to check that
Of(X (1)) + AT9g(Z(t)) C OF(X (1)) @1)
Combining the above and (20) concludes

1

0 € dF(X(t) + (d +—

—@ ATA> X(),
This completes the proof.

O

3 Although the continuous version of U (t) is constantly zero, it is different with ux = 0. One may regard uy as an infinitesimal
number that dynamically changes in the system.
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B.2. Proof of Theorem 6

Proof of Theorem 6. Again the sequence {zy, 2k, ux } is unique due to the strong convexity of the optimization subprob-
lem (5a) and (5b). It follows from the optimality conditions that

0= Vf(xy) + pAT (Axy — 2 +up) + 7q(Tpr1 — T1), (22a)
0 € 99(zk+1) — plaAzii1 + (1 — @)z — 241 + uk), (22b)
U1 = ug + (@ATR 1 + (1 — @)zg — 2g11)- (22¢)

Seeing 77, in the place of 7, (22b) and (22c) are identical to (14b) and (5¢), while (22a) is identical to (14a) with O f (zx+1)
replaced by V f (zy).

Carrying out the proof of Theorem 5 in §B.1 gives (19) with 0 f (x4 ) replaced by V f(xy ), and hence taking corresponding
limits gives differential inclusion (20) with 0f(X (¢)) replaced by V f(X (¢)). The rest of the proof follows in the same
fashion as Part (iii) in the proof of Theorem 5.

O

B.3. Proof of Theorem 8

Proof of Theorem 8. For notation simplicity, we choose a matrix B such that B B = cI +1=2 AT A. Recall that the largest

and smallest singular value of B are k1 and k4. Note that when 0 < a < 1, k1 = y/c+ %a% and kg = \/c+ 1?%02,
andwhenl < a <2,k =4/c+ 1_70‘03 and kg = \/c+ 1_7“0%, where o1, 04 are singular value of matrix A. Then the

original differential inclusion becomes 0 € F (X (t)) + (BT B) X (t). Because Moreau-Yosida approximation F,(X,(t))
is a continuously differentiable, convex function for all 1 > 0, we denote an arbitrary minimizer as x},.

For each p+ > 0, consider the energy functional of Moreau- Yosida approximation defined as

Ent) = H(FL(Xpu(t)) = Fu(xy)) + %IIB(Xu(t) — )3, (23)

where A is an arbitrary constant greater than or equal to 1. Because F), is a continuously differentiable function, we could
write the time derivative of £,,(t) as

Eu(t) = (Fu(Xu() = Fu(w) + H{VFL(X,(1), Xu(8) + MBTB(X,u(t) — a7,), Xu(2)). (24)

By substituting BT BX,,(t) by —VF,(X,(t)) and VE, (X, (t)) by —BT BX,,(t) according to (9) and the definition of
the shock solution X, (¢) in Appendix A, we have

Eu(t) = —tBXu ()13 + (Fu(Xu(t) = Fu(e))) — M(X,u(t) — 7). VE(X,u(t)) <0, (25)

where we used the convexity of F/, and nonnegativity of (F),(X,) — Fy.(},)), BX,, || in the last inequality.

Similar to &,(t), we define the energy functional for F'(X (t)) as

* A *
E(t) = t(F(X(1) = F(a") + SIBX () — 2”3, (26)
At time ¢ = 0, there is an upper bound on £(0) as
A K2
£(0) = SIIB(wo — a3 < = Hllwo — 273 27)

By applying the approximation scheme (AS) argument (details as in Appendix A) as . — 0, we have for a.e. ¢ > 0 that
E(t) < £(0).

By non-negativity of F'(X) — F'(x*) in (26), we find

by 2
L) — )3 < £(). 28)
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Combining with the upper bound of £(0) in (27), we derive for a.e. ¢ > 0 that

* K *
1X () — 2*[|2 < —||zo — *]|2- (29)
Rd

Using the nonnegativity of all terms in (26) and monotonicity of £(¢) on a.e. t > 0, we have, for a.e. t > 0,

. Ak .
HP(X(1) - F(e")) < E(t) < £(0) < 2L leo — 27| (30)
Choosing A = 1, we have the following result, for a.e. ¢ > 0,
2
F(X(1)) - F(a*) < E(t) < £(0) < ZLflao — [ (31
By applying convexity of F), to (25), we have
Eu(t) < (1= N(EL(X, (1) = Ful}) — tIBX,(0)]3- (32)
Notice that the two terms in (32) are all negative, we find
o —Eut : Et
Fuxu0) - By < S0 ana gz < -S40, (3)
d
By integrating over (0, T), the inequalities above give for all 7' > 0 that
T T
. £,(0) : £u(0)
| o) - Fuwinar< 9L [, < 22, (34)
d

By applying approximation scheme (AS), taking limit 7" — oo, choosing A — oo and A = 1 respectively, and plugging
in (27), we have

o] I{%

> * ’%2 * Y *
/ (F(X,u(t)) = F(a®)dt < ZHxo — 2|3, / HIX @) I5dt < =5 |lwo — z*|3. (35)
0 2 0 2K3

O

C. Proofs of the Theorems Related to G-ADMM and the Accelerated G-ADMM
C.1. Proof of Theorem 9

Proof of Theorem 9. Proof of Theorem 9 uses idea similar to the proof of Theorem 5 to analyze G-ADMM updates. By
strong convexity of the optimization subproblems (10a) and (10b), we could verify that the sequence {xy, 2, ux } is unique.
Together with (10c), we have from the first-order optimality conditions of (10a) and (10b) that

af (Ik+1) + pAT (A$k+1 —zp +ug) 30, (36a)
1

;89 (zk41) — (@Azpy1 + (1 — @)z — zk41 +ug) 20, (36b)
g1 — (@Azk41 + (1 — @)z — zp41 +ug) = 0. (36¢)

Adding up (36b) and (36¢) eliminates the common term (wAzy11 + (1 — «)2zp — zx+1 + uk) and reduces to a simple
u-update:

1
Up41 € ;39(2k+1)~ 37
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Taking the continuous limit p — co gives U(t) = 0, and hence U () = 0.
Bringing (37) into (36a) leads to:
0€0f(xri1) + AT0g(zk) + pAT (Azpiq — 21), (38)
where again from (36¢),
U1 — wp = (A1 — 2i) — (21 — 21),

and hence 1
Axpy — 21 = E[(uk-i-l —ug) + (Zhg1 — 21)] (39)

Plugging (39) into (38) gives
0 € Of(wks1) + AT 0g(zk) + pAT (i[(wcﬂ —ug) + (2hi1 — zm) : (40)
Taking the limit p — oo, using the fact that U (t) = 0, (40) reduces to
0caf(X(t)+ATag(Z(t)) + éAT(Z'(t)). (41)
We directly take the p — oo limit in (36¢) and conclude

Z(t)=AX(t),  Z(t)=AX(t).

Recalling (21) and combining the above with (41) concludes

1 .
0€dF(X(t)) + (QATA) X(t),
Thus we complete the proof.
O
C.2. Proof of Theorem 10
Proof of Theorem 10. For each 1 > 0, consider the energy functional of Moreau-Yosida approximation defined as
* )\ *
Eu(t) = at(Fu(X,u (1)) = Fu(ap)) + S AXL() = 23)3, (42)

where A is an arbitrary constant chosen as A > 1 and 7, denotes the minimizer of F},. Because F), is a continuously

differentiable function ,we could write the time derivative of &,,(t) as
Eult) = a(Fu(X,u(1)) = Fu(2)) + at(VE(X,, (1)), Xu()) + MATAX, (1) - 27,), Xu(1).) (43)
By using the equality of AT AX,,(t) and —aV F,(X,(t)), we have
Eu(t) = ~t| AX ()13 + a(Fu(Xu(t) — Fulx;) = Aa((X,(t) — 27,), VEL(Xu(t))) <0, (44)
where we used the convexity of ), and nonnegativity of (F,(X,(t)) — F(z},)), | AX,, |2 in the last inequality.

Similar to &, (t), we define the energy functional for F'(X (t)) as
* )‘ *
E(t) = at(F(X(1)) = F(z")) + S AX (#) — )3, (45)
At time 0, there is an upper bound on £(0) as

A N \o? N
£(0) = SIAX(0) =23 < = lwo — 275 (46)
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By applying the approximation scheme (AS) argument (details as in Appendix A) as 2 — 0 to equation (44), we have for

ae. t>0,&(t) <0andthat £(t) < £(0).
In (45), by non-negativity of (X (t)) — F(z*) and || X (¢) — 2*||3, we find

IAX (1) = 27)[13 < £(0).

o> =

Combining with the upper bound of £(0) in (46), and by taking A = 1, we derive for a.e. ¢ > 0 that
* o1 *
1X(t) = 27[l2 < —llzo — 27|z
d
Using the nonnegativity of all terms in (45) and monotonicity of £(¢) on a.e. ¢ > 0, we have

0_2
al(F(X(1)) = F(a*) < £(t) <€(0) < "L llag 2|3 for ae. t,

which is given by (46). Thus (F(X (t)) — F(2*)) < %Hwo — x*||3 by taking A = 1.
From (44) and using the convexity of F),, we have

En(t) < a(l = N (Fu(Xpu(t) — Fu(a})) — tAX,(1)]3.
Notice that the two terms in (50) are all negative, we find

FaX, ) - Fualer) < =20 g lAX, 02 < ).

“a(A-1)

By integrating over (0, T'), the inequalities above give

i e SO T
| o) - R < 225 [ ag, ol < &,0)

By applying approximation scheme (.AS) and plugging in (46), we have

T * )‘0% * (12 r y 2 )\0—% * (2
; (Fu(Xu(t) — Fu(zy,))dt < mﬂxo — a3, ; tAXL()l2dt < == [lwo — 273

Taking the limit when p — 0,7 — oo and choosing A\ — oo and A = 1 respectively, we get
> ‘7% 2 ® iy 2 ‘7% 2
| @) - rede< Do - o [ @B < o - 27

0 « 0 04

This completes our proof.

C.3. Proof of Theorem 11

47

(43)

(49)

(50)

(G

(52)

(53)

(54)

Proof of Theorem 11. To analyze Accelerated G-ADMM, we adopt idea similar to proof of Theorem 5. Using strong
convexity of the optimization subproblems (12a) and (12b), we know that the sequence {x, 2k, uk, Uk, Z; } is unique.

Together with (12¢), we have from the first-order optimality conditions of (12a) and (12b) that

8f ($k+1) + pAT (Aa:k+1 —Zr + ﬂk) >0,
1 . N
;89 (zk+1) — (@Azp11 + (1 — @)k — 241 + Ug) 20,

g1 — (@Azgrr + (1 — @) 2, — zp41 + ) = 0.

(55a)
(55b)
(55¢)
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Adding up (55b) and (55¢) eliminates the common term — («Axg+1 + (1 — )2, — zK11 + Gx) and reduces to a simple
u-update:

1
Upt1 € ;89(2k+1)~ (56)
Taking the continuous limit p — oo gives U (t) = 0, and hence U(t) = 0, U(t) = 0. The idea is similar to the proof of
Theorem 5.

Bringing (56) and equation (12d) which is the definition of % into (55a) leads to:

Of (mrs1) + AT0g(2) + pAT (Azps1 — 2k) + pyis1 A’ (upg1 — ur) 30, (57)

where again from (55c¢),
. 1 . .
(A$k+1 — Zk) = 5[(1”““ —Uu ) + (Zk+1 - Zk)]. (58)

In addition, from equation (12d) and equation (12e), we find that ug 1 — 4 = uks+1 — (1 + Yet+1)ur + Ye+1ug—1 and
Zkt1 — 2k = Zk+1 — (L 4+ Yk41) 26 + Ye+126—1. For ug1 — iy, we add the term wug, — uy + ug—1 — up—1 to the right hand
side, the resulting equation is a combination of the second order difference and first order difference of the sequence {uy, }:

Upt1 — U = (ups1 — 2up +up—1) + (1 — Y1) (ur — ugp—1). (59)
Similarily, the equation holds that:
Zhy1 — 2k = (Zrg1 — 226 + 2p—1) + (1 — Y41) (26 — 26—1)- (60)

_ ko _ r
Wenotethatl—w—l—m—m

(59), (60) and the fact that U (t) = 0, U(t) = 0, equation (57) becomes:

. Taking the limit p — oo, under infinitesimal step sizes, using relationships (58),

Of (X)) + ATag(Z(t)) + éAT(gZ(t) + Z(t)) 3 0. (61)

We directly take the p — oo limit in (55¢) and conclude
Z(t)=AX(t),  Z({t)=AX(t),  Z(t)=AX(t).

Recalling (21) and combining the above with (61) concludes

OeaﬂX@»+<;AUQ@ﬂﬂ+ZX@»

C.4. Proof of Theorem 12

Proof of Theorem 12. Recall that z}, is the minimizer of F),. For each p > 0, consider the energy functional of Moreau-
Yosida approximation defined as

—A-1)

4(6) = (R 60 — Fulw)) + 5 4 (A0 — 2 + 136,0) |+ 22 a0 - 2l @

where ) is a constant chosen within 2 < A < r — 1. Because F), is a continuously differentiable function, we could write
the time derivative of &,,(t) as

SH:2NEAXA0)—PL@Q)+FVFMX%@DTXM+(MXp—zD+¢XOT(éATA)«A+UX%+tXO

+Ar—=A-1)(X, — x;)T(lATA)X,,,
o
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By using the equality of tAT AX,, and —rAT AX,, — atVF,(X,(t)), we have

; N N N r—1-XMt, -
En=—-X\ (F#(x/_t) — Fu(Xu(t) — (5% - Xu)TVFM(X#(t)))—()\—Z)t(F#(X,L(t))—F“(x#))—( ) ||AXM||§ <0
. (63)
where we used the convexity of F, and nonnegativity of I/, (X, (t)) — F.(7},), [[AX |2 in the last inequality.
Similar to &,(t), we define the energy functional for F'(X(¢)) as
E(t) = P(F(X (1)) - F(a*)) + — |4 (Axt tX(t A AL ax )13
(t) = (F(X(1) - F(")) + o (X(t) —2") + [AX () = 272
At time ¢, there is an upper bound on £(ty) as
. Alr—1 . 20+ A(r — 1)o?
lto) = B(F (o) — Fla) + 2D Ay o) < 22FA =D g o9

2c0 2

By non-negativity of Fj,(X,,(t)) — Fl.(x), | X, — |3 and || X,,[|3, we find for all r > 3 and ¢ > t that

a(tHXM —zh|13) = 1 X, — 2515 + 2t(X, — 2)) T X, < 5\\2()(“ ah) + X3 < 7“ < Zg

By integrating over (to, t), this gives us

a(t

* * B tO)
tIX — 2513 — tollwo — 2|13 < — a2 ulto)
d

By applying the approximation scheme (AS) argument (details as in Appendix A) as u — 0, we have for a.e. t > t( that

aE( 0)

IX a3 < +lzo — 27|13

Combining with the upper bound of £(t() in (64), we derive for a.e. t > ¢, that
[X(t) = 2"[2 < C1lo (65)

a+(r—1)o2+o02
Rk 7

with factor C = *94 Here we choose A = 2 to minimize .

94
From (63), we know that £,(t) is nonincreasing for ¢ > to, for all 4 > 0. By applying (AS) we find that £(¢) is
nonincreasing for a.e. ¢t > ¢y. Using the nonnegativity of all three terms in (62) and monotonicity of £(¢) on a.e. t > tg, we

have for a.e. ¢t > t( that

FX(0) ~ Fa) £ €0 < () < 203

where factor Cy = 1 + (r — 1)o? /a is given by (64) with A = 2, and

N . 2« 2a 20+ A(r — 1)o?
INX() — %) + X5 < 226(0) < e(ty) < 22 ANt g
d d d

Therefore, by triangle inequality and (65),
. 1 N . 1 N Cs
X2 < SIAX () = 27) + X (@)l + SAIX () — 272 < =740

— )
with factor C'3 = 4/ wj# + 2C. Here we choose A = 2 to minimize Cj.
d

From (63), we have
. — 1=t .
£ <~ UE0) ~ Fula)) - T g
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when r = 3, we could only choose A = 2 = r — 1 and the right hand side of the inequality above is always zero. However,
if we further assume r > 3, then we could choose A = r — 1 and A = 2 respectively, such that

N 1 . . @ .

HEL(Xu(t) = Flu(zp)) < ——=&,  and 1 Xull3 < _mgﬂ

By integrating over (tg, 00), the inequalities above give
00 . E,.(to) o0 . 9 af (t())
| ) - Funar < ) ana [z < 220,

By applying (AS) and plugging in (64), we have

/ t(F(X(t) — F(z*))dt < C4A%  and / t| X (#)]|3dt < C5A2

to to

with factors Cy = Zat(r—10f 14 Cs = atlr—1)o} O

2(r—3)a (r—3)o2 *

C.5. Proof of Theorem 14

Proof of Theorem 14. The energy functional we used in Theorem 12 is no longer applicable, because we can not find A
satisfying A —2 > 0 and »r — 1 — A > 0 simultaneously when 0 < r < 3. Here we consider a new energy functional for the
Moreau-Yosida approximation

1 2

2r
2«

3

T a X —aE 66)

Enlt) = P(FL (X, (0) — Fula}) + A

A(X,(t) —x,) + tAX,,(1)

By taking its time derivative, we have

]
£ =2(ELC00) = Fulal) + PR K+ (G0 - i) 41, ) GaTa) (G + D+ 5,
2r(3—r)

L

(X~ ) CATAX,

By using the equality of tAT AX,, and —rAT AX, — atVF,(X,) and applying the convexity of F),, we have

2(3—r) 4r(3—r) T AT 4 < 3—r o
= DX — ) AT AR, + 2 AK, B
Although this energy functional does not have nonnegative derivative, there is a special relationship between it and its

derivative. We notice that

IN

&y HFL(Xu(1) = Fu(zy,)) +

2(3 _T)E# < 2r3-r)(3+1)

g2, < - A, — ) < 0
_2(3-7)

This implies that, for #,,(t) :=t~~ 5 &,(t), forall t > ¢,

_2(8=1)

T A C )

2(3—7)
-7 3

Therefore, #,,(t) is nonincreasing over ¢ > ty, for all i > 0. By making similar definition as H(t) :=t¢
applying the approximation scheme, we have that () is nonincreasing for a.e. t > (. At time ¢,

_23-1) 3
H(to) <ty ° - <1 4 r(gzr)af) A2

E(t) and

By the nonnegativity of all terms in (66) and the monotonicity of # (), we have for a.e. ¢t > ¢, that

2(3—7)

- 3 2
FX(0) ~ F*) < 1) < () < 1050
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r(3+r)oi

with factor Cg = 1 + —=5

Similarly, we have for a.e. t > ¢, that

2 72(33—r)
2UX() — o) +1X]| < 22250 < 222 1) < 2200 T2 A
3 ) o2 .

2 d d 2

If we also assume the trajectory { X (¢)}+>¢, is bounded, then by adopting the same interpretation as in Theorem 12, there
exists some positive factor Cy such that, for a.e. t > tg, || X (t) — 2*|]2 < CpAy. Then triangle inequality gives us, for a.e.
t > to, that

3—r

< C7tg 3 Ay
- t

1
t

&(X(t) — ) +tX

1%l <1 |2

@l

2r
—|IX(t) - z*
X =l

with factor C'; = 2?;# + 2%C’o. O
d



